1
|
Kwak S, Wang C, Usyk M, Wu F, Freedman ND, Huang WY, McCullough ML, Um CY, Shrubsole MJ, Cai Q, Li H, Ahn J, Hayes RB. Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer. JAMA Oncol 2024:2824198. [PMID: 39325441 PMCID: PMC11428028 DOI: 10.1001/jamaoncol.2024.4006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Importance The oral microbiota may be involved in development of head and neck squamous cell cancer (HNSCC), yet current evidence is largely limited to bacterial 16S amplicon sequencing or small retrospective case-control studies. Objective To test whether oral bacterial and fungal microbiomes are associated with subsequent risk of HNSCC development. Design, Setting, and Participants Prospective nested case-control study among participants providing oral samples in 3 epidemiological cohorts, the American Cancer Society Cancer Prevention Study II Nutrition Cohort, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, and the Southern Community Cohort Study. Two hundred thirty-six patients who prospectively developed HNSCC were identified during a mean (SD) of 5.1 (3.6) years of follow-up. Control participants who remained HNSCC free were selected by 2:1 frequency matching on cohort, age, sex, race and ethnicity, and time since oral sample collection. Data analysis was conducted in 2023. Exposures Characterization of the oral bacterial microbiome using whole-genome shotgun sequencing and the oral fungal microbiome using internal transcribed spacer sequencing. Association of bacterial and fungal taxa with HNSCC was assessed by analysis of compositions of microbiomes with bias correction. Association with red and orange oral pathogen complexes was tested by logistic regression. A microbial risk score for HNSCC risk was calculated from risk-associated microbiota. Main Outcomes and Measures The primary outcome was HNSCC incidence. Results The study included 236 HNSCC case participants with a mean (SD) age of 60.9 (9.5) years and 24.6% women during a mean of 5.1 (3.6) years of follow-up, and 485 matched control participants. Overall microbiome diversity at baseline was not related to subsequent HNSCC risk; however 13 oral bacterial species were found to be differentially associated with development of HNSCC. The species included the newly identified Prevotella salivae, Streptococcus sanguinis, and Leptotrichia species, as well as several species belonging to beta and gamma Proteobacteria. The red/orange periodontal pathogen complex was moderately associated with HNSCC risk (odds ratio, 1.06 per 1 SD; 95% CI, 1.00-1.12). A 1-SD increase in microbial risk score (created based on 22 bacteria) was associated with a 50% increase in HNSCC risk (multivariate odds ratio, 1.50; 95% CI, 1.21-1.85). No fungal taxa associated with HNSCC risk were identified. Conclusions and Relevance This case-control study yielded compelling evidence that oral bacteria are a risk factor for HNSCC development. The identified bacteria and bacterial complexes hold promise, along with other risk factors, to identify high-risk individuals for personalized prevention of HNSCC.
Collapse
Affiliation(s)
- Soyoung Kwak
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Chan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Mykhaylo Usyk
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Feng Wu
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Martha J Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Jiyoung Ahn
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Richard B Hayes
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| |
Collapse
|
2
|
Sousa YV, Santiago MG, de Souza BM, Keller KM, Oliveira CSF, Mendoza L, Vilela RVR, Goulart GAC. Itraconazole in human medicine and veterinary practice. J Mycol Med 2024; 34:101473. [PMID: 38493607 DOI: 10.1016/j.mycmed.2024.101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Diagnosis and management of fungal infections are challenging in both animals and humans, especially in immunologically weakened hosts. Due to its broad spectrum and safety profile when compared to other antifungals, itraconazole (ITZ) has been widely used in the treatment and prophylaxis of fungal infections, both in human and veterinary medicine. The dose and duration of management depend on factors such as the type of fungal pathogen, the site of infection, sensitivity to ITZ, chronic stages of the disease, the health status of the hosts, pharmacological interactions with other medications and the therapeutic protocol used. In veterinary practice, ITZ doses generally vary between 3 mg/kg and 50 mg/kg, once or twice a day. In humans, doses usually vary between 100 and 400 mg/day. As human and veterinary fungal infections are increasingly associated, and ITZ is one of the main medications used, this review addresses relevant aspects related to the use of this drug in both clinics, including case reports and different clinical aspects available in the literature.
