1
|
Sabatini GP, Dönmez MB, Çakmak G, Demirel M, Al-Haj Husain N, Sesma N, Yoon HI, Yilmaz B. Additive manufacturing trueness and internal fit of crowns in resin modified with a commercially available ceramic composite concentrate. J Prosthet Dent 2024; 132:1323.e1-1323.e8. [PMID: 39304488 DOI: 10.1016/j.prosdent.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
STATEMENT OF PROBLEM Inorganic fillers can be incorporated into additively manufactured (AM) resins to improve their properties, and a ceramic composite concentrate has been recently marketed for this purpose. However, knowledge on the printability of AM resins modified with this concentrate is lacking. PURPOSE The purpose of this in vitro study was to evaluate the manufacturing trueness and internal fit of AM crowns in a dental resin modified with a commercially available ceramic composite concentrate. MATERIAL AND METHODS A maxillary right first molar typodont tooth was prepared and digitized to design a crown in standard tessellation language (STL) format. This STL file was used to fabricate a total of 30 AM crowns, 10 with a resin with no fillers for interim restorations (AM-I), 10 AM-I resin incorporated with ceramic composite concentrate (AM-IR), and 10 with a ceramic-filled resin intended for definitive restorations (AM-D). The modification of the AM-IR resin was performed by mechanically mixing 30 wt% of a commercially available ceramic composite concentrate into AM-I. An intraoral scanner was used to digitize all crowns, which were then seated on the prepared typodont abutment and rescanned. The manufacturing trueness of each crown was measured in 4 regions (overall, external, intaglio, and marginal) and reported with root mean square (RMS) estimates. The internal gaps were calculated by using a triple scan protocol. The intaglio surface deviations were assessed with the Kruskal-Wallis and Dunn tests, while the remaining data were analyzed with the 1-way analysis of variance and Tukey honestly significant difference tests (α=.05). RESULTS AM-IR had the highest overall and external RMS and had higher intaglio RMS than AM-D (P≤.001). AM-I had the lowest marginal RMS (P≤.002). AM-IR had the highest average gap values (P≤.027). CONCLUSIONS AM-IR crowns mostly had lower trueness and high internal gaps. However, the differences among the tested materials in fabrication trueness and average gap values were small, and internal gaps were within the previously reported thresholds.
Collapse
Affiliation(s)
- Gabriela Panca Sabatini
- Clinical Assistant, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; and PhD candidate, Department of Prosthodontics, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Mustafa Borga Dönmez
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul, Turkey; and PhD Student, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Gülce Çakmak
- Senior Research Associate, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Münir Demirel
- Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | - Nadin Al-Haj Husain
- Senior Lecturer, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Newton Sesma
- Associate Professor, Department of Prosthodontics, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Hyung-In Yoon
- Associate Professor, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; and Adjunct Professor, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Burak Yilmaz
- Associate Professor, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; and Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Duarte S, Phark JH. Advances in Dental Restorations: A Comprehensive Review of Machinable and 3D-Printed Ceramic-Reinforced Composites. J ESTHET RESTOR DENT 2024. [PMID: 39558703 DOI: 10.1111/jerd.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE This review aims to evaluate the current understanding and clinical applications of machinable ceramic-reinforced composites (CRCs) and the emerging first generation of 3D-printed CRCs in dental restorations. OVERVIEW Machinable CRCs, introduced over a decade ago, have shown moderate success in short- to medium-term clinical applications, particularly in low-stress areas. However, their long-term durability limitations, such as increased wear and marginal deterioration, restrict their use in high-stress situations and full crowns. The first generation of 3D-printed CRCs offers customization advantages but is still in early development and exhibits lower mechanical strength and higher wear rates than CAD-CAM CRCs and traditional ceramics. Additionally, the classification and definitions surrounding CRCs remain ambiguous, as ADA categorizations do not clearly differentiate CRCs from ceramics, complicating clinical indication, usage, and billing practices. CONCLUSION Machinable CAD-CAM CRCs are moderately successful in low-stress applications, while 3D-printed CRCs show limitations in wear resistance and durability, raising concerns for their use in definitive restorations. Both require further research and clinical validation. CLINICAL SIGNIFICANCE Machinable CAD-CAM CRCs are best suited for low-stress applications, while 3D-printed CRCs may be more appropriate for provisional use. Until long-term clinical data are available, ceramics should be preferred for high-stress or full-coverage restorations. Clearer definitions for porcelain/ceramic and comprehensive application guidelines are urgently needed to support clinician decision-making and improve patient outcomes.
