1
|
Tang S, Venkatakrishnan SV, Chowdhury MSN, Yang D, Gober M, Nelson GJ, Cekanova M, Biris AS, Buzzard GT, Bouman CA, Skorpenske HD, Bilheux HZ. A machine learning decision criterion for reducing scan time for hyperspectral neutron computed tomography systems. Sci Rep 2024; 14:15171. [PMID: 38956417 PMCID: PMC11220078 DOI: 10.1038/s41598-024-63931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
We present the first machine learning-based autonomous hyperspectral neutron computed tomography experiment performed at the Spallation Neutron Source. Hyperspectral neutron computed tomography allows the characterization of samples by enabling the reconstruction of crystallographic information and elemental/isotopic composition of objects relevant to materials science. High quality reconstructions using traditional algorithms such as the filtered back projection require a high signal-to-noise ratio across a wide wavelength range combined with a large number of projections. This results in scan times of several days to acquire hundreds of hyperspectral projections, during which end users have minimal feedback. To address these challenges, a golden ratio scanning protocol combined with model-based image reconstruction algorithms have been proposed. This novel approach enables high quality real-time reconstructions from streaming experimental data, thus providing feedback to users, while requiring fewer yet a fixed number of projections compared to the filtered back projection method. In this paper, we propose a novel machine learning criterion that can terminate a streaming neutron tomography scan once sufficient information is obtained based on the current set of measurements. Our decision criterion uses a quality score which combines a reference-free image quality metric computed using a pre-trained deep neural network with a metric that measures differences between consecutive reconstructions. The results show that our method can reduce the measurement time by approximately a factor of five compared to a baseline method based on filtered back projection for the samples we studied while automatically terminating the scans.
Collapse
Affiliation(s)
- Shimin Tang
- Oak Ridge National Laboratory, Neutron Scattering Division, Oak Ridge, 37831, USA.
| | | | - Mohammad S N Chowdhury
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47907, USA
| | - Diyu Yang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47907, USA
| | - Megan Gober
- University of Alabama in Huntsville, Mechanical and Aerospace Engineering, Huntsville, 35899, USA
| | - George J Nelson
- University of Alabama in Huntsville, Mechanical and Aerospace Engineering, Huntsville, 35899, USA
| | - Maria Cekanova
- College of Veterinary Medicine, University of Tennessee, Knoxville, 37932, USA
- Integrity Laboratories, Knoxville, 37932, USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas-Little Rock, Little Rock, 72204, USA
| | - Gregery T Buzzard
- Department of Mathematics, Purdue University, West Lafayette, 47907, USA
| | - Charles A Bouman
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47907, USA
| | - Harley D Skorpenske
- Oak Ridge National Laboratory, Neutron Scattering Division, Oak Ridge, 37831, USA
| | - Hassina Z Bilheux
- Oak Ridge National Laboratory, Neutron Scattering Division, Oak Ridge, 37831, USA.
| |
Collapse
|
2
|
Sevanto S, Gehring CA, Ryan MG, Patterson A, Losko AS, Vogel SC, Carter KR, Dickman LT, Espy MA, Kuske CR. Benefits of symbiotic ectomycorrhizal fungi to plant water relations depend on plant genotype in pinyon pine. Sci Rep 2023; 13:14424. [PMID: 37660169 PMCID: PMC10475095 DOI: 10.1038/s41598-023-41191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Rhizosphere microbes, such as root-associated fungi, can improve plant access to soil resources, affecting plant health, productivity, and stress tolerance. While mycorrhizal associations are ubiquitous, plant-microbe interactions can be species specific. Here we show that the specificity of the effects of microbial symbionts on plant function can go beyond species level: colonization of roots by ectomycorrhizal fungi (EMF) of the genus Geopora has opposite effects on water uptake, and stomatal control of desiccation in drought tolerant and intolerant genotypes of pinyon pine (Pinus edulis Engelm.). These results demonstrate, for the first time, that microorganisms can have significant and opposite effects on important plant functional traits like stomatal control of desiccation that are associated with differential mortality and growth in nature. They also highlight that appropriate pairing of plant genotypes and microbial associates will be important for mitigating climate change impacts on vegetation.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA.
| | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Max G Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
- Integral Ecology Group, Duncan, BC, V9L 6H1, Canada
| | - Adair Patterson
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Adrian S Losko
- Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz, 85748, Garching, Germany
| | - Sven C Vogel
- Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Kelsey R Carter
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
| | - L Turin Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
| | - Michelle A Espy
- Engineering Technology and Design Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Cheryl R Kuske
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
3
|
Brügger A, Bilheux HZ, Lin JYY, Nelson GJ, Kiss AM, Morris J, Connolly MJ, Long AM, Tremsin AS, Strzelec A, Anderson MH, Agasie R, Finney CEA, Wissink ML, Hubler MH, Pellenq RJM, White CE, Heuser BJ, Craft AE, Harp JM, Tan C, Morris K, Junghans A, Sevanto S, Warren JM, Esteban Florez FL, Biris AS, Cekanova M, Kardjilov N, Schillinger B, Frost MJ, Vogel SC. The Complex, Unique, and Powerful Imaging Instrument for Dynamics (CUPI2D) at the Spallation Neutron Source (invited). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2890223. [PMID: 37171234 DOI: 10.1063/5.0131778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/05/2023] [Indexed: 05/13/2023]
Abstract
The Oak Ridge National Laboratory is planning to build the Second Target Station (STS) at the Spallation Neutron Source (SNS). STS will host a suite of novel instruments that complement the First Target Station's beamline capabilities by offering an increased flux for cold neutrons and a broader wavelength bandwidth. A novel neutron imaging beamline, named the Complex, Unique, and Powerful Imaging Instrument for Dynamics (CUPI2D), is among the first eight instruments that will be commissioned at STS as part of the construction project. CUPI2D is designed for a broad range of neutron imaging scientific applications, such as energy storage and conversion (batteries and fuel cells), materials science and engineering (additive manufacturing, superalloys, and archaeometry), nuclear materials (novel cladding materials, nuclear fuel, and moderators), cementitious materials, biology/medical/dental applications (regenerative medicine and cancer), and life sciences (plant-soil interactions and nutrient dynamics). The innovation of this instrument lies in the utilization of a high flux of wavelength-separated cold neutrons to perform real time in situ neutron grating interferometry and Bragg edge imaging-with a wavelength resolution of δλ/λ ≈ 0.3%-simultaneously when required, across a broad range of length and time scales. This manuscript briefly describes the science enabled at CUPI2D based on its unique capabilities. The preliminary beamline performance, a design concept, and future development requirements are also presented.