Collapse
Affiliation(s)
- Yamara V Sousa
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Marie G Santiago
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Bianca M de Souza
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Kelly M Keller
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Camila S F Oliveira
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Leonel Mendoza
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI 48824, United States
| | - Raquel V R Vilela
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI 48824, United States; Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Gisele A C Goulart
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
3
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Dühring S, Schuster S. Studying mixed-species biofilms of Candida albicans and Staphylococcus aureus using evolutionary game theory. PLoS One 2024; 19:e0297307. [PMID: 38446770 PMCID: PMC10917284 DOI: 10.1371/journal.pone.0297307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 03/08/2024] Open
Abstract
Mixed-species biofilms of Candida albicans and Staphylococcus aureus pose a significant clinical challenge due to their resistance to the human immune system and antimicrobial therapy. Using evolutionary game theory and nonlinear dynamics, we analyse the complex interactions between these organisms to understand their coexistence in the human host. We determine the Nash equilibria and evolutionary stable strategies of the game between C. albicans and S. aureus and point out different states of the mixed-species biofilm. Using replicator equations we study the fungal-bacterial interactions on a population level. Our focus is on the influence of available nutrients and the quorum sensing molecule farnesol, including the potential therapeutic use of artificially added farnesol. We also investigate the impact of the suggested scavenging of C. albicans hyphae by S. aureus. Contrary to common assumptions, we confirm the hypothesis that under certain conditions, mixed-species biofilms are not universally beneficial. Instead, different Nash equilibria occur depending on encountered conditions (i.e. varying farnesol levels, either produced by C. albicans or artificially added), including antagonism. We further show that the suggested scavenging of C. albicans' hyphae by S. aureus does not influence the overall outcome of the game. Moreover, artificially added farnesol strongly affects the dynamics of the game, although its use as a medical adjuvant (add-on medication) may pose challenges.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
5
|
Le Bars P, Kouadio AA, Amouriq Y, Bodic F, Blery P, Bandiaky ON. Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers (Basel) 2023; 16:40. [PMID: 38201705 PMCID: PMC10780608 DOI: 10.3390/polym16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
This review focuses on the current disparities and gaps in research on the characteristics of the oral ecosystem of denture wearers, making a unique contribution to the literature on this topic. We aimed to synthesize the literature on the state of current knowledge concerning the biological behavior of the different polymers used in prosthetics. Whichever polymer is used in the composition of the prosthetic base (poly methyl methacrylate acrylic (PMMA), polyamide (PA), or polyether ether ketone (PEEK)), the simple presence of a removable prosthesis in the oral cavity can disturb the balance of the oral microbiota. This phenomenon is aggravated by poor oral hygiene, resulting in an increased microbial load coupled with the reduced salivation that is associated with older patients. In 15-70% of patients, this imbalance leads to the appearance of inflammation under the prosthesis (denture stomatitis, DS). DS is dependent on the equilibrium-as well as on the reciprocal, fragile, and constantly dynamic conditions-between the host and the microbiome in the oral cavity. Several local and general parameters contribute to this balance. Locally, the formation of microbial plaque on dentures (DMP) depends on the phenomena of adhesion, aggregation, and accumulation of microorganisms. To limit DMP, apart from oral and lifestyle hygiene, the prosthesis must be polished and regularly immersed in a disinfectant bath. It can also be covered with an insulating coating. In the long term, relining and maintenance of the prosthesis must also be established to control microbial proliferation. On the other hand, several general conditions specific to the host (aging; heredity; allergies; diseases such as diabetes mellitus or cardiovascular, respiratory, or digestive diseases; and immunodeficiencies) can make the management of DS difficult. Thus, the second part of this review addresses the complexity of the management of DMP depending on the polymer used. The methodology followed in this review comprised the formulation of a search strategy, definition of the inclusion and exclusion criteria, and selection of studies for analysis. The PubMed database was searched independently for pertinent studies. A total of 213 titles were retrieved from the electronic databases, and after applying the exclusion criteria, we selected 84 articles on the possible microbial interactions between the prosthesis and the oral environment, with a particular emphasis on Candida albicans.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Yves Amouriq
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - François Bodic
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Pauline Blery
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Octave Nadile Bandiaky
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| |
Collapse
|
6
|
Al Bataineh MT, Künstner A, Dash NR, Alsafar HS, Ragab M, Schmelter F, Sina C, Busch H, Ibrahim SM. Uncovering the relationship between gut microbial dysbiosis, metabolomics, and dietary intake in type 2 diabetes mellitus and in healthy volunteers: a multi-omics analysis. Sci Rep 2023; 13:17943. [PMID: 37863978 PMCID: PMC10589304 DOI: 10.1038/s41598-023-45066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023] Open
Abstract
Type 2 Diabetes Mellitus has reached epidemic levels globally, and several studies have confirmed a link between gut microbial dysbiosis and aberrant glucose homeostasis among people with diabetes. While the assumption is that abnormal metabolomic signatures would often accompany microbial dysbiosis, the connection remains largely unknown. In this study, we investigated how diet changed the gut bacteriome, mycobiome and metabolome in people with and without type 2 Diabetes.1 Differential abundance testing determined that the metabolites Propionate, U8, and 2-Hydroxybutyrate were significantly lower, and 3-Hydroxyphenyl acetate was higher in the high fiber diet compared to low fiber diet in the healthy control group. Next, using multi-omics factor analysis (MOFA2), we attempted to uncover sources of variability that drive each of the different groups (bacterial, fungal, and metabolite) on all samples combined (control and DM II). Performing variance decomposition, ten latent factors were identified, and then each latent factor was tested for significant correlations with age, BMI, diet, and gender. Latent Factor1 was the most significantly correlated. Remarkably, the model revealed that the mycobiome explained most of the variance in the DM II group (12.5%) whereas bacteria explained most of the variance in the control group (64.2% vs. 10.4% in the DM II group). The latent Factor1 was significantly correlated with dietary intake (q < 0.01). Further analyses of the impact of bacterial and fungal genera on Factor1 determined that the nine bacterial genera (Phocaeicola, Ligilactobacillus, Mesosutterella, Acidaminococcus, Dorea A, CAG-317, Caecibacter, Prevotella and Gemmiger) and one fungal genus (Malassezia furfur) were found to have high factor weights (absolute weight > 0.6). Alternatively, a linear regression model was fitted per disease group for each genus to visualize the relationship between the factor values and feature abundances, showing Xylose with positive weights and Propionate, U8, and 2-Hydroxybutyrate with negative weights. This data provides new information on the microbially derived changes that influence metabolic phenotypes in response to different diets and disease conditions in humans.
