1
|
Islam MM, Saha A, Trisha FA, Gonzalez-Andrades M, Patra HK, Griffith M, Chodosh J, Rajaiya J. An in vitro 3-dimensional Collagen-based Corneal Construct with Innervation Using Human Corneal Cell Lines. OPHTHALMOLOGY SCIENCE 2024; 4:100544. [PMID: 39139547 PMCID: PMC11321308 DOI: 10.1016/j.xops.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 08/15/2024]
Abstract
Purpose To develop a 3-dimensional corneal construct suitable for in vitro studies of disease conditions and therapies. Design In vitro human corneal constructs were created using chemically crosslinked collagen and chondroitin sulfate extracellular matrix and seeded with 3 human corneal cell types (epithelial, stromal, and endothelial) together with neural cells. The neural cells were derived from hybrid neuroblastoma cells and the other cells used from immortalized human corneal cell lines. To check the feasibility and characterize the constructs, cytotoxicity, cell proliferation, histology, and protein expression studies were performed. Results Optimized culture condition permitted synchronized viability across the cell types within the construct. The construct showed a typical appearance for different cellular layers, including healthy appearing, phenotypically differentiated neurons. The expected protein expression profiles for specific cell types within the construct were confirmed with western blotting. Conclusions An in vitro corneal construct was successfully developed with maintenance of individual cell phenotypes with anatomically correct cellular loci. The construct may be useful in evaluation of specific corneal disorders and in developing different corneal disease models. Additionally, the construct can be used in evaluating drug targeting and/or penetration to individual corneal layers, testing novel therapeutics for corneal diseases, and potentially reducing the necessity for animals in corneal research at the early stages of investigation. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Amrita Saha
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Farzana Afrose Trisha
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
| | - Miguel Gonzalez-Andrades
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Hirak K. Patra
- UCL Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, UK
| | - May Griffith
- Department of Ophthalmology, Université de Montréal and Centre de recherche de l'Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - James Chodosh
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jaya Rajaiya
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
2
|
Rodrigues FAP, Oliveira CS, Sá SC, Tavaria FK, Lee SJ, Oliveira AL, Costa JB. Molecules in Motion: Unravelling the Dynamics of Vascularization Control in Tissue Engineering. Macromol Biosci 2024:e2400139. [PMID: 39422632 DOI: 10.1002/mabi.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Significant progress has been made in tissue engineering (TE), aiming at providing personalized solutions and overcoming the current limitations of traditional tissue and organ transplantation. 3D bioprinting has emerged as a transformative technology in the field, able to mimic key properties of the natural architecture of the native tissues. However, most successes in the area are still limited to avascular or thin tissues due to the difficulties in controlling the vascularization of the engineered tissues. To address this issue, several molecules, biomaterials, and cells with pro- and anti-angiogenic potential have been intensively investigated. Furthermore, different bioreactors capable to provide a dynamic environment for in vitro vascularization control have been also explored. The present review summarizes the main molecules and TE strategies used to promote and inhibit vascularization in TE, as well as the techniques used to deliver them. Additionally, it also discusses the current challenges in 3D bioprinting and in tissue maturation to control in vitro/in vivo vascularization. Currently, this field of investigation is of utmost importance and may open doors for the design and development of more precise and controlled vascularization strategies in TE.
Collapse
Affiliation(s)
- Francisco A P Rodrigues
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Cláudia S Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Simone C Sá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Freni K Tavaria
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - João B Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| |
Collapse
|
3
|
Rafiei S, Ghanbari-Abdolmaleki M, Zeinali R, Heidari-Keshel S, Rahimi A, Royanian F, Zaeifi D, Taheri K, Pourtaghi K, Khaleghi M, Biazar E. Silk fibroin/vitreous humor hydrogel scaffold modified by a carbodiimide crosslinker for wound healing. Biopolymers 2024:e23612. [PMID: 38994706 DOI: 10.1002/bip.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Natural-derived biomaterials can be used as substrates for the growth, proliferation, and differentiation of cells. In this study, bovine vitreous humor as a biological material was cross-linked to silk fibroin with different concentration ratios to design a suitable substrate for corneal tissue regeneration. The cross-linked samples were evaluated with different analyses such as structural, physical (optical, swelling, and degradation), mechanical, and biological (viability, cell adhesion) assays. The results showed that all samples had excellent transparency, especially those with higher silk fibroin content. Increasing the ratio of vitreous humor to silk fibroin decreased mechanical strength and increased swelling and degradation, respectively. There was no significant difference in the toxicity of the samples, and with the increase in vitreous humor ratio, adhesion and cell proliferation increased. Generally, silk fibroin with vitreous humor can provide desirable characteristics as a transparent film for corneal wound healing.
Collapse
Affiliation(s)
- Sepideh Rafiei
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | | | - Reza Zeinali
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universität Politècnica de Catalunya, Terrassa, Spain
| | - Saeed Heidari-Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Royanian
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Davood Zaeifi
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kiana Taheri
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Kimia Pourtaghi
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Khaleghi
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
4
|
Ziverec A, Bax D, Cameron R, Best S, Pasdeloup M, Courtial EJ, Mallein-Gerin F, Malcor JD. The diazirine-mediated photo-crosslinking of collagen improves biomaterial mechanical properties and cellular interactions. Acta Biomater 2024; 180:230-243. [PMID: 38574880 DOI: 10.1016/j.actbio.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
In tissue engineering, crosslinking with carbodiimides such as EDC is omnipresent to improve the mechanical properties of biomaterials. However, in collagen biomaterials, EDC reacts with glutamate or aspartate residues, inactivating the binding sites for cellular receptors and rendering collagen inert to many cell types. In this work, we have developed a crosslinking method that ameliorates the rigidity, stability, and degradation rate of collagen biomaterials, whilst retaining key interactions between cells and the native collagen sequence. Our approach relies on the UV-triggered reaction of diazirine groups grafted on lysines, leaving critical amino acid residues intact. Notably, GxxGER recognition motifs for collagen-binding integrins, ablated by EDC crosslinking, were left unreacted, enabling cell attachment, spreading, and colonization on films and porous scaffolds. In addition, our procedure conserves the architecture of biomaterials, improves their resistance to collagenase and cellular contraction, and yields material stiffness akin to that obtained with EDC. Importantly, diazirine-crosslinked collagen can host mesenchymal stem cells, highlighting its strong potential as a substrate for tissue repair. We have therefore established a new crosslinking strategy to modulate the mechanical features of collagen porous scaffolds without altering its biological properties, thereby offering an advantageous alternative to carbodiimide treatment. STATEMENT OF SIGNIFICANCE: This article describes an approach to improve the mechanical properties of collagen porous scaffolds, without impacting collagen's natural interactions with cells. This is significant because collagen crosslinking is overwhelmingly performed using carbodiimides, which results in a critical loss of cellular affinity. By contrast, our method leaves key cellular binding sites in the collagen sequence intact, enabling cell-biomaterial interactions. It relies on the fast, UV-triggered reaction of diazirine with collagen, and does not produce toxic by-products. It also supports the culture of mesenchymal stem cells, a pivotal cell type in a wide range of tissue repair applications. Overall, our approach offers an attractive option for the crosslinking of collagen, a prominent material in the growing field of tissue engineering.