Collapse
Affiliation(s)
- Adrian Brügger
- Civil Engineering & Engineering Mechanics, Columbia University, New York, New York 10027, USA
| | - Hassina Z Bilheux
- Oak Ridge National Laboratory, Spallation Neutron Source, Neutron Scattering Division, Oak Ridge, Tennessee 37831, USA
| | - Jiao Y Y Lin
- Oak Ridge National Laboratory, Second Target Station Project, Oak Ridge, Tennessee 37831, USA
| | - George J Nelson
- Mechanical and Aerospace Engineering, University of Alabama-Huntsville, Huntsville, Alabama 35899, USA
| | - Andrew M Kiss
- Brookhaven National Laboratory, National Synchrotron Light Source II, Photon Science Division, Upton, New York 11973, USA
| | | | - Matthew J Connolly
- Material Measurement Laboratory/Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Alexander M Long
- Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545, USA
| | - Anton S Tremsin
- Space Science Laboratory, University of California-Berkeley, Berkeley, California 94720, USA
| | - Andrea Strzelec
- College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark H Anderson
- College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Robert Agasie
- College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Charles E A Finney
- Oak Ridge National Laboratory, Buildings and Transportation Science Division, Oak Ridge, Tennessee 37831, USA
| | - Martin L Wissink
- Oak Ridge National Laboratory, Buildings and Transportation Science Division, Oak Ridge, Tennessee 37831, USA
| | - Mija H Hubler
- College of Engineering and Applied Science, University of Colorado-Boulder, Boulder, Colorado 80309, USA
| | - Roland J-M Pellenq
- International Research Laboratory, CNRS-George Washington University, Washington, District of Columbia 20052, USA
| | - Claire E White
- Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Brent J Heuser
- The Grainger College of Engineering, University of Illinois-Urbana Champaign, Urbana, Illinois 61801, USA
| | - Aaron E Craft
- Idaho National Laboratory, Characterization and Advanced Post-Irradiation Examination Division, Idaho Falls, Idaho 83415, USA
| | - Jason M Harp
- Oak Ridge National Laboratory, Nuclear Energy and Fuel Cycle Division, Oak Ridge, Tennessee 37831, USA
| | - Chuting Tan
- Idaho National Laboratory, Characterization and Advanced Post-Irradiation Examination Division, Idaho Falls, Idaho 83415, USA
| | | | - Ann Junghans
- Los Alamos National Laboratory, Nuclear Engineering and Nonproliferation Division, Los Alamos, New Mexico 87545, USA
| | - Sanna Sevanto
- Los Alamos National Laboratory, Environmental Sciences Division, Los Alamos, New Mexico 87545, USA
| | - Jeffrey M Warren
- Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, Tennessee 37831, USA
| | - Fernando L Esteban Florez
- University of Oklahoma Health Sciences Center College of Dentistry, Oklahoma City, Oklahoma 73117, USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, USA
| | - Maria Cekanova
- Integrity Laboratories, LLC, Knoxville, Tennessee 37932, USA
| | - Nikolay Kardjilov
- Helmholtz-Zentrum-Berlin, Institute Applied Materials, Berlin 14109, Germany
| | | | - Matthew J Frost
- Oak Ridge National Laboratory, Neutron Technologies Division, Oak Ridge, Tennessee 37831, USA
| | - Sven C Vogel
- Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
4
|
A Novel NDT Scanning System Based on Line Array Fast Neutron Detector and D-T Neutron Source. MATERIALS 2022; 15:ma15144946. [PMID: 35888411 PMCID: PMC9319683 DOI: 10.3390/ma15144946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
A novel non-destructive testing scanning system based on a large-size line array fast neutron detector and compact D-T neutron source has been constructed. The scanning range is up to 1000 mm, and the resolution is better than 1 mm. The fast neutron detection subsystem consists of a polypropylene zinc sulfide scintillator embedded with wavelength-shifting fibers, coupled with a light lens and a scientific CCD camera. With a new rotating tritium target, the lifetime of the compact D-T neutron source could achieve ten hours. The experimental results indicate that the scanning method based on line array fast neutron detector and D-T neutron source is feasible and enables the detection of slits on the order of 0.5 mm in width. Fast neutron tomography has been realized by this detection system too.