Collapse
Affiliation(s)
- Mohammad Tahseen Al Bataineh
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Nihar Ranjan Dash
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Habiba S Alsafar
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Mohab Ragab
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | | | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562, Lübeck, Germany.
- Institute for Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany.
| | - Saleh Mohamed Ibrahim
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562, Lübeck, Germany.
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
7
|
Cao Q, Xiao X, Tao C, Shi R, Lv R, Guo R, Li X, Sui B, Liu X, Liu J. Efficient clearance of periodontitis pathogens by S. gordonii membrane-coated H 2O 2 self-supplied nanocomposites in a "Jenga" style. Biomater Sci 2023; 11:5680-5693. [PMID: 37439322 DOI: 10.1039/d3bm00641g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
As a key pathogen of periodontitis, P. gingivalis requires support of the initial colonizing bacterium (S. gordonii preferably) to form symbiotic biofilms on gingival tissues with enhanced antibiotic resistance. Here, we report a new strategy to treat periodontitis biofilms with S. gordonii membrane-coated H2O2 self-supplied nanocomposites (ZnO2/Fe3O4@MV NPs) in a "Jenga" style. Integration of our special MV coatings enables selectively enhanced internalization of the cargos in S. gordonii, thus inducing severe damage to the foundational bacterial layer and collapse/clearance of symbiotic biofilms consequently. This strategy allows us to clear the symbiotic biofilms of S. gordonii and P. gingivalis with active hydroxyl radicals (˙OH) derived from ZnO2-Fe3O4@MV NPs in a H2O2 self-supplied, nanocatalyst-assisted manner. This "Jenga-style" treatment provides a cutting-edge proof of concept for the removal of otherwise robust symbiotic biofilms of periodontitis where the critical pathogens are difficult to target and have antibiotic resistance.
Collapse
Affiliation(s)
- Qinghua Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| | - Xiang Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| | - Chengcheng Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| | - Rui Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Rui Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| | - Ruochen Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| | - Xinyi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P.R. China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P.R. China
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| |
Collapse
|
8
|
Chi Y, Wang Y, Ji M, Li Y, Zhu H, Yan Y, Fu D, Zou L, Ren B. Natural products from traditional medicine as promising agents targeting at different stages of oral biofilm development. Front Microbiol 2022; 13:955459. [PMID: 36033896 PMCID: PMC9411938 DOI: 10.3389/fmicb.2022.955459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Oral cavity is an ideal habitat for more than 1,000 species of microorganisms. The diverse oral microbes form biofilms over the hard and soft tissues in the oral cavity, affecting the oral ecological balance and the development of oral diseases, such as caries, apical periodontitis, and periodontitis. Currently, antibiotics are the primary agents against infectious diseases; however, the emergence of drug resistance and the disruption of oral microecology have challenged their applications. The discovery of new antibiotic-independent agents is a promising strategy against biofilm-induced infections. Natural products from traditional medicine have shown potential antibiofilm activities in the oral cavity with high safety, cost-effectiveness, and minimal adverse drug reactions. Aiming to highlight the importance and functions of natural products from traditional medicine against oral biofilms, here we summarized and discussed the antibiofilm effects of natural products targeting at different stages of the biofilm formation process, including adhesion, proliferation, maturation, and dispersion, and their effects on multi-species biofilms. The perspective of antibiofilm agents for oral infectious diseases to restore the balance of oral microecology is also discussed.
