1
|
Gerling M, von der Waydbrink G, Verch G, Büttner C, Müller MEH. Between Habitats: Transfer of Phytopathogenic Fungi along Transition Zones from Kettle Hole Edges to Wheat Ears. J Fungi (Basel) 2023; 9:938. [PMID: 37755047 PMCID: PMC10532505 DOI: 10.3390/jof9090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Kettle holes are able to increase the soil and air humidity around them. Therefore, they create a perfect habitat for phytopathogenic fungi of the genera Fusarium and Alternaria to develop, sporulate, and immigrate into neighboring agricultural fields. In our study, we establish transects from the edges of different kettle holes and field edges up to 50 m into the fields to analyze the abundance and diversity of pathogenic fungi in these transition zones by culture-dependent and culture-independent methods. However, in 2019 and 2020, low precipitation and higher temperatures compared to the long-time average were measured, which led to limited infections of weeds in the transition zones with Fusarium and Alternaria. Therefore, the hypothesized significantly higher infection of wheat plants next to the kettle holes by a strong spread of fungal spores was not detected. Infestation patterns of Fusarium and Alternaria fungi on weeds and wheat ears were spatially different. In total, 9 different Fusarium species were found in the transition zone. The species diversity at kettle holes differed from 0 to 6 species. The trend toward increased dryness in the northeast German agricultural landscape and its impact on the changing severity of fungal infections is discussed.
Collapse
Affiliation(s)
- Marina Gerling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Grit von der Waydbrink
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| |
Collapse
|
2
|
Huang S, Zha X, Fu G. Affecting Factors of Plant Phyllosphere Microbial Community and Their Responses to Climatic Warming-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2891. [PMID: 37631103 PMCID: PMC10458011 DOI: 10.3390/plants12162891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Phyllosphere microorganisms are not only an important part of plants, but also an important part of microorganisms. In this review, the function of phyllosphere microorganisms, the assembly mechanism of phyllosphere microorganisms, the driving factors of phyllosphere microbial community structure, and the effects of climate warming on phyllosphere microbial community structure were reviewed. Generally, phyllosphere microorganisms have a variety of functions (e.g., fixing nitrogen, promoting plant growth). Although selection and dispersal processes together regulate the assembly of phyllospheric microbial communities, which one of the ecological processes is dominant and how external disturbances alter the relative contributions of each ecological process remains controversial. Abiotic factors (e.g., climatic conditions, geographical location and physical and chemical properties of soil) and biological factors (e.g., phyllosphere morphological structure, physiological and biochemical characteristics, and plant species and varieties) can affect phyllosphere microbial community structure. However, the predominant factors affecting phyllosphere microbial community structure are controversial. Moreover, how climate warming affects the phyllosphere microbial community structure and its driving mechanism have not been fully resolved, and further relevant studies are needed.
Collapse
Affiliation(s)
- Shaolin Huang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
| | - Xinjie Zha
- Xi’an University of Finance and Economics, Xi’an 710100, China;
| | - Gang Fu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
3
|
Apangu GP, Frisk CA, Adams-Groom B, Petch GM, Hanson M, Skjøth CA. Using qPCR and microscopy to assess the impact of harvesting and weather conditions on the relationship between Alternaria alternata and Alternaria spp. spores in rural and urban atmospheres. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02480-w. [PMID: 37191729 DOI: 10.1007/s00484-023-02480-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
Alternaria is a plant pathogen and human allergen. Alternaria alternata is one of the most abundant fungal spores in the air. The purpose of this study was to examine whether Alternaria spp. spore concentrations can be used to predict the abundance and spatio-temporal pattern of A. alternata spores in the air. This was investigated by testing the hypothesis that A. alternata dominates airborne Alternaria spp. spores and varies spatio-temporally. Secondarily, we aimed at investigating the relationship between airborne Alternaria spp. spores and the DNA profile of A. alternata spores between two proximate (~ 7 km apart) sites. These were examined by sampling Alternaria spp. spores using Burkard 7-day and cyclone samplers for the period 2016-2018 at Worcester and Lakeside campuses of the University of Worcester, UK. Daily Alternaria spp. spores from the Burkard traps were identified using optical microscopy whilst A. alternata from the cyclone samples was detected and quantified using quantitative polymerase chain reaction (qPCR). The results showed that either A. alternata or other Alternaria species spores dominate the airborne Alternaria spore concentrations, generally depending on weather conditions. Furthermore, although Alternaria spp. spore concentrations were similar for the two proximate sites, A. alternata spore concentrations significantly varied for those sites and it is highly likely that the airborne samples contained large amounts of small fragments of A. alternata. Overall, the study shows that there is a higher abundance of airborne Alternaria allergen than reported by aerobiological networks and the majority is likely to be from spore and hyphal fragments.