Collapse
Affiliation(s)
- Sillas Duarte
- Advanced Operative and Adhesive Dentistry, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jin-Ho Phark
- Advanced Operative and Adhesive Dentistry, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
4
|
Alhotan A, Raszewski Z, Chojnacka K, Mikulewicz M, Kulbacka J, Alaqeely R, Mirdad A, Haider J. Evaluating the Translucency, Surface Roughness, and Cytotoxicity of a PMMA Acrylic Denture Base Reinforced with Bioactive Glasses. J Funct Biomater 2023; 15:16. [PMID: 38248683 PMCID: PMC10817461 DOI: 10.3390/jfb15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
The colonisation of the surface of removable acrylic dentures by various types of microorganisms can lead to the development of various diseases. Therefore, the creation of a bioactive material is highly desirable. This study aimed to develop a denture base material designed to release bioactive ions into the oral environment during use. Four types of bioactive glasses (BAG)-S53P4, Biomin F, 45S5, and Biomin C-were incorporated into the PMMA acrylic resin, with each type constituting 20 wt.% (10 wt.% non-silanised and 10% silanised) of the mixture, while PMMA acrylic resin served as the control group. The specimens were subsequently immersed in distilled water, and pH measurements of the aqueous solutions were taken every seven days for a total of 38 days. Additionally, surface roughness and translucency measurements were recorded both after preparation and following seven days of immersion in distilled water. The cytotoxicity of these materials on human fibroblast cells was evaluated after 24 and 48 h using Direct Contact and MTT assays. Ultimately, the elemental composition of the specimens was determined through energy-dispersive X-ray (EDX) spectroscopy. In general, the pH levels of water solutions containing BAG-containing acrylics gradually increased over the storage period, reaching peak values after 10 days. Notably, S53P4 glass exhibited the most significant increase, with pH levels rising from 5.5 to 7.54. Surface roughness exhibited minimal changes upon immersion in distilled water, while a slight decrease in material translucency was observed, except for Biomin C. However, significant differences in surface roughness and translucency were observed among some of the BAG-embedded specimens under both dry and wet conditions. The composition of elements declared by the glass manufacturer was confirmed by EDX analysis. Importantly, cytotoxicity analysis revealed that specimens containing BAGs, when released into the environment, did not adversely affect the growth of human gingival fibroblast cells after 48 h of exposure. This suggests that PMMA acrylics fabricated with BAGs have the potential to release ions into the environment and can be considered biocompatible materials. Further clinical trials are warranted to explore the practical applications of these materials as denture base materials.
Collapse
Affiliation(s)
- Abdulaziz Alhotan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12372, Saudi Arabia
| | | | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Marcin Mikulewicz
- Department of Dentofacial Orthopaedics and Orthodontics, Division of Facial Abnormalities, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Razan Alaqeely
- Department of Periodontics, College of Dentistry, King Saud University, P.O. Box 10219, Riyadh 12372, Saudi Arabia
| | - Amani Mirdad
- Department of Periodontics, College of Dentistry, King Saud University, P.O. Box 10219, Riyadh 12372, Saudi Arabia
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
5
|
Timofticiuc IA, Călinescu O, Iftime A, Dragosloveanu S, Caruntu A, Scheau AE, Badarau IA, Didilescu AC, Caruntu C, Scheau C. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. J Funct Biomater 2023; 15:7. [PMID: 38248674 PMCID: PMC10816811 DOI: 10.3390/jfb15010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Along with the rapid and extensive advancements in the 3D printing field, a diverse range of uses for 3D printing have appeared in the spectrum of medical applications. Vat photopolymerization (VPP) stands out as one of the most extensively researched methods of 3D printing, with its main advantages being a high printing speed and the ability to produce high-resolution structures. A major challenge in using VPP 3D-printed materials in medicine is the general incompatibility of standard VPP resin mixtures with the requirements of biocompatibility and biofunctionality. Instead of developing completely new materials, an alternate approach to solving this problem involves adapting existing biomaterials. These materials are incompatible with VPP 3D printing in their pure form but can be adapted to the VPP chemistry and general process through the use of innovative mixtures and the addition of specific pre- and post-printing steps. This review's primary objective is to highlight biofunctional and biocompatible materials that have been adapted to VPP. We present and compare the suitability of these adapted materials to different medical applications and propose other biomaterials that could be further adapted to the VPP 3D printing process in order to fulfill patient-specific medical requirements.
Collapse
Affiliation(s)
- Iosif-Aliodor Timofticiuc
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Octavian Călinescu
- Department of Biophysics, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Adrian Iftime
- Department of Biophysics, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|