Collapse
Affiliation(s)
- Yaqi Chi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hualing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Di Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zou,
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Biao Ren,
| |
Collapse
|
9
|
Niemiec BA, Gawor J, Tang S, Prem A, Krumbeck JA. The bacteriome of the oral cavity in healthy dogs and dogs with periodontal disease. Am J Vet Res 2022; 83:50-58. [PMID: 34727048 DOI: 10.2460/ajvr.21.02.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1-V3 region of the 16S rRNA gene. RESULTS 714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.
Collapse
Affiliation(s)
- Brook A Niemiec
- Veterinary Dental Specialties and Oral Surgery, San Diego, CA
| | | | - Shuiquan Tang
- MiDOG LLC, Tustin, CA.,Zymo Research Corp., Irvine, CA
| | - Aishani Prem
- MiDOG LLC, Tustin, CA.,Zymo Research Corp., Irvine, CA
| | | |
Collapse
|
10
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Niemiec BA, Gawor J, Tang S, Prem A, Krumbeck JA. The mycobiome of the oral cavity in healthy dogs and dogs with periodontal disease. Am J Vet Res 2022; 83:42-49. [PMID: 34727047 DOI: 10.2460/ajvr.20.11.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the mycobiome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS 51 dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The whole maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the internal transcribed spacer 2 region with a commercial sequencing platform. RESULTS Fungi were detected in all samples, with a total of 320 fungal species from 135 families detected in the data set. No single fungal species was found in all samples. The 3 most frequently found fungal species were Cladosporium sp (46/51 samples), Malassezia restricta (44/51 samples), and Malassezia arunalokei (36/51 samples). Certain fungi, specifically those of the family Didymellaceae, the family Irpicaceae, and the order Pleosporales, were significantly associated with different stages of periodontitis. Mycobial analysis indicated that Cladosporium sp could be considered part of the core oral cavity mycobiome. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that fungi are present in the oral cavity of dogs and are characterized by substantial species diversity, with different fungal communities associated with various stages of periodontal disease. The next-generation DNA sequencing used in the present study revealed substantially more species of fungi than previous culture-based studies.
Collapse
|
12
|
Chudzicka-Strugała I, Gołębiewska I, Brudecki GP, Zwoździak B. The Influence of the Use of Face Masks During the COVID-19 Pandemic on the Human Microbiome – A Mini-Review. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to draw attention to the possible consequences of improper, unhygienic use of mouth and nose covers in the context of prophylaxis against the spread of COVID-19 from the point of view of a family physician and focus on the risk of respiratory infections and skin lesions in patients, in different age groups. The use of protective masks may reduce the likelihood of infection but will not eliminate the risk of infection. However, it should be remembered that any mask, no matter how effective the filtration is or how well it seals, will have little effect if not used in conjunction with other preventive measures, including isolation of infected people, immunization, proper respiratory culture, regular, frequent replacement of masks, and hand hygiene. Additionally, certain risks associated with this form of prophylaxis should be taken into account, which, unfortunately, may also aggravate or even constitute a source of serious respiratory infections and lead to the development and aggravation of skin problems. Moreover, educating society not only on hand hygiene but also on the topic of the value of nose and mouth covers, as well as the frequency of their replacement and/or disinfection, is becoming a significant issue.
Collapse
|
13
|
Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol 2000 2021; 87:107-131. [PMID: 34463991 PMCID: PMC8457218 DOI: 10.1111/prd.12393] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.
Collapse
Affiliation(s)
- Lea Sedghi
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent DiMassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony Harrington
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yvonne L. Kapila
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
14
|
The Current Strategies in Controlling Oral Diseases by Herbal and Chemical Materials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3423001. [PMID: 34471415 PMCID: PMC8405301 DOI: 10.1155/2021/3423001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023]
Abstract
Dental plaque is a biofilm composed of complex microbial communities. It is the main cause of major dental diseases such as caries and periodontal diseases. In a healthy state, there is a delicate balance between the dental biofilm and host tissues. Nevertheless, due to the oral cavity changes, this biofilm can become pathogenic. The pathogenic biofilm shifts the balance from demineralization-remineralization to demineralization and results in dental caries. Dentists should consider caries as a result of biological processes of dental plaque and seek treatments for the etiologic factors, not merely look for the treatment of the outcome caused by biofilm, i.e., dental caries. Caries prevention strategies can be classified into three groups based on the role and responsibility of the individuals doing them: (1) community-based strategy, (2) dental professionals-based strategy, and (3) individual-based strategy. The community-based methods include fluoridation of water, salt, and milk. The dental professionals-based methods include professional tooth cleaning and use of varnish, fluoride gel and foam, fissure sealant, and antimicrobial agents. The individual-based (self-care) methods include the use of fluoride toothpaste, fluoride supplements, fluoride mouthwashes, fluoride gels, chlorhexidine gels and mouthwashes, slow-release fluoride devices, oral hygiene, diet control, and noncariogenic sweeteners such as xylitol. This study aimed to study the research in the recent five years (2015–2020) to identify the characteristics of dental biofilm and its role in dental caries and explore the employed approaches to prevent the related infections.