Collapse
Affiliation(s)
- Godfrey Philliam Apangu
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, UK.
- Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Carl Alexander Frisk
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, UK
- Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Beverley Adams-Groom
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, UK
| | - Geoffrey M Petch
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, UK
| | - Mary Hanson
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, UK
- Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Carsten Ambelas Skjøth
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, UK
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
4
|
Jaster-Keller J, Müller MEH, El-Khatib AH, Lorenz N, Bahlmann A, Mülow-Stollin U, Bunzel M, Scheibenzuber S, Rychlik M, von der Waydbrink G, Weigel S. Root uptake and metabolization of Alternaria toxins by winter wheat plants using a hydroponic system. Mycotoxin Res 2023; 39:109-126. [PMID: 36929507 PMCID: PMC10181980 DOI: 10.1007/s12550-023-00477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Fungi of the genus Alternaria are ubiquitous in the environment. Their mycotoxins can leach out of contaminated plants or crop debris into the soil entering the plant via the roots. We aim to evaluate the importance of this entry pathway and its contribution to the overall content of Alternaria toxins (ATs) in wheat plants to better understand the soil-plant-phytopathogen system. A hydroponic cultivation system was established and wheat plants were cultivated for up to two weeks under optimal climate conditions. One half of the plants was treated with a nutrient solution spiked with alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA), whereas the other half of the plants was cultivated without mycotoxins. Plants were harvested after 1 and 2 weeks and analyzed using a QuEChERS-based extraction and an in-house validated LC-MS/MS method for quantification of the ATs in roots, crowns, and leaves separately. ATs were taken up by the roots and transported throughout the plant up to the leaves after 1 as well as 2 weeks of cultivation with the roots showing the highest ATs levels followed by the crowns and the leaves. In addition, numerous AOH and AME conjugates like glucosides, malonyl glucosides, sulfates, and di/trihexosides were detected in different plant compartments and identified by high-resolution mass spectrometry. This is the first study demonstrating the uptake of ATs in vivo using a hydroponic system and whole wheat plants examining both the distribution of ATs within the plant compartments and the modification of ATs by the wheat plants.
Collapse
Affiliation(s)
- Julia Jaster-Keller
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
| | - Marina E H Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Ahmed H El-Khatib
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany.
| | - Nicole Lorenz
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
| | - Arnold Bahlmann
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
| | - Ulrike Mülow-Stollin
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
- Current address: German Federal Office of Consumer Protection and Food Safety, Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), South Campus, Adenauerring 20 A, Karlsruhe, Germany
| | - Sophie Scheibenzuber
- Chair of Analytical Food Chemistry, Department of Life Science Engineering, Technical University of Munich (TUM), Maximus-von-Imhof Forum 2, 85354, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Department of Life Science Engineering, Technical University of Munich (TUM), Maximus-von-Imhof Forum 2, 85354, Freising, Germany
| | - Grit von der Waydbrink
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Stefan Weigel
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
| |
Collapse
|
5
|
Hoffmann A, Posirca AR, Lewin S, Verch G, Büttner C, Müller MEH. Environmental Filtering Drives Fungal Phyllosphere Community in Regional Agricultural Landscapes. PLANTS (BASEL, SWITZERLAND) 2023; 12:507. [PMID: 36771591 PMCID: PMC9919219 DOI: 10.3390/plants12030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
To adapt to climate change, several agricultural strategies are currently being explored, including a shift in land use areas. Regional differences in microbiome composition and associated phytopathogens need to be considered. However, most empirical studies on differences in the crop microbiome focused on soil communities, with insufficient attention to the phyllosphere. In this study, we focused on wheat ears in three regions in northeastern Germany (Magdeburger Börde (MBB), Müncheberger Sander (MSA), Uckermärkisches Hügelland (UKH)) with different yield potentials, soil, and climatic conditions. To gain insight into the fungal community at different sites, we used a metabarcoding approach (ITS-NGS). Further, we examined the diversity and abundance of Fusarium and Alternaria using culture-dependent and culture-independent techniques. For each region, the prevalence of different orders rich in phytopathogenic fungi was determined: Sporidiobolales in MBB, Capnodiales and Pleosporales in MSA, and Hypocreales in UKH were identified as taxonomic biomarkers. Additionally, F. graminearum was found predominantly in UKH, whereas F. poae was more abundant in the other two regions. Environmental filters seem to be strong drivers of these differences, but we also discuss the possible effects of dispersal and interaction filters. Our results can guide shifting cultivation regions to be selected in the future concerning their phytopathogenic infection potential.