Collapse
|
5
|
Montanarella F, McCall KM, Sakhatskyi K, Yakunin S, Trtik P, Bernasconi C, Cherniukh I, Mannes D, Bodnarchuk MI, Strobl M, Walfort B, Kovalenko MV. Highly Concentrated, Zwitterionic Ligand-Capped Mn 2+:CsPb(Br x Cl 1-x ) 3 Nanocrystals as Bright Scintillators for Fast Neutron Imaging. ACS ENERGY LETTERS 2021; 6:4365-4373. [PMID: 34917771 PMCID: PMC8669634 DOI: 10.1021/acsenergylett.1c01923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 05/21/2023]
Abstract
Fast neutron imaging is a nondestructive technique for large-scale objects such as nuclear fuel rods. However, present detectors are based on conventional phosphors (typically microcrystalline ZnS:Cu) that have intrinsic drawbacks, including light scattering, γ-ray sensitivity, and afterglow. Fast neutron imaging with colloidal nanocrystals (NCs) was demonstrated to eliminate light scattering. While lead halide perovskite (LHP) FAPbBr3 NCs emitting brightly showed poor spatial resolution due to reabsorption, the Mn2+-doped CsPb(BrCl)3 NCs with oleyl ligands had higher resolution because of large apparent Stokes shift but insufficient concentration for high light yield. In this work, we demonstrate a NC scintillator that features simultaneously high quantum yields, high concentrations, and a large apparent Stokes shift. In particular, we use long-chain zwitterionic ligand capping in the synthesis of Mn2+-doped CsPb(BrCl)3 NCs that allows for attaining very high concentrations (>100 mg/mL) of colloids. The emissive behavior of these ASC18-capped NCs was carefully controlled by compositional tuning that permitted us to select for high quantum yields (>50%) coinciding with Mn-dominated emission for minimal self-absorption. These tailored Mn2+:CsPb(BrCl)3 NCs demonstrated over 8 times brighter light yield than their oleyl-capped variants under fast neutron irradiation, which is competitive with that of near-unity FAPbBr3 NCs, while essentially eliminating self-absorption. Because of their rare combination of concentrations above 100 mg/mL and high quantum yields, along with minimal self-absorption for good spatial resolution, Mn2+:CsPb(BrCl)3 NCs have the potential to displace ZnS:Cu as the leading scintillator for fast neutron imaging.
Collapse
Affiliation(s)
- Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Kyle M. McCall
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Kostiantyn Sakhatskyi
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Sergii Yakunin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Pavel Trtik
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Caterina Bernasconi
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Ihor Cherniukh
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - David Mannes
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Maryna I. Bodnarchuk
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Markus Strobl
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
6
|
Kwapis EH, Liu H, Hartig KC. Tracking of individual TRISO-fueled pebbles through the application of X-ray imaging with deep metric learning. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Tian B, Jing H, Wang S, Li Q, Gao X, Yang X. Feasibility of nuclide-identified imaging based on the back-streaming white neutron beam at the China Spallation Neutron Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:053303. [PMID: 34243297 DOI: 10.1063/5.0040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Back-streaming neutrons through the incoming proton channel at the spallation target station of the China Spallation Neutron Source have been studied as a white neutron source (Back-n). We report a physical study on white neutron imaging based on the Back-n beamline. The wide neutron energy spectrum spanning from 1 eV to 100 MeV was very suitable for nuclide-identified imaging as well as measurements of nuclear data and other applications. We calculated the back-streaming white neutron energy spectrum using the Monte Carlo N-Particle code. A comparison of the results of calculation with those of the FLUktuierende KAskade code and experimental measurements were carried out. The energy resolution of the Back-n beam was close to 5% depending on the neutron energy and the modes of operation, and its spatial resolution could attain the order of tens of micrometers.