Collapse
|
15
|
Schwartz M, Canon F, Feron G, Neiers F, Gamero A. Impact of Oral Microbiota on Flavor Perception: From Food Processing to In-Mouth Metabolization. Foods 2021; 10:2006. [PMID: 34574116 PMCID: PMC8467474 DOI: 10.3390/foods10092006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Flavor perception during food intake is one of the main drivers of food acceptability and consumption. Recent studies have pointed to the oral microbiota as an important factor modulating flavor perception. This review introduces general characteristics of the oral microbiota, factors potentially influencing its composition, as well as known relationships between oral microbiota and chemosensory perception. We also review diverse evidenced mechanisms enabling the modulation of chemosensory perception by the microbiota. They include modulation of the chemosensory receptors activation by microbial metabolites but also modification of receptors expression. Specific enzymatic reactions catalyzed by oral microorganisms generate fragrant molecules from aroma precursors in the mouth. Interestingly, these reactions also occur during the processing of fermented beverages, such as wine and beer. In this context, two groups of aroma precursors are presented and discussed, namely, glycoside conjugates and cysteine conjugates, which can generate aroma compounds both in fermented beverages and in the mouth. The two entailed families of enzymes, i.e., glycosidases and carbon-sulfur lyases, appear to be promising targets to understand the complexity of flavor perception in the mouth as well as potential biotechnological tools for flavor enhancement or production of specific flavor compounds.
Collapse
Affiliation(s)
- Mathieu Schwartz
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Francis Canon
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Gilles Feron
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Fabrice Neiers
- CSGA, Centre des Sciences du Gout et de l’Alimentation, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (F.C.); (G.F.); (F.N.)
| | - Amparo Gamero
- Department Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
16
|
Characterization of Oral Microbiota in Cats: Novel Insights on the Potential Role of Fungi in Feline Chronic Gingivostomatitis. Pathogens 2021; 10:pathogens10070904. [PMID: 34358054 PMCID: PMC8308807 DOI: 10.3390/pathogens10070904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Previous studies have suggested the involvement of viral and bacterial components in the initiation and progression of feline chronic gingivostomatitis (FCGS), but the role of fungi remains entirely unknown. This pilot study aimed to investigate the bacteriome and mycobiome in feline oral health and disease. Physical exams, including oral health assessment, of privately owned, clinically healthy (CH) cats (n = 14) and cats affected by FCGS (n = 14) were performed. Using a sterile swab, oral tissue surfaces of CH and FCGS cats were sampled and submitted for 16S rRNA and ITS-2 next-generation DNA sequencing. A high number of fungal species (n = 186) was detected, with Malassezia restricta, Malassezia arunalokei, Cladosporium penidielloides/salinae, and Aspergillaceae sp. being significantly enriched in FCGS samples, and Saccharomyces cerevisiae in CH samples. The bacteriome was significantly distinct between groups, and significant inter-kingdom interactions were documented. Bergeyella zoohelcum was identified as a potential biomarker of a healthy feline oral microbiome. These data suggest that fungi might play a role in the etiology and pathogenesis of FCGS, and that oral health should not simply be regarded as the absence of microbial infections. Instead, it may be viewed as the biological interactions between bacterial and fungal populations that coexist to preserve a complex equilibrium in the microenvironment of the mouth. Additional investigations are needed to improve our understanding of the feline oral ecosystem and the potential interactions between viruses, bacteria, and fungi in FCGS.
Collapse
|
17
|
Bernard C, Girardot M, Imbert C. Candida albicans interaction with Gram-positive bacteria within interkingdom biofilms. J Mycol Med 2020; 30:100909. [DOI: 10.1016/j.mycmed.2019.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022]
|
18
|
Solidago virgaurea L. Plant Extract Targeted Against Candida albicans to Reduce Oral Microbial Biomass: a Double Blind Randomized Trial on Healthy Adults. Antibiotics (Basel) 2020; 9:antibiotics9040137. [PMID: 32218125 PMCID: PMC7235725 DOI: 10.3390/antibiotics9040137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oral microbiome plays an important part on oral health and endogenous bacteria and fungi should not be eradicated. However, their proliferation must be controlled by oral hygiene care. In vitro, Solidago virgaurea ssp. virgaurea L. (SV) plant extract inhibits the adherence and hyphal formation of a fungus, Candida albicans. It reduces the biomass of Candida-bacterial biofilms but not fungal or bacterial growth. Unlike chemical antiseptics, like triclosan and chlorhexidine for instance, SV is a plant extract easily biodegradable. The purpose of this study was to assess the in vivo effectiveness of SV extract in reducing oral biomass. A randomized, double-blind clinical study, with dental plaque evaluation designed to assess the effectiveness of a fluorinated toothpaste containing SV (Bucovia™, Givaudan, Vernier, Switzerland) was conducted. Sixty-six subjects (SV group n = 33 vs. control n = 33) brushed their teeth twice a day for a 4-week period. Supragingival dental plaque was sampled. Total bacterial load (broad spectral bacterial quantitative Polymerase Chain Reaction (qPCR)), C. albicans and seven bacterial species were quantified by qPCR. In the Intervention group, there was a decrease of Total bacterial load (ΔD0D28 p = 0.005 and ΔD14D28 p = 0.026), Streptococcus mutans (ΔD0D14 p = 0.024) and C. albicans (ΔD0D28 p = 0.022). In the Control group Total bacterial load tended to decrease from baseline to day 28 (ΔD0D28 p = 0.062 and ΔD14D28 p = 0.009). Plaque Index and Gingival Index improved in both groups.