Collapse
Affiliation(s)
- Audrey Ziverec
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Daniel Bax
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Marielle Pasdeloup
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Edwin-Joffrey Courtial
- 3dFAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
5
|
Patel T, Skonieczna M, Turczyn R, Krukiewicz K. Modulating pro-adhesive nature of metallic surfaces through a polypeptide coupling via diazonium chemistry. Sci Rep 2023; 13:18365. [PMID: 37884622 PMCID: PMC10603177 DOI: 10.1038/s41598-023-45694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The design of biomaterials able to facilitate cell adhesion is critical in the field of tissue engineering. Precise control of surface chemistry at the material/tissue interface plays a major role in enhancing the interactions between a biomaterial and living cells. Bio-integration is particularly important in case of various electrotherapies, since a close contact between tissue and electrode's surface facilitates treatment. A promising approach towards surface biofunctionalization involves the electrografting of diazonium salts followed by the modification of organic layer with pro-adhesive polypeptides. This study focuses on the modification of platinum electrodes with a 4-nitrobenzenediazonium layer, which is then converted to the aminobenzene moiety. The electrodes are further biofunctionalized with polypeptides (polylysine and polylysine/laminin) to enhance cell adhesion. This study also explores the differences between physical and chemical coupling of selected polypeptides to modulate pro-adhesive nature of Pt electrodes with respect to human neuroblastoma SH-SY5Y cells and U87 astrocytes. Our results demonstrate the significant enhancement in cell adhesion for biofunctionalized electrodes, with more amplified adhesion noted for covalently coupled polypeptides. The implications of this research are crucial for the development of more effective and functional biomaterials, particularly biomedical electrodes, which have the potential to advance the field of bioelectronics and improve patients' outcomes.
Collapse
Affiliation(s)
- Taral Patel
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Magdalena Skonieczna
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland.
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland.
| |
Collapse
|
6
|
Pramanik B, Islam MM, Patra HK. Rational design of peptide-based implants for corneal bioengineering. Curr Opin Biotechnol 2023; 81:102947. [PMID: 37163824 DOI: 10.1016/j.copbio.2023.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Regeneration of damaged cornea can save vision for millions of patients. Most of these patients are waiting for transplantation of a donor cornea or suitable substitute to restore vision. Although donor cornea transplantation is the most clinically accepted treatment, shortage of donor cornea results in almost 69 out of every 70 patients untreated with the waiting list for transplantation drastically increasing every year according to a prepandemic estimation. Therefore, corneal replacements are coming up as a cutting-edge alternative strategy. In view of the peptides, especially collagen-like peptides and peptide amphiphiles with bioactive functional motifs demonstrate promising avenue for the corneal tissue engineering and promoting regeneration, by their hierarchical self-assembling propensity to acquire desired nano- to macroscale 3D architecture. Here, we analyze rational peptide designing, self-assembly, and strategies of peptide/peptide-based nanoscale building blocks to create the extracellular matrix mimetic implants for functional regeneration of the cornea.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel; School of Pharmacy, University of Nottingham, NG7 2RD Nottingham, United Kingdom
| | - Mohammad M Islam
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, NW3 2PF, United Kingdom.
| |
Collapse
|
7
|
Urbánek P, Šuly P, Ševčík J, Hanulíková B, Kuřitka I, Šopík T, Stodůlka P. Controlled Drug Delivery Device for Cornea Treatment and Novel Method for Its Testing. Pharmaceuticals (Basel) 2023; 16:ph16040505. [PMID: 37111260 PMCID: PMC10143253 DOI: 10.3390/ph16040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
A new solution for local anesthetic and antibiotic delivery after eye surgery is presented. A contact lens-shaped collagen drug carrier was created and loaded by Levofloxacin and Tetracaine with a riboflavin crosslinked surface layer, thus impeding diffusion. The crosslinking was confirmed by Raman spectroscopy, whereas the drug release was investigated using UV-Vis spectrometry. Due to the surface barrier, the drug gradually releases into the corneal tissue. To test the function of the carrier, a 3D printed device and a new test method for a controlled drug release, which mimics the geometry and physiological lacrimation rate of the human eye, were developed. The experimental setup with simple geometry revealed that the prepared drug delivery device can provide the prolonged release profile of the pseudo-first-order for up to 72 h. The efficiency of the drug delivery was further demonstrated using a dead porcine cornea as a drug recipient, without the need to use live animals for testing. Our drug delivery system significantly surpasses the efficiency of antibiotic and anesthetic eyedrops that would have to be applied approximately 30 times per hour to achieve the same dose as that delivered continuously by our device.
Collapse
Affiliation(s)
- Pavel Urbánek
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
- Correspondence:
| | - Pavol Šuly
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Jakub Ševčík
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Barbora Hanulíková
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Tomáš Šopík
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Pavel Stodůlka
- Gemini Eye Clinic, U Gemini 360, 76001 Zlin, Czech Republic
| |
Collapse
|
8
|
Yu X, Wang L, He W. Cytophilic Agarose-Epoxide-Amine Cryogels Engineered with Granulated Microstructures. ACS APPLIED BIO MATERIALS 2023; 6:694-702. [PMID: 36695539 DOI: 10.1021/acsabm.2c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inherent cytophobicity of agarose limits its direct use for the growth of anchorage-dependent cells. Here, we report a simple strategy allowing the development of agarose-based hydrogels entailed with both cytophilicity and microstructured morphology. Through the reaction of water-soluble 1,4-butanediol diglycidyl ether (BDDE) with trifunctional polyetheramine Jeffamine T403 in agarose solution followed by cryogelation of the mixtures, a series of macroporous agarose-epoxide-amine cryogels were prepared readily. Results from fluorescent labeling and energy-dispersive X-ray elemental mapping showed the formation of granulated microstructures in the cryogels. Such features closely correlated to the phase separation of BDDE-T403 polymers within the agarose matrix. Cytophilicity of the microstructured cryogels due to the integrated amine moieties was demonstrated through the adhesion of fibroblasts. Functional enrichment of the cryogels was further highlighted by leveraging the granulates as micro-reservoirs for polyphenol proanthocyanidin to enable antioxidation and protection of fibroblasts from H2O2-induced cytotoxic effect in vitro.