Collapse
Affiliation(s)
- Annika Hoffmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Alexandra-Raluca Posirca
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- State Office for Rural Development, Agriculture and Land Reorganization (LELF) Brandenburg, Division P, 15236 Frankfurt (Oder), Germany
| | - Simon Lewin
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Carmen Büttner
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
6
|
Puvača N, Avantaggiato G, Merkuri J, Vuković G, Bursić V, Cara M. Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins (Basel) 2022; 14:791. [PMID: 36422965 PMCID: PMC9695878 DOI: 10.3390/toxins14110791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The Alternaria mycotoxins such as alternariol (AOH), alternariol monomethyl ether (AME), and tentoxin (TEN) are mycotoxins, which can contaminate cereal-based raw materials. Today, wheat is one of the most important crops in temperate zones, and it is in increasing demand in the Western Balkans countries that are urbanizing and industrializing. This research aimed to investigate the occurrence and determine the concentration of Alternaria mycotoxins AOH, AME, and TEN in wheat samples from the Republic of Serbia and the Republic of Albania, harvested in the year 2020 in the period between 15 June and 15 July. A total of 80 wheat grain samples, 40 from each country, were analyzed by an QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. From the obtained results, it can be seen that the mean concentration of AOH was 3.3 µg/kg and AME was 2.2 µg/kg in wheat samples from Serbia, while TEN from both Serbia and Albania was under the limit of quantification (
Collapse
Affiliation(s)
- Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy
| | - Jordan Merkuri
- Department of Plant Protection, Faculty of Agriculture and Environment, Agricultural University of Tirana, Koder Kamez, 1029 Tirana, Albania
| | - Gorica Vuković
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade-Zemun, Serbia
| | - Vojislava Bursić
- Department for Phytomedicine and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Magdalena Cara
- Department of Plant Protection, Faculty of Agriculture and Environment, Agricultural University of Tirana, Koder Kamez, 1029 Tirana, Albania
| |
Collapse
|
7
|
Karlsson I, Mellqvist E, Persson P. Temporal and spatial dynamics of Fusarium spp. and mycotoxins in Swedish cereals during 16 years. Mycotoxin Res 2022; 39:3-18. [PMID: 36279098 PMCID: PMC10156870 DOI: 10.1007/s12550-022-00469-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
AbstractWe analysed the dynamics of Fusarium spp. and mycotoxin contamination in Swedish cereals during 2004–2018. More than 1400 cereal samples from field trials were included, collected in a monitoring programme run by the Swedish Board of Agriculture. Five Fusarium mycotoxins were quantified with LC-MS/MS and fungal DNA from four species was quantified using quantitative real-time PCR. Correlation analyses revealed that deoxynivalenol (DON) and zearalenone (ZEN) were mainly associated with Fusarium graminearum, but stronger correlations with F. culmorum was seen some years. Nivalenol (NIV) was associated with F. poae and the HT-2 and T-2 toxins with F. langsethiae. Clear differences in mycotoxin contamination between different cereal crops and geographical regions were identified. The highest levels of DON and ZEN were found in spring wheat in Western Sweden. For NIV, HT-2 and T-2 toxins, the levels were highest in spring oats and spring barley. Regional differences were not detected for NIV, while HT-2 and T-2 toxins were associated with the northernmost region. We found that delayed harvest was strongly associated with increased levels of DON and ZEN in several crops. However, harvest date did not influence the levels of NIV or HT-2 and T-2 toxins. Our results suggest similar distribution patterns of DON and ZEN, in contrast to NIV and HT-2 and T-2 toxins, probably mirroring the differences in the ecology of the toxin-producing Fusarium species. Timely harvest is important to reduce the risk of DON and ZEN contamination, especially for fields with other risk factors.
Collapse
|
8
|
Pilo P, Lawless C, Tiley AMM, Karki SJ, Burke JI, Feechan A. Comparison of microscopic and metagenomic approaches to identify cereal pathogens and track fungal spore release in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:1039090. [PMID: 36340419 PMCID: PMC9630935 DOI: 10.3389/fpls.2022.1039090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the main staple food crops, and 775 million tonnes of wheat were produced worldwide in 2022. Fungal diseases such as Fusarium head blight, Septoria tritici blotch, spot blotch, tan spot, stripe rust, leaf rust, and powdery mildew cause serious yield losses in wheat and can impact quality. We aimed to investigate the incidence of spores from major fungal pathogens of cereals in the field by comparing microscopic and metagenomic based approaches for spore identification. Spore traps were set up in four geographically distinct UK wheat fields (Carnoustie, Angus; Bishop Burton, Yorkshire; Swindon, Wiltshire; and Lenham, Kent). Six major cereal fungal pathogen genera (Alternaria spp., Blumeria graminis, Cladosporium spp., Fusarium spp., Puccinia spp., and Zymoseptoria spp.) were found using these techniques at all sites. Using metagenomic and BLAST analysis, 150 cereal pathogen species (33 different genera) were recorded on the spore trap tapes. The metagenomic BLAST analysis showed a higher accuracy in terms of species-specific identification than the taxonomic tool software Kraken2 or microscopic analysis. Microscopic data from the spore traps was subsequently correlated with weather data to examine the conditions which promote ascospore release of Fusarium spp. and Zymoseptoria spp. This revealed that Zymoseptoria spp. and Fusarium spp. ascospore release show a positive correlation with relative humidity (%RH). Whereas air temperature (°C) negatively affects Zymoseptoria spp. ascospore release.