Collapse
|
19
|
Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, Delhaes L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol 2020; 10:9. [PMID: 32140452 PMCID: PMC7042389 DOI: 10.3389/fcimb.2020.00009] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The gut and lungs are anatomically distinct, but potential anatomic communications and complex pathways involving their respective microbiota have reinforced the existence of a gut-lung axis (GLA). Compared to the better-studied gut microbiota, the lung microbiota, only considered in recent years, represents a more discreet part of the whole microbiota associated to human hosts. While the vast majority of studies focused on the bacterial component of the microbiota in healthy and pathological conditions, recent works have highlighted the contribution of fungal and viral kingdoms at both digestive and respiratory levels. Moreover, growing evidence indicates the key role of inter-kingdom crosstalks in maintaining host homeostasis and in disease evolution. In fact, the recently emerged GLA concept involves host-microbe as well as microbe-microbe interactions, based both on localized and long-reaching effects. GLA can shape immune responses and interfere with the course of respiratory diseases. In this review, we aim to analyze how the lung and gut microbiota influence each other and may impact on respiratory diseases. Due to the limited knowledge on the human virobiota, we focused on gut and lung bacteriobiota and mycobiota, with a specific attention on inter-kingdom microbial crosstalks which are able to shape local or long-reached host responses within the GLA.
Collapse
Affiliation(s)
- Raphaël Enaud
- CHU de Bordeaux, CRCM Pédiatrique, CIC 1401, Bordeaux, France
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Renaud Prevel
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux, Médecine Intensive Réanimation, Bordeaux, France
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Beaufils
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Gregoire Wieërs
- Clinique Saint Pierre, Department of Internal Medicine, Ottignies, Belgium
| | - Benoit Guery
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Loban GA, Petrushanko TO, Chereda VV, Faustova MO, Ananieva MM, Basarab YA. DIAGNOSTIC AND PROGNOSTIC SIGNIFICANCE OF MICROBIAL FLORA IMBALANCE IN GINGIVAL BIOFILM. INTERNATIONAL JOURNAL OF MEDICINE AND MEDICAL RESEARCH 2020. [DOI: 10.11603/ijmmr.2413-6077.2019.2.10448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background. Periodontal tissues inflammatory diseases are widespread among young people.
Objective. This study was aimed at elaborating the method to assess risks of periodontal inflammatory diseases and determining its efficacy depending on the state of dental tissues, gum tissues and sex.
Methods. The study included 182 students (93 men, 89 women) aged 19-29: 22 individuals had no lesions of hard dental tissues and no signs of periodontal disease; 51 individuals were found to have DMF index <6; 52 individuals – DMF index ≥6; 57 individuals were diagnosed with chronic catarrhal gingivitis. Primary groups were formed in autumn; re-examination was carried in spring. The research participants were assessed for detection of risks of periodontal inflammatory disease by the method developes by the authors (Patent UA 54041).
Results. The study revealed that the risk of development of preiodontitis increases in individuals with high caries and gingivitis intensity. In spring, more individuals suffer from microbial imbalance in in the composition of gingival sulcus fluid and decrease in the mean stability coefficient value that indicates an increased risk of inflammatory periodontal disease development. Women were less likely to experience seasonal dysbiotic changes in the gingival sulcus fluid composition compared with men.
Conclusions. The method suggested for assessment of the risk of periodontal inflammatory diseases is of high informativeness. It allows clinicians detecting early pre-nosological signs of oral microbiocenosis imbalance that enhances the effectiveness of early diagnosis of inflammatory periodontal diseases.