Collapse
Affiliation(s)
- Xueying Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| | - Liwei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| |
Collapse
|
9
|
Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022; 10:2307. [PMID: 36140407 PMCID: PMC9496548 DOI: 10.3390/biomedicines10092307] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Collagen is the most abundant structural protein found in humans and mammals, particularly in the extracellular matrix (ECM). Its primary function is to hold the body together. The collagen superfamily of proteins includes over 20 types that have been identified. Yet, collagen type I is the major component in many tissues and can be extracted as a natural biomaterial for various medical and biological purposes. Collagen has multiple advantageous characteristics, including varied sources, biocompatibility, sustainability, low immunogenicity, porosity, and biodegradability. As such, collagen-type-I-based bioscaffolds have been widely used in tissue engineering. Biomaterials based on collagen type I can also be modified to improve their functions, such as by crosslinking to strengthen the mechanical property or adding biochemical factors to enhance their biological activity. This review discusses the complexities of collagen type I structure, biosynthesis, sources for collagen derivatives, methods of isolation and purification, physicochemical characteristics, and the current development of collagen-type-I-based scaffolds in tissue engineering applications. The advancement of additional novel tissue engineered bioproducts with refined techniques and continuous biomaterial augmentation is facilitated by understanding the conventional design and application of biomaterials based on collagen type I.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Pourjabbar B, Biazar E, Heidari Keshel S, Baradaran‐Rafii A. Improving the properties of fish skin collagen/silk fibroin dressing by chemical treatment for corneal wound healing. Int Wound J 2022; 20:484-498. [PMID: 35912793 PMCID: PMC9885469 DOI: 10.1111/iwj.13896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/03/2023] Open
Abstract
Natural biomaterials are crucial in ocular tissue engineering because they allow cells to proliferate, differentiate, and stratify while maintaining the typical epithelial phenotype. In this study, membranes as dressings were formed from silk fibroin and collagen (Co) extracted from fish skin and then modified with carbodiimide chemical cross linker in different concentrations. The samples were evaluated by different analyses such as structural, physical (optical, swelling, denaturation temperature, degradation), mechanical, and biological (viability, cell adhesion, immunocytochemistry) assays. The results showed that all membranes have excellent transparency, especially with higher silk fibroin content. Increasing the cross linker concentration and the ratio of silk fibroin to Co increased the denaturation temperature and mechanical strength and, conversely, reduced the degradation rate and cell adhesion. The samples did not show a significant difference in toxicity with increasing cross linker and silk fibroin ratio. In general, samples with a low silk fibroin ratio combined with cross linker can provide desirable properties as a membrane for corneal wound healing.
Collapse
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon BranchIslamic Azad UniversityTonekabonIran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran,Medical Nanotechnology and Tissue Engineering Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Alireza Baradaran‐Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Islam MM, Chivu A, AbuSamra DB, Saha A, Chowdhuri S, Pramanik B, Dohlman CH, Das D, Argüeso P, Rajaiya J, Patra HK, Chodosh J. Crosslinker-free collagen gelation for corneal regeneration. Sci Rep 2022; 12:9108. [PMID: 35650270 PMCID: PMC9160259 DOI: 10.1038/s41598-022-13146-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Development of an artificial cornea can potentially fulfil the demand of donor corneas for transplantation as the number of donors is far less than needed to treat corneal blindness. Collagen-based artificial corneas stand out as a regenerative option, having promising clinical outcomes. Collagen crosslinked with chemical crosslinkers which modify the parent functional groups of collagen. However, crosslinkers are usually cytotoxic, so crosslinkers need to be removed from implants completely before application in humans. In addition, crosslinked products are mechanically weak and susceptible to enzymatic degradation. We developed a crosslinker free supramolecular gelation strategy using pyrene conjugated dipeptide amphiphile (PyKC) consisting of lysine and cysteine; in which collagen molecules are intertwined inside the PyKC network without any functional group modification of the collagen. The newly developed collagen implants (Coll-PyKC) are optically transparent and can effectively block UV light, are mechanically and enzymatically stable, and can be sutured. The Coll-PyKC implants support the growth and function of all corneal cells, trigger anti-inflammatory differentiation while suppressing the pro-inflammatory differentiation of human monocytes. Coll-PyKC implants can restrict human adenovirus propagation. Therefore, this crosslinker-free strategy can be used for the repair, healing, and regeneration of the cornea, and potentially other damaged organs of the body.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Alexandru Chivu
- Department of Surgical Biotechnology, University College London, London, NW3 2PF, UK
| | - Dina B AbuSamra
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Amrita Saha
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Sumit Chowdhuri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bapan Pramanik
- Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Claes H Dohlman
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pablo Argüeso
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Jaya Rajaiya
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, NW3 2PF, UK.
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
13
|
Plant Recombinant Human Collagen Type I Hydrogels for Corneal Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00220-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Purpose
To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants
Methods
RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs.
Results
Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas.
Conclusion
Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method.
Lay Summary
A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.
Collapse
|
14
|
Nozari N, Biazar E, Kamalvand M, Keshel SH, Shirinbakhsh S. Photo Cross-linkable Biopolymers for Cornea Tissue Healing. Curr Stem Cell Res Ther 2021; 17:58-70. [PMID: 34269669 DOI: 10.2174/1574888x16666210715112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Light can act as an effective and strong agent for the cross-linking of biomaterials and tissues and is recognized as a safe substitute for chemical cross-linkers to modify mechanical and physical properties and promote biocompatibility. This review focuses on the research about cross-linked biomaterials with different radiation sources such as Laser or Ultraviolet (UV) that can be applied as scaffolds, controlled release systems, and tissue adhesives for cornea healing and tissue regeneration.
Collapse
Affiliation(s)
- Negar Nozari
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shervin Shirinbakhsh
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
15
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
16
|
Optimization of Collagen Chemical Crosslinking to Restore Biocompatibility of Tissue-Engineered Scaffolds. Pharmaceutics 2021; 13:pharmaceutics13060832. [PMID: 34204956 PMCID: PMC8229326 DOI: 10.3390/pharmaceutics13060832] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen scaffolds, one of the most used biomaterials in corneal tissue engineering, are frequently crosslinked to improve mechanical properties, enzyme tolerance, and thermal stability. Crosslinkers such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) are compatible with tissues but provide low crosslinking density and reduced mechanical properties. Conversely, crosslinkers such as glutaraldehyde (GTA) can generate mechanically more robust scaffolds; however, they can also induce greater toxicity. Herein, we evaluated the effectivity of double-crosslinking with both EDC and GTA together with the capability of sodium metabisulfite (SM) and sodium borohydride (SB) to neutralize the toxicity and restore biocompatibility after crosslinking. The EDC-crosslinked collagen scaffolds were treated with different concentrations of GTA. To neutralize the free unreacted aldehyde groups, scaffolds were treated with SM or SB. The chemistry involved in these reactions together with the mechanical and functional properties of the collagen scaffolds was evaluated. The viability of the cells grown on the scaffolds was studied using different corneal cell types. The effect of each type of scaffold treatment on human monocyte differentiation was evaluated. One-way ANOVA was used for statistical analysis. The addition of GTA as a double-crosslinking agent significantly improved the mechanical properties and enzymatic stability of the EDC crosslinked collagen scaffold. GTA decreased cell biocompatibility but this effect was reversed by treatment with SB or SM. These agents did not affect the mechanical properties, enzymatic stability, or transparency of the double-crosslinked scaffold. Contact of monocytes with the different scaffolds did not trigger their differentiation into activated macrophages. Our results demonstrate that GTA improves the mechanical properties of EDC crosslinked scaffolds in a dose-dependent manner, and that subsequent treatment with SB or SM partially restores biocompatibility. This novel manufacturing approach would facilitate the translation of collagen-based artificial corneas to the clinical setting.