Collapse
Affiliation(s)
- Binbin Tian
- School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Hantao Jing
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Sheng Wang
- School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Qiang Li
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiaolong Gao
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiaoyun Yang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
8
|
Improved Acquisition and Reconstruction for Wavelength-Resolved Neutron Tomography. J Imaging 2021; 7:jimaging7010010. [PMID: 34460581 PMCID: PMC8321247 DOI: 10.3390/jimaging7010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
Wavelength-resolved neutron tomography (WRNT) is an emerging technique for characterizing samples relevant to the materials sciences in 3D. WRNT studies can be carried out at beam lines in spallation neutron or reactor-based user facilities. Because of the limited availability of experimental time, potential imperfections in the neutron source, or constraints placed on the acquisition time by the type of sample, the data can be extremely noisy resulting in tomographic reconstructions with significant artifacts when standard reconstruction algorithms are used. Furthermore, making a full tomographic measurement even with a low signal-to-noise ratio can take several days, resulting in a long wait time before the user can receive feedback from the experiment when traditional acquisition protocols are used. In this paper, we propose an interlaced scanning technique and combine it with a model-based image reconstruction algorithm to produce high-quality WRNT reconstructions concurrent with the measurements being made. The interlaced scan is designed to acquire data so that successive measurements are more diverse in contrast to typical sequential scanning protocols. The model-based reconstruction algorithm combines a data-fidelity term with a regularization term to formulate the wavelength-resolved reconstruction as minimizing a high-dimensional cost-function. Using an experimental dataset of a magnetite sample acquired over a span of about two days, we demonstrate that our technique can produce high-quality reconstructions even during the experiment compared to traditional acquisition and reconstruction techniques. In summary, the combination of the proposed acquisition strategy with an advanced reconstruction algorithm provides a novel guideline for designing WRNT systems at user facilities.
Collapse
|
9
|
On a Method For Reconstructing Computed Tomography Datasets from an Unstable Source. J Imaging 2020; 6:jimaging6050035. [PMID: 34460737 PMCID: PMC8321039 DOI: 10.3390/jimaging6050035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/17/2022] Open
Abstract
As work continues in neutron computed tomography, at Los Alamos Neutron Science Center (LANSCE) and other locations, source reliability over the long imaging times is an issue of increasing importance. Moreover, given the time commitment involved in a single neutron image, it is impractical to simply discard a scan and restart in the event of beam instability. In order to mitigate the cost and time associated with these options, strategies are presented in the current work to produce a successful reconstruction of computed tomography data from an unstable source. The present work uses a high energy neutron tomography dataset from a simulated munition collected at LANSCE to demonstrate the method, which is general enough to be of use in conjunction with unstable X-ray computed tomography sources as well.
Collapse
|
10
|
Vogel SC, Fernandez JC, Gautier DC, Mitura N, Roth M, Schoenberg KF. Short-Pulse Laser-Driven Moderated Neutron Source. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023101008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neutron production with laser-driven neutron sources was demonstrated. We outline the basics of laser-driven neutron sources, highlight some fundamental advantages, and quantitatively compare the neutron production at the TRIDENT laser sources with the well-established LANSCE pulsed neutron spallation source. Ongoing efforts by our team to continue development of these sources, in particular the LANSCE-ina-box instrument, are described. The promise of ultra-intense lasers as drivers for brilliant, compact, and highly efficient particle accelerators portends driving next-generation neutron sources, potentially replacing in some cases much larger conventional accelerators.
Collapse
|
11
|
Zimmer M, Scheuren S, Kleinschmidt A, Tebartz A, Ebert T, Ding J, Hartnagel D, Roth M. Development of a Setup for Material Identification Based on Laser-Driven Neutron Resonance Spectroscopy. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
With the phasing out of many research reactors over the upcoming years, a shortcoming of small and medium sized neutron sources is to be expected. Laser-driven neutron sources have the potential to fill this void, with enormous progress being made in laser technology over the past years. Upcoming petawatt lasers with high repetition rates up to 10 Hz promise a tremendous increase in neutron flux. In this paper, a setup is developed and optimized to conduct neutron resonance spectroscopy at a laser-driven neutron source. This setup is then evaluated at an experimental campaign at the PHELIX laser system. Laser intensities up to 1021 W/cm² with a ns pre-pulse contrast of 10-7 were used for ion acceleration, resulting in (1.8±0.7)×108 N/sr per pulse corresponding to (2.3±1.0)×109 N in a 4 π equivalent. These pulses were moderated, collimated and investigated via the time of flight method in order to characterize the thermal neutron spectrum as well as the signal to noise ratio.