Collapse
|
21
|
Osypchuk NО, Nastenko VB, Shirobokov VP, Korotkyi YV. Sensitivity of antifungal preparations of Сandida isolates from sub-biotopes of the human oral cavity. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Candidiasis is the commonest opportunistic infection of the oral cavity. As a result of immune-deficiency of the organism, yeasts of Candida genus by acting as commensal organisms transmute into pathogenic organisms. The article presents frequency of isolation, topographic peculiarities, species range, sensitivity of the Candida yeasts to antimycotics and newly-synthesized derivatives of amino alcohols isolated from the sub-biotopes of the oral cavity of patients with oncopathologies. The survey of the material included microscopic, mycologic, statistical-analytical methods. For all the clinical isolates the sensitivity to antifungal preparations was determined. Over the study 492 sub-biotopes of the oral cavity were examined. The extraction of the material was made from the mucous membrane of the cheek, angle of the mouth, mucous membrane of the surface of the tongue and the palate. According to the results of the conducted studies, the level of candidal carriage on the mucous membrane of the oral cavity in the patients with oncopathologies without clinical signs of candidiasis equaled 25.0%, active candidiasis infection was found in 47.0% of cases. Among the clinical strains, we isolated: C. albicans, C. glabrata, C. tropicalis and C. krusei. Among all the isolated strains, in all 4 sub-biotopes C. albicans dominated accounting for 73.1%. In 4 sub-biotopes we detected the association of two species of Candida. Analysis of the obtained results of the susceptibility of strains to modern antymicotics and newly-synthesized substances revealed that the representatives of non-albicans are more resistant to the antifungal preparations. Among the commercial preparations, amphotericin B exerted the highest activity against the clinical isolates of yeast-like fungi. The concentration of 0.97 µg/mL inhibited 50.0% of representatives of non-albicans, and also 75.0% of isolates of C. albicans. Fluconazole exhibited activity in the concentration of 1 µg/mL towards 17.0% of non-albicans and 25.0% of С. albicans. Itraconazole was observed to have no significant antifungal activity. Among the newly-synthesized aryl acyclic amino alcohols, compound Kc22 displayed high activity against both groups of Candida (experimental and control) making it promising for creating new therapeutic preparations. The parameters of resistance of clinical isolates to modern antimycotics indicate the necessity of constant monitoring of the sensitivity of the pathogens of candidiasis and precise species identification for rational use of antifungal preparations and prevention of the development of antimycotic resistance.
Collapse
|
22
|
Nogueira F, Sharghi S, Kuchler K, Lion T. Pathogenetic Impact of Bacterial-Fungal Interactions. Microorganisms 2019; 7:microorganisms7100459. [PMID: 31623187 PMCID: PMC6843596 DOI: 10.3390/microorganisms7100459] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Polymicrobial infections are of paramount importance because of the potential severity of clinical manifestations, often associated with increased resistance to antimicrobial treatment. The intricate interplay with the host and the immune system, and the impact on microbiome imbalance, are of importance in this context. The equilibrium of microbiota in the human host is critical for preventing potential dysbiosis and the ensuing development of disease. Bacteria and fungi can communicate via signaling molecules, and produce metabolites and toxins capable of modulating the immune response or altering the efficacy of treatment. Most of the bacterial–fungal interactions described to date focus on the human fungal pathogen Candida albicans and different bacteria. In this review, we discuss more than twenty different bacterial–fungal interactions involving several clinically important human pathogens. The interactions, which can be synergistic or antagonistic, both in vitro and in vivo, are addressed with a focus on the quorum-sensing molecules produced, the response of the immune system, and the impact on clinical outcome.
Collapse
Affiliation(s)
- Filomena Nogueira
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Shirin Sharghi
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Karl Kuchler
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Thomas Lion
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Department of Pediatrics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
23
|
Mosaddad SA, Tahmasebi E, Yazdanian A, Rezvani MB, Seifalian A, Yazdanian M, Tebyanian H. Oral microbial biofilms: an update. Eur J Clin Microbiol Infect Dis 2019; 38:2005-2019. [PMID: 31372904 DOI: 10.1007/s10096-019-03641-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/14/2019] [Indexed: 01/20/2023]
Abstract
Human oral cavity (mouth) hosts a complex microbiome consisting of bacteria, archaea, protozoa, fungi and viruses. These bacteria are responsible for two common diseases of the human mouth including periodontal (gum) and dental caries (tooth decay). Dental caries is caused by plaques, which are a community of microorganisms in biofilm format. Genetic and peripheral factors lead to variations in the oral microbiome. It has known that, in commensalism and coexistence between microorganisms and the host, homeostasis in the oral microbiome is preserved. Nonetheless, under some conditions, a parasitic relationship dominates the existing situation and the rise of cariogenic microorganisms results in dental caries. Utilizing advanced molecular biology techniques, new cariogenic microorganisms species have been discovered. The oral microbiome of each person is quite distinct. Consequently, commonly taken measures for disease prevention cannot be exactly the same for other individuals. The chance for developing tooth decay in individuals is dependent on factors such as immune system and oral microbiome which itself is affected by the environmental and genetic determinants. Early detection of dental caries, assessment of risk factors and designing personalized measure let dentists control the disease and obtain desired results. It is necessary for a dentist to consider dental caries as a result of a biological process to be targeted than treating the consequences of decay cavities. In this research, we critically review the literature and discuss the role of microbial biofilms in dental caries.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Center, London, UK