Collapse
|
17
|
Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules 2021; 26:molecules26092518. [PMID: 33925886 PMCID: PMC8123515 DOI: 10.3390/molecules26092518] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering is known to encompass multiple aspects of science, medicine and engineering. The development of systems which are able to promote the growth of new cells and tissue components are vital in the treatment of severe tissue injury and damage. This can be done through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage of this is also discussed. Biopolymers, those which have a natural original, have been particularly advantageous in tissue engineering systems as they are often found within the extracellular matrix of the human body. The utilization of biopolymers has become increasing popular as they are biocompatible, biodegradable and do not illicit an immune response when placed into the body. Tissue engineering systems for use with the eye are also discussed. This is of particular interest as the eye is known as an immune privileged site resulting in an extremely limited ability for natural cell regeneration.
Collapse
|
18
|
Yin Y, Wang W, Shao Q, Li B, Yu D, Zhou X, Parajuli J, Xu H, Qiu T, Yetisen AK, Jiang N. Pentapeptide IKVAV-engineered hydrogels for neural stem cell attachment. Biomater Sci 2021; 9:2887-2892. [PMID: 33514963 DOI: 10.1039/d0bm01454k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal cord injury remains irreversible with current treatment paradigms, due to the inability to rebuild the regenerative environment for neurons after injury. Neural tissue engineering that encapsulates the neural stem/progenitor cells within an artificial scaffold provides a possibility to regenerate neurons for spinal cord injury repair. The attachment and survival of these neural cells usually require similar microenvironments to the extracellular matrix for support. Here, a three-dimensional pentapeptide IKVAV-functionalized poly(lactide ethylene oxide fumarate) (PLEOF) hydrogel is developed. In vitro tests demonstrate that the IKVAV-PLEOF hydrogels are biodegradable and hemo-biocompatible. This IKVAV-PLEOF hydrogel is shown to support neural stem cell attachment, growth, proliferation, and differentiation. Additionally, the neural stem cells could be readily formed as spheroids that subsequently encapsulated, attached, and proliferated within the three-dimensional hydrogel constructs. Additionally, an in vivo test confirms the biodegradability and biocompatibility of the IKVAV-PLEOF hydrogels revealing that the hydrogels biodegrade, new blood vessels form, and few inflammatory responses are observed after 4-week implantation. The neural stem cell spheroid-laden hydrogels may have further implications in spinal cord injury regenerative and brain repair in neural tissue engineering.
Collapse
Affiliation(s)
- Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenwu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Qi Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Dan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Xin Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Jayanti Parajuli
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haixing Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Ali Kemal Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China. and School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, USA
| |
Collapse
|
19
|
Sharifi S, Islam MM, Sharifi H, Islam R, Koza D, Reyes-Ortega F, Alba-Molina D, Nilsson PH, Dohlman CH, Mollnes TE, Chodosh J, Gonzalez-Andrades M. Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications. Bioact Mater 2021; 6:3947-3961. [PMID: 33937594 PMCID: PMC8080056 DOI: 10.1016/j.bioactmat.2021.03.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gelatin based adhesives have been used in the last decades in different biomedical applications due to the excellent biocompatibility, easy processability, transparency, non-toxicity, and reasonable mechanical properties to mimic the extracellular matrix (ECM). Gelatin adhesives can be easily tuned to gain different viscoelastic and mechanical properties that facilitate its ocular application. We herein grafted glycidyl methacrylate on the gelatin backbone with a simple chemical modification of the precursor, utilizing epoxide ring-opening reactions and visible light-crosslinking. This chemical modification allows the obtaining of an elastic protein-based hydrogel (GELGYM) with excellent biomimetic properties, approaching those of the native tissue. GELGYM can be modulated to be stretched up to 4 times its initial length and withstand high tensile stresses up to 1.95 MPa with compressive strains as high as 80% compared to Gelatin-methacryloyl (GeIMA), the most studied derivative of gelatin used as a bioadhesive. GELGYM is also highly biocompatible and supports cellular adhesion, proliferation, and migration in both 2 and 3-dimensional cell-cultures. These characteristics along with its super adhesion to biological tissues such as cornea, aorta, heart, muscle, kidney, liver, and spleen suggest widespread applications of this hydrogel in many biomedical areas such as transplantation, tissue adhesive, wound dressing, bioprinting, and drug and cell delivery.
Collapse
Affiliation(s)
- Sina Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mohammad Mirazul Islam
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hannah Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Darrell Koza
- Department of Physical Sciences, Eastern Connecticut State University, Willimantic, CT, USA
| | - Felisa Reyes-Ortega
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - David Alba-Molina
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Claes H Dohlman
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Norway
| | - James Chodosh
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| |
Collapse
|
20
|
Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering. Pharmaceutics 2021; 13:pharmaceutics13030319. [PMID: 33671011 PMCID: PMC7997321 DOI: 10.3390/pharmaceutics13030319] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Medical conditions such as trachoma, keratoconus and Fuchs endothelial dystrophy can damage the cornea, leading to visual deterioration and blindness and necessitating a cornea transplant. Due to the shortage of donor corneas, hydrogels have been investigated as potential corneal replacements. A key factor that influences the physical and biochemical properties of these hydrogels is how they are crosslinked. In this paper, an overview is provided of different crosslinking techniques and crosslinking chemical additives that have been applied to hydrogels for the purposes of corneal tissue engineering, drug delivery or corneal repair. Factors that influence the success of a crosslinker are considered that include material composition, dosage, fabrication method, immunogenicity and toxicity. Different crosslinking techniques that have been used to develop injectable hydrogels for corneal regeneration are summarized. The limitations and future prospects of crosslinking strategies for use in corneal tissue engineering are discussed. It is demonstrated that the choice of crosslinking technique has a significant influence on the biocompatibility, mechanical properties and chemical structure of hydrogels that may be suitable for corneal tissue engineering and regenerative applications.