Collapse
|
12
|
McKeown M, Brusatte SL, Williamson TE, Schwab JA, Carr TD, Butler IB, Muir A, Schroeder K, Espy MA, Hunter JF, Losko AS, Nelson RO, Gautier DC, Vogel SC. Neurosensory and Sinus Evolution as Tyrannosauroid Dinosaurs Developed Giant Size: Insight from the Endocranial Anatomy of Bistahieversor sealeyi. Anat Rec (Hoboken) 2020; 303:1043-1059. [PMID: 31967416 DOI: 10.1002/ar.24374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Tyrannosaurus rex and other tyrannosaurid dinosaurs were apex predators during the latest Cretaceous, which combined giant size and advanced neurosensory systems. Computed tomography (CT) data have shown that tyrannosaurids had a trademark system of a large brain, large olfactory bulbs, elongate cochlear ducts, and expansive endocranial sinuses surrounding the brain and sense organs. Older, smaller tyrannosauroid relatives of tyrannosaurids developed some, but not all, of these features, raising the hypothesis that tyrannosaurid-style brains evolved before the enlarged tyrannosaurid-style sinuses, which might have developed only with large body size. This has been difficult to test, however, because little is known about the brains and sinuses of the first large-bodied tyrannosauroids, which evolved prior to Tyrannosauridae. We here present the first CT data for one of these species, Bistahieversor sealeyi from New Mexico. Bistahieversor had a nearly identical brain and sinus system as tyrannosaurids like Tyrannosaurus, including a large brain, large olfactory bulbs, reduced cerebral hemispheres, and optic lobes, a small tab-like flocculus, long and straight cochlear ducts, and voluminous sinuses that include a supraocciptal recess, subcondyar sinus, and an anterior tympanic recess that exits the braincase via a prootic fossa. When characters are plotted onto tyrannosauroid phylogeny, there is a two-stage sequence in which features of the tyrannosaurid-style brain evolved first (in smaller, nontyrannosaurid species like Timurlengia), followed by features of the tyrannosaurid-style sinuses (in the first large-bodied nontyrannosaurid tyrannosauroids like Bistahieversor). This suggests that the signature tyrannosaurid sinus system evolved in concert with large size, whereas the brain did not. Anat Rec, 303:1043-1059, 2020. © 2020 American Association for Anatomy.
Collapse
Affiliation(s)
- Matthew McKeown
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | | | - Julia A Schwab
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Thomas D Carr
- Department of Biology, Carthage College, Kenosha, Wisconsin
| | - Ian B Butler
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Amy Muir
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Katlin Schroeder
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico
| | | | | | - Adrian S Losko
- Los Alamos National Laboratory, Los Alamos, New Mexico.,Research Neutron Source FRM II, Technical University Munich, Munich, Germany
| | | | | | - Sven C Vogel
- Los Alamos National Laboratory, Los Alamos, New Mexico
| |
Collapse
|
13
|
Tremsin A, Vallerga J. Unique capabilities and applications of Microchannel Plate (MCP) detectors with Medipix/Timepix readout. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2019.106228] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Sevanto S. Methods for Assessing the Role of Phloem Transport in Plant Stress Responses. Methods Mol Biol 2019; 2014:311-336. [PMID: 31197806 DOI: 10.1007/978-1-4939-9562-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Delivery of carbohydrates to tissues that need them under stress is important for plant defenses and survival. Yet, little is known on how phloem function is altered under stress, and how that influences plant responses to stress. This is because phloem is a challenging tissue to study. It consists of cells of various types with soft cell walls, and the cells show strong wounding reactions to protect their integrity, making both imaging and functional studies challenging. This chapter summarizes theories on how phloem transport is affected by stress and presents methods that have been used to gain the current knowledge. These techniques range from tracer studies and imaging to carbon balance and anatomical analyses. Advances in these techniques in the recent years have considerably increased our ability to investigate phloem function, and application of the new methods on plant stress studies will help provide a more comprehensive picture of phloem function and its limitations under stress.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
15
|
|