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Klebsiella pneumoniae prevents spore germination and hyphal development of Aspergillus species. Sci Rep 2019; 9:218. [PMID: 30659217 PMCID: PMC6338788 DOI: 10.1038/s41598-018-36524-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Different bacteria and fungi live as commensal organisms as part of the human microbiota, but shifts to a pathogenic state potentially leading to septic infections commonly occur in immunocompromised individuals. Several studies have reported synergistic or antagonistic interactions between individual bacteria and fungi which might be of clinical relevance. Here, we present first evidence for the interaction between Klebsiella pneumoniae and several Aspergillus species including A. fumigatus, A. terreus, A. niger and A. flavus which cohabit in the lungs and the intestines. Microbiological and molecular methods were employed to investigate the interaction in vitro, and the results indicate that Klebsiella pneumoniae is able to prevent Aspergillus spp. spore germination and hyphal development. The inhibitory effect is reversible, as demonstrated by growth recovery of Aspergillus spp. upon inhibition or elimination of the bacteria, and is apparently dependent on the physical interaction with metabolically active bacteria. Molecular analysis of Klebsiella-Aspergillus interaction has shown upregulation of Aspergillus cell wall-related genes and downregulation of hyphae-related genes, suggesting that Klebsiella induces cell wall stress response mechanisms and suppresses filamentous growth. Characterization of polymicrobial interactions may provide the basis for improved clinical management of mixed infections by setting the stage for appropriate diagnostics and ultimately for optimized treatment strategies.
Collapse
|
25
|
Montelongo-Jauregui D, Lopez-Ribot JL. Candida Interactions with the Oral Bacterial Microbiota. J Fungi (Basel) 2018; 4:jof4040122. [PMID: 30400279 PMCID: PMC6308928 DOI: 10.3390/jof4040122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
The human oral cavity is normally colonized by a wide range of microorganisms, including bacteria, fungi, Archaea, viruses, and protozoa. Within the different oral microenvironments these organisms are often found as part of highly organized microbial communities termed biofilms, which display consortial behavior. Formation and maintenance of these biofilms are highly dependent on the direct interactions between the different members of the microbiota, as well as on the released factors that influence the surrounding microbial populations. These complex biofilm dynamics influence oral health and disease. In the latest years there has been an increased recognition of the important role that interkingdom interactions, in particular those between fungi and bacteria, play within the oral cavity. Candida spp., and in particular C. albicans, are among the most important fungi colonizing the oral cavity of humans and have been found to participate in these complex microbial oral biofilms. C. albicans has been reported to interact with individual members of the oral bacterial microbiota, leading to either synergistic or antagonistic relationships. In this review we describe some of the better characterized interactions between Candida spp. and oral bacteria.
Collapse
Affiliation(s)
- Daniel Montelongo-Jauregui
- Department of Biology, South Texas Center for Emerging Infections Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Jose L Lopez-Ribot
- Department of Biology, South Texas Center for Emerging Infections Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
26
|
Karkowska-Kuleta J, Bartnicka D, Zawrotniak M, Zielinska G, Kieronska A, Bochenska O, Ciaston I, Koziel J, Potempa J, Baster Z, Rajfur Z, Rapala-Kozik M. The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen Porphyromonas gingivalis and opportunistic fungus Candida albicans. Pathog Dis 2018; 76:4969680. [PMID: 29668945 DOI: 10.1093/femspd/fty033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis, an anaerobic Gram-negative bacterium critically involved in the development of human periodontitis, belongs to the late colonizers of the oral cavity. The success of this pathogen in the host colonization and infection results from the presence of several virulence factors, including extracellular peptidylarginine deiminase (PPAD), an enzyme that converts protein arginine residues to citrullines. A common opportunistic fungal pathogen of humans, Candida albicans, is also frequently identified among microorganisms that reside at subgingival sites. The aim of the current work was to verify if protein citrullination can influence the formation of mixed biofilms by both microorganisms under hypoxic and normoxic conditions. Quantitative estimations of the bacterial adhesion to fungal cells demonstrated the importance of PPAD activity in this process, since the level of binding of P. gingivalis mutant strain deprived of PPAD was significantly lower than that observed for the wild-type strain. These results were consistent with mass spectrometric detection of the citrullination of selected surface-exposed C. albicans proteins. Furthermore, a viability of P. gingivalis cells under normoxia increased in the presence of fungal biofilm compared with the bacteria that formed single-species biofilm. These findings suggest a possible protection of these strict anaerobes under unfavorable aerobic conditions by C. albicans during mixed biofilm formation.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Anna Kieronska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|