Collapse
|
21
|
Aghamollaei H, Hashemian H, Safabakhsh H, Halabian R, Baghersad M, Jadidi K. Safety of grafting acellular human corneal lenticule seeded with Wharton's Jelly-Derived Mesenchymal Stem Cells in an experimental animal model. Exp Eye Res 2021; 205:108451. [PMID: 33539864 DOI: 10.1016/j.exer.2021.108451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
The present study was conducted to evaluate safety of grafting acellular human corneal lenticule seeded with Wharton's Jelly-derived Mesenchymal Stem Cells (WJSC) in an experimental animal model. Human corneal lenticules were decellularized with a rate of about 97% with an acceptable lack of cytotoxicity and relatively intact ultrastructure of the lenticules. 12 rabbits underwent unilateral stromal pocketing with implantation of decellularized lenticules. Implantation was performed for 6 rabbits along with graft recellularization with WJSCs. Rabbits were euthanized after 1 month (n = 6) and 3 months (n = 6) to evaluate progression of graft bio-integration. No clinical rejection sign was detected during the study. Histopathological analysis showed that, grafts were integrated well with the least distortion of surrounding collagen bundles. After 3 months, labeled WJCS was detected representing viability of stem cells in the host. Increased expression of keratocyte-specific markers showed the potential of recruiting WJSCs as keratocyte progenitor cells to reinforce corneal ultrastructure.
Collapse
Affiliation(s)
- Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Safabakhsh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Baghersad
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Oral CB, Yetiskin B, Okay O. Stretchable silk fibroin hydrogels. Int J Biol Macromol 2020; 161:1371-1380. [PMID: 32791264 DOI: 10.1016/j.ijbiomac.2020.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Hydrogels derived from silk fibroin (SF) are attractive soft materials in biomedical applications such as drug delivery and tissue engineering. However, SF hydrogels reported so far are generally brittle in tension limiting their load-bearing applications. We present here a novel strategy for preparing stretchable SF hydrogels by incorporating flexible polymer chains into the brittle SF network, which strengthen the interconnections between SF globules. We included N, N-dimethylacrylamide (DMAA) monomer and ammonium persulfate initiator into an aqueous SF solution containing a diepoxide cross-linker to in situ generate flexible poly (N,N-dimethylacrylamide) (PDMAA) chains. Moreover, instead of SF, methacrylated SF was used for the gel preparation to create an interconnected SF/PDMAA network. The free-radical polymerization of DMAA leads to the formation of PDMAA chains interconnecting globular SF molecules via their pendant vinyl groups. Incorporation of 2 w/v% DMAA into the SF network turns the brittle hydrogel into a stretchable one sustaining up to 370% elongation ratio. The mechanical properties of SF hydrogels could be adjusted by the amount of PDMAA incorporated into the SF network. The stretchable and tough SF hydrogels thus developed are suitable as a scaffold in tissue engineering and offer an advantage as a biomaterial over other SF-based biomaterials.
Collapse
Affiliation(s)
- C B Oral
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - B Yetiskin
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey.
| | - O Okay
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
23
|
Sundar G, Joseph J, C P, John A, Abraham A. Natural collagen bioscaffolds for skin tissue engineering strategies in burns: a critical review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gayathri Sundar
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Josna Joseph
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Prabhakumari C
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Annie John
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Annie Abraham
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
24
|
Islam MM, Sharifi R, Mamodaly S, Islam R, Nahra D, Abusamra DB, Hui PC, Adibnia Y, Goulamaly M, Paschalis EI, Cruzat A, Kong J, Nilsson PH, Argüeso P, Mollnes TE, Chodosh J, Dohlman CH, Gonzalez-Andrades M. Effects of gamma radiation sterilization on the structural and biological properties of decellularized corneal xenografts. Acta Biomater 2019; 96:330-344. [PMID: 31284096 PMCID: PMC7043233 DOI: 10.1016/j.actbio.2019.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
To address the shortcomings associated with corneal transplants, substantial efforts have been focused on developing new modalities such as xenotransplantion. Xenogeneic corneas are anatomically and biomechanically similar to the human cornea, yet their applications require prior decellularization to remove the antigenic components to avoid rejection. In the context of bringing decellularized corneas into clinical use, sterilization is a crucial step that determines the success of the transplantation. Well-standardized sterilization methods, such as gamma irradiation (GI), have been applied to decellularized porcine corneas (DPC) to avoid graft-associated infections in human recipients. However, little is known about the effect of GI on decellularized corneal xenografts. Here, we evaluated the radiation effect on the ultrastructure, optical, mechanical and biological properties of DPC. Transmission electron microscopy revealed that gamma irradiated decellularized porcine cornea (G-DPC) preserved its structural integrity. Moreover, the radiation did not reduce the optical properties of the tissue. Neither DPC nor G-DPC led to further activation of complement system compared to native porcine cornea when exposed to plasma. Although, DPC were mechanically comparable to the native tissue, GI increased the mechanical strength, tissue hydrophobicity and resistance to enzymatic degradation. Despite these changes, human corneal epithelial, stromal, endothelial and hybrid neuroblastoma cells grew and differentiated on DPC and G-DPC. Thus, GI may achieve effective tissue sterilization without affecting critical properties that are essential for corneal transplant survival.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Roholah Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shamina Mamodaly
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Daniel Nahra
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dina B Abusamra
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pui Chuen Hui
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yashar Adibnia
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Yeditepe University School of Medicine, Istanbul, Turkey
| | - Mehdi Goulamaly
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eleftherios I Paschalis
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrea Cruzat
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway; Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Pablo Argüeso
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - James Chodosh
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Claes H Dohlman
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain.
| |
Collapse
|
25
|
Nazir R, Bruyneel A, Carr C, Czernuszka J. Collagen type I and hyaluronic acid based hybrid scaffolds for heart valve tissue engineering. Biopolymers 2019; 110:e23278. [PMID: 30958569 DOI: 10.1002/bip.23278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Tissue engineers have achieved limited success so far in designing an ideal scaffold for aortic valve; scaffolds lack in mechanical compatibility, appropriate degradation rate, and microstructural similarity. This paper, therefore, has demonstrated a carbodiimide-based sequential crosslinking technique to prepare aortic valve extracellular matrix mimicking (ECM) hybrid scaffolds from collagen type I and hyaluronic acid (HA), the building blocks of heart valve ECM, with tailorable crosslinking densities. Swelling studies revealed that crosslinking densities of parent networks increased with increasing the concentration of the crosslinking agents whereas crosslinking densities of hybrid scaffolds averaged from those of parent collagen and HA networks. Hybrid scaffolds also offered a wide range of pore size (66-126 μm) which fulfilled the criteria for valvular tissue regeneration. Scanning electron microscopy and images of Alcian blue-Periodic acid Schiff stained samples suggested that our crosslinking technique yielded an ECM mimicking microstructure with interlaced bands of collagen and HA in the hybrid scaffolds. The mutually reinforcing networks of collagen and HA also resulted in increased bending moduli up to 1660 kPa which spanned the range of natural aortic valves. Cardio sphere-derived cells (CDCs) from rat hearts showed that crosslinking density affected the available cell attachment sites on the surface of the scaffold. Increased bending moduli of CDCs seeded scaffolds up to two folds (2-6 kPa) as compared to the non-seeded scaffolds (1 kPa) suggested that an increase in crosslinking density of the scaffolds could not only increase the in vitro bending modulus but also prevented its disintegration in the cell culture medium.
Collapse
Affiliation(s)
- Rabia Nazir
- Department of Materials, University of Oxford, Oxford, UK.,Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore, Pakistan
| | - Arne Bruyneel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jan Czernuszka
- Department of Materials, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Vedhanayagam M, Nair BU, Sreeram KJ. Effect of functionalized gold nanoparticle on collagen stabilization for tissue engineering application. Int J Biol Macromol 2019; 123:1211-1220. [DOI: 10.1016/j.ijbiomac.2018.11.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 11/18/2018] [Indexed: 02/07/2023]
|
27
|
Akhshabi S, Biazar E, Singh V, Keshel SH, Geetha N. The effect of the carbodiimide cross-linker on the structural and biocompatibility properties of collagen-chondroitin sulfate electrospun mat. Int J Nanomedicine 2018; 13:4405-4416. [PMID: 30104874 PMCID: PMC6071624 DOI: 10.2147/ijn.s165739] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Collagen and chondroitin sulfate (CS) are an essential component of the natural extracellular matrix (ECM) of most tissues. They provide the mechanical stability to cone the compressive forces in ECM. In tissue engineering, electrospun nanofibrous scaffolds prepared by electrospinning technique have emerged as a suitable candidate to imitate natural ECM functions. Cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxy succinimide can overcome the weak mechanical integrity of the engineered scaffolds in addition to the increased degradation stability under physiological conditions. MATERIALS AND METHODS This study has synthesized nanofibrous collagen-CS scaffolds by using the electrospinning method. RESULTS The results have shown that incorporation of CS in higher concentration, along with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxy succinimide, enhanced mechanical stability. Scaffolds showed more resistance to collagenase digestion. Fabricated scaffolds showed biocompatibility in corneal epithelial cell attachment. CONCLUSION These results demonstrate that cross-linked electrospun CO-CS mats exhibited a uniform nanofibrous and porous structure, especially for lower concentration of the cross-linker and may be utilized as an alternative effective substrate in tissue engineering.
Collapse
Affiliation(s)
- Sheyda Akhshabi
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India,
| | - Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vivek Singh
- Prof Brien Holden Eye Research Center, Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nagaraja Geetha
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India,
| |
Collapse
|
28
|
Gostynska N, Shankar Krishnakumar G, Campodoni E, Panseri S, Montesi M, Sprio S, Kon E, Marcacci M, Tampieri A, Sandri M. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Biomed Mater 2017; 12:055002. [DOI: 10.1088/1748-605x/aa7694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine. Int J Biol Macromol 2017; 106:739-748. [PMID: 28827204 DOI: 10.1016/j.ijbiomac.2017.08.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/20/2022]
Abstract
This study focuses on the development of novel bone-like scaffolds by bio-inspired, pH-driven, mineralization of type I collagen matrix with magnesium-doped hydroxyapatite nanophase (MgHA/Coll). To this aim, this study evaluates the altered modifications in the obtained composite due to different crosslinkers such as dehydrothermal treatment (DHT), 1,4-butanediol diglycidyl ether (BDDGE) and ribose in terms of morphological, physical-chemical and biological properties. The physical-chemical properties of the composites evaluated by XRD, FTIR, ICP and TGA demonstrated that the chemical mimesis of bone was effectively achieved using the in-lab biomineralization process. Furthermore, the presence of various crosslinkers greatly promoted beneficial enzymatic resistivity and swelling ability. The morphological results revealed highly porous and fibrous micro-architecture with total porosity above 85% with anisotropic pore size within the range of 50-200μm in all the analysed composites. The mechanical behaviour in response to compressive forces demonstrated enhanced compressive modulus in all crosslinked composites, suggesting that mechanical behaviour is largely dependent on the type of crosslinker used. The biomimetic compositional and morphological features of the composites elicited strong cell-material interaction. Therefore, the results showed that by activating specific crosslinking mechanisms, hybrid composites can be designed and tailored to develop tissue-specific biomimetic biomaterials for hard tissue engineering.
Collapse
|
30
|
Zhao X, Long K, Liu Y, Li W, Liu S, Wang L, Ren L. To prepare the collagen-based artificial cornea with improved mechanical and biological property by ultraviolet-A/riboflavin crosslinking. J Appl Polym Sci 2017. [DOI: 10.1002/app.45226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Zhao
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Kai Long
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Yang Liu
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Weichang Li
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Sa Liu
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Lin Wang
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Li Ren
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| |
Collapse
|
31
|
|
32
|
Kumar P, Satyam A, Cigognini D, Pandit A, Zeugolis DI. Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. J Tissue Eng Regen Med 2017; 12:6-18. [PMID: 27592127 DOI: 10.1002/term.2283] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 07/30/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022]
Abstract
Development of implantable devices based on the principles of in vitro organogenesis has been hindered due to the prolonged time required to develop an implantable device. Herein we assessed the influence of serum concentration (0.5% and 10%), oxygen tension (0.5%, 2% and 20%) and macromolecular crowding (75 μg/ml carrageenan) in extracellular matrix deposition in human corneal fibroblast culture (3, 7 and 14 days). The highest extracellular matrix deposition was observed after 14 days in culture at 0.5% serum, 2% oxygen tension and 75 μg/ml carrageenan. These data indicate that low oxygen tension coupled with macromolecular crowding significantly accelerate the development of scaffold-free tissue-like modules. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Pramod Kumar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhigyan Satyam
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Daniela Cigognini
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
33
|
Pupkaite J, Ahumada M, Mclaughlin S, Temkit M, Alaziz S, Seymour R, Ruel M, Kochevar I, Griffith M, Suuronen EJ, Alarcon EI. Collagen-Based Photoactive Agent for Tissue Bonding. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9265-9270. [PMID: 28282110 DOI: 10.1021/acsami.7b01984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using a combination of methacrylated collagen and the photosensitizer rose Bengal, a new light-activated biomimetic material for tissue sutureless bonding was developed. This formulation was cross-linked using green light. In vivo tests in mice demonstrate the suitability of the material for sutureless wound closure.
Collapse
Affiliation(s)
- Justina Pupkaite
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
- Department of Clinical and Experimental Medicine, Linköping University , Linköping, Sweden
| | - Manuel Ahumada
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
| | - Sarah Mclaughlin
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
| | - Maha Temkit
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
| | - Sura Alaziz
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
| | - Richard Seymour
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
| | - Marc Ruel
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
| | - Irene Kochevar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School , Boston, United States
| | - May Griffith
- Department of Clinical and Experimental Medicine, Linköping University , Linköping, Sweden
| | - Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
| | - Emilio I Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, Canada
| |
Collapse
|
34
|
Shankar KG, Gostynska N, Montesi M, Panseri S, Sprio S, Kon E, Marcacci M, Tampieri A, Sandri M. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis. Int J Biol Macromol 2017; 95:1199-1209. [DOI: 10.1016/j.ijbiomac.2016.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/30/2022]
|
35
|
Ravichandran R, Astrand C, Patra HK, Turner APF, Chotteau V, Phopase J. Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications. RSC Adv 2017. [DOI: 10.1039/c7ra02927f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A one-pot approach to fabricate in situ-gellable, thermo- and pH-responsive, hydrogels based on covalently crosslinked networks of collagen-I and thermo-responsive polymer.
Collapse
Affiliation(s)
- R. Ravichandran
- Division of Molecular Physics
- Department of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping
- Sweden
| | - C. Astrand
- School of Biotechnology
- KTH-Royal Institute of Technology
- Stockholm
- Sweden
| | - H. K. Patra
- Biosensors and Bioelectronics Centre
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - Anthony P. F. Turner
- Biosensors and Bioelectronics Centre
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - V. Chotteau
- School of Biotechnology
- KTH-Royal Institute of Technology
- Stockholm
- Sweden
| | - J. Phopase
- Division of Molecular Physics
- Department of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping
- Sweden
| |
Collapse
|
36
|
Trease C, Longman M, Augousti A, Foot P, Pierscionek B. Cell morphology and growth observation studies on novel, chemically unmodified and patterned polymer surfaces for advanced tissue culture applications. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Li ZK, Wu ZS, Lu T, Yuan HY, Tang H, Tang ZJ, Tan L, Wang B, Yan SM. Materials and surface modification for tissue engineered vascular scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1534-52. [PMID: 27484610 DOI: 10.1080/09205063.2016.1217607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although vascular implantation has been used as an effective treatment for cardiovascular disease for many years, off-the-shelf and regenerable vascular scaffolds are still not available. Tissue engineers have tested various materials and methods of surface modification in the attempt to develop a scaffold that is more suitable for implantation. Extracellular matrix-based natural materials and biodegradable polymers, which are the focus of this review, are considered to be suitable materials for production of tissue-engineered vascular grafts. Various methods of surface modification that have been developed will also be introduced, their impacts will be summarized and assessed, and challenges for further research will briefly be discussed.
Collapse
Affiliation(s)
- Zhong-Kui Li
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Zhong-Shi Wu
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Ting Lu
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Hao-Yong Yuan
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Hao Tang
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Zhen-Jie Tang
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Ling Tan
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Bin Wang
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Si-Ming Yan
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| |
Collapse
|
38
|
Kumar P, Pandit A, Zeugolis DI. Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissue-Like Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5381-5399. [PMID: 27028373 DOI: 10.1002/adma.201503986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Corneal injuries and degenerative conditions have major socioeconomic consequences, given that in most cases, they result in blindness. In the quest of the ideal therapy, tissue grafts, biomaterials, and modular engineering approaches are under intense investigation. Herein, advancements and shortfalls are reviewed and future perspectives for these therapeutic strategies discussed.
Collapse
Affiliation(s)
- Pramod Kumar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
39
|
Li J, Sha Z, Zhang W, Tao F, Yang P. Preparation and antibacterial properties of gelatin grafted with an epoxy silicone quaternary ammonium salt. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1017-28. [PMID: 27093873 DOI: 10.1080/09205063.2016.1175784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Gelatin (GE) was modified with epoxy silicone quaternary ammonium salt (EPSiQA) under alkaline conditions (pH 10-11). Silyl and quaternary ammonium groups were linked to gelatin skeleton simultaneously. It was illustrated by XRD and DSC that the short-range order of GE is destroyed and the glass transition temperature (Tg) of GE drops 10 °C after modification. The measured contact angles and surface free energy calculated by Owens-Wendt equation showed that the surface energy of modified gelatin EPSiQA-GE is mainly contributed by the dispersive component of non-polarity silicone groups, the hydrophobility of EPSiQA-GE increases with the increase of grafted silicone units in gelatin. The results of minimum inhibitory concentration indicated that EPSiQA-GE has bactericidal property against Gram-positive bacteria, Gram-negative bacteria and has no antibacterial effect on mold.
Collapse
Affiliation(s)
- Junying Li
- a College of Chemical Engineering and Materials Science , Tianjin University of Science and Technology , Tianjin , P.R. China.,b Shandong Provincial Key Laboratory of Fine Chemicals , Qilu University of Technology , Jinan , P.R. China
| | - Zuoliang Sha
- a College of Chemical Engineering and Materials Science , Tianjin University of Science and Technology , Tianjin , P.R. China
| | - Wenyu Zhang
- b Shandong Provincial Key Laboratory of Fine Chemicals , Qilu University of Technology , Jinan , P.R. China
| | - Furong Tao
- b Shandong Provincial Key Laboratory of Fine Chemicals , Qilu University of Technology , Jinan , P.R. China
| | - Pengfei Yang
- b Shandong Provincial Key Laboratory of Fine Chemicals , Qilu University of Technology , Jinan , P.R. China
| |
Collapse
|
40
|
Alarcon EI, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, Ravichandran R, Phopase J, Suuronen EJ, Griffith M. Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. NANOSCALE 2016; 8:6484-6489. [PMID: 26949000 DOI: 10.1039/c6nr01339b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity.
Collapse
Affiliation(s)
- E I Alarcon
- Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada
| | - B Vulesevic
- Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada
| | - A Argawal
- Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada
| | - A Ross
- Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada
| | - P Bejjani
- Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada
| | - J Podrebarac
- Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada
| | - R Ravichandran
- Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden
| | - J Phopase
- Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden
| | - E J Suuronen
- Bio-nanomaterials Chemistry and Engineering Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Rm H5229, Ottawa, Canada
| | - M Griffith
- Integrative Regenerative Medicine Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
41
|
Ravichandran R, Islam MM, Alarcon EI, Samanta A, Wang S, Lundström P, Hilborn J, Griffith M, Phopase J. Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications. J Mater Chem B 2016; 4:318-326. [DOI: 10.1039/c5tb02035b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulating the hydrogel properties from injectable to implantable scaffolds using the bio-orthogonal thiol-Michael addition click reaction.
Collapse
Affiliation(s)
- R. Ravichandran
- Integrative Regenerative Medicine Centre (IGEN) and Division of Molecular Physics
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - M. M. Islam
- Integrative Regenerative Medicine Centre (IGEN) and Swedish Medical Nanoscience Center
- Department of Neurosciences
- Karolinska Institutet
- Stockholm
- Sweden
| | - E. I. Alarcon
- Division of Cardiac Surgery Research
- University of Ottawa Heart Institute
- Ottawa
- Canada
- Department of Biochemistry
| | - A. Samanta
- Integrative Regenerative Medicine Centre and Department of Clinical and Experimental Medicine (IKE)
- Linköping University
- Linköping
- Sweden
| | - S. Wang
- Polymer Chemistry Division
- Department of Chemistry
- Ångstrom Laboratory
- Uppsala University
- 75121 Uppsala
| | - P. Lundström
- Division of Chemistry
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - J. Hilborn
- Polymer Chemistry Division
- Department of Chemistry
- Ångstrom Laboratory
- Uppsala University
- 75121 Uppsala
| | - M. Griffith
- Integrative Regenerative Medicine Centre and Department of Clinical and Experimental Medicine (IKE)
- Linköping University
- Linköping
- Sweden
| | - J. Phopase
- Integrative Regenerative Medicine Centre (IGEN) and Division of Molecular Physics
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| |
Collapse
|
42
|
Abstract
Much progress in understanding cell migration has been determined by using classic two-dimensional (2D) tissue culture platforms. However, increasingly, it is appreciated that certain properties of cell migration
in vivo are not represented by strictly 2D assays. There is much interest in creating relevant three-dimensional (3D) culture environments and engineered platforms to better represent features of the extracellular matrix and stromal microenvironment that are not captured in 2D platforms. Important to this goal is a solid understanding of the features of the extracellular matrix—composition, stiffness, topography, and alignment—in different tissues and disease states and the development of means to capture these features
Collapse
Affiliation(s)
- Patricia Keely
- Department of Cell and Regenerative Biology, UW Carbone Cancer Center, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Amrinder Nain
- 2Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
43
|
Alarcon EI, Udekwu KI, Noel CW, Gagnon LBP, Taylor PK, Vulesevic B, Simpson MJ, Gkotzis S, Islam MM, Lee CJ, Richter-Dahlfors A, Mah TF, Suuronen EJ, Scaiano JC, Griffith M. Safety and efficacy of composite collagen-silver nanoparticle hydrogels as tissue engineering scaffolds. NANOSCALE 2015; 7:18789-18798. [PMID: 26507748 DOI: 10.1039/c5nr03826j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The increasing number of multidrug resistant bacteria has revitalized interest in seeking alternative sources for controlling bacterial infection. Silver nanoparticles (AgNPs), are amongst the most promising candidates due to their wide microbial spectrum of action. In this work, we report on the safety and efficacy of the incorporation of collagen coated AgNPs into collagen hydrogels for tissue engineering. The resulting hybrid materials at [AgNPs] < 0.4 μM retained the mechanical properties and biocompatibility for primary human skin fibroblasts and keratinocytes of collagen hydrogels; they also displayed remarkable anti-infective properties against S. aureus, S. epidermidis, E. coli and P. aeruginosa at considerably lower concentrations than silver nitrate. Further, subcutaneous implants of materials containing 0.2 μM AgNPs in mice showed a reduction in the levels of IL-6 and other inflammation markers (CCL24, sTNFR-2, and TIMP1). Finally, an analysis of silver contents in implanted mice showed that silver accumulation primarily occurred within the tissue surrounding the implant.
Collapse
Affiliation(s)
- Emilio I Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, CanadaK1Y 4W7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
45
|
Koh LB, Islam MM, Mitra D, Noel CW, Merrett K, Odorcic S, Fagerholm P, Jackson WB, Liedberg B, Phopase J, Griffith M. Correction: Koh, L.B., et al. Epoxy Cross-Linked Collagen and Collagen-Laminin Peptide Hydrogels as Corneal Substitutes. J. Funct. Biomater. 2013, 4, 162-177. J Funct Biomater 2014. [PMCID: PMC4030903 DOI: 10.3390/jfb5010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Li Buay Koh
- Integrative Regenerative Medicine Center, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden; E-Mails: (L.B.K.); (J.P.)
| | - Mohammad Mirazul Islam
- Swedish Nanoscience Center, Karolinska Institute, 171 77 Stockholm, Sweden; E-Mail:
- Integrative Regenerative Medicine Center & Department of Clinical and Experimental Medicine, Cell Biology Building, Linköping University, SE 581 85 Linköping, Sweden; E-Mails: (K.M.); (P.F.)
| | - Debbie Mitra
- Ottawa Hospital Research Institute, University of Ottawa Eye Institute, 501 Smyth Rd. Ottawa, ON K1H 8L6, Canada; E-Mails: (D.M.); (C.W.N.); (S.O.); (W.B.J.)
| | - Christopher W. Noel
- Ottawa Hospital Research Institute, University of Ottawa Eye Institute, 501 Smyth Rd. Ottawa, ON K1H 8L6, Canada; E-Mails: (D.M.); (C.W.N.); (S.O.); (W.B.J.)
| | - Kimberley Merrett
- Integrative Regenerative Medicine Center & Department of Clinical and Experimental Medicine, Cell Biology Building, Linköping University, SE 581 85 Linköping, Sweden; E-Mails: (K.M.); (P.F.)
- Ottawa Hospital Research Institute, University of Ottawa Eye Institute, 501 Smyth Rd. Ottawa, ON K1H 8L6, Canada; E-Mails: (D.M.); (C.W.N.); (S.O.); (W.B.J.)
| | - Silvia Odorcic
- Ottawa Hospital Research Institute, University of Ottawa Eye Institute, 501 Smyth Rd. Ottawa, ON K1H 8L6, Canada; E-Mails: (D.M.); (C.W.N.); (S.O.); (W.B.J.)
| | - Per Fagerholm
- Integrative Regenerative Medicine Center & Department of Clinical and Experimental Medicine, Cell Biology Building, Linköping University, SE 581 85 Linköping, Sweden; E-Mails: (K.M.); (P.F.)
| | - William Bruce Jackson
- Ottawa Hospital Research Institute, University of Ottawa Eye Institute, 501 Smyth Rd. Ottawa, ON K1H 8L6, Canada; E-Mails: (D.M.); (C.W.N.); (S.O.); (W.B.J.)
| | - Bo Liedberg
- Center for Biomimetic Sensor Science, Nanyang Technological University, Research Technoplaza, Story 6, 50 Nanyang Drive, Singapore 637553; E-Mail:
| | - Jaywant Phopase
- Integrative Regenerative Medicine Center, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden; E-Mails: (L.B.K.); (J.P.)
| | - May Griffith
- Swedish Nanoscience Center, Karolinska Institute, 171 77 Stockholm, Sweden; E-Mail:
- Integrative Regenerative Medicine Center & Department of Clinical and Experimental Medicine, Cell Biology Building, Linköping University, SE 581 85 Linköping, Sweden; E-Mails: (K.M.); (P.F.)
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|