Collapse
Affiliation(s)
- Paola Pilo
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
| | - Colleen Lawless
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
| | - Anna M. M. Tiley
- Department of Agriculture, Food and the Marine, Celbridge, Ireland
| | - Sujit J. Karki
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
| | - James I. Burke
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
| | - Angela Feechan
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Ireland
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Alukumbura AS, Bigi A, Sarrocco S, Fernando WGD, Vannacci G, Mazzoncini M, Bakker MG. Minimal impacts on the wheat microbiome when Trichoderma gamsii T6085 is applied as a biocontrol agent to manage fusarium head blight disease. Front Microbiol 2022; 13:972016. [PMID: 36212885 PMCID: PMC9539683 DOI: 10.3389/fmicb.2022.972016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Fusarium head blight (FHB) is a major fungal disease that causes severe yield and quality loss in wheat. Biological control can be integrated with other management strategies to control FHB. For this purpose, Trichoderma gamsii strain T6085 is a potential biocontrol agent to limit the infection of F. graminearum and F. culmorum in wheat. However, the possible impacts of T. gamsii T6085 on the broader microbiome associated with the wheat plant are not currently understood. Therefore, we identified bacteria and fungi associated with different wheat tissues, including assessment of their relative abundances and dynamics in response to the application of T6085 and over time, using amplicon sequencing. Residues of the prior year’s wheat crop and the current year’s wheat spikes were collected at multiple time points, and kernel samples were collected at harvest. DNA was extracted from the collected wheat tissues, and amplicon sequencing was performed to profile microbiomes using 16S v4 rRNA amplicons for bacteria and ITS2 amplicons for fungi. Quantitative PCR was performed to evaluate the absolute abundances of F. graminearum and T. gamsii in different wheat tissues. Disease progression was tracked visually during the growing season, revealing that FHB severity and incidence were significantly reduced when T6085 was applied to wheat spikes at anthesis. However, treatment with T6085 did not lessen the F. graminearum abundance in wheat spikes or kernels. There were substantial changes in F. graminearum abundance over time; in crop residue, pathogen abundance was highest at the initial time point and declined over time, while in wheat spikes, pathogen abundance increased significantly over time. The predominant bacterial taxa in wheat spikes and kernels were Pseudomonas, Enterobacter, and Pantoea, while Alternaria and Fusarium were the dominant fungal groups. Although the microbiome structure changed substantially over time, there were no community-scale rearrangements due to the T6085 treatment. The work suggests several other taxa that could be explored as potential biocontrol agents to integrate with T6085 treatment. However, the timing and the type of T6085 application need to be improved to give more advantages for T6085 to colonize and reduce the F. graminearum inoculum in the field.
Collapse
Affiliation(s)
| | - Alessandro Bigi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- *Correspondence: Sabrina Sarrocco,
| | - W. G. Dilantha Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- W. G. Dilantha Fernando,
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marco Mazzoncini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Center of Agro-Environmental Research “Enrico Avanzi,” University of Pisa, Pisa, Italy
| | - Matthew G. Bakker
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
- Matthew G. Bakker,
| |
Collapse
|
10
|
Schiro G, Chen Y, Blankinship JC, Barberán A. Ride the dust: Linking dust dispersal and spatial distribution of microorganisms across an arid landscape. Environ Microbiol 2022; 24:4094-4107. [PMID: 35384241 DOI: 10.1111/1462-2920.15998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
In arid ecosystems, where the soil is directly exposed to the action of the wind due to sparse vegetation, dust aerosolization is a consequence of soil degradation and concomitantly, a major vector of microbial dispersal. Disturbances such as livestock grazing or fire can exacerbate wind erosion and dust production. Here, we sampled surface soils in 29 locations across an arid landscape in southwestern USA and characterized their prokaryotic and fungal communities. At four of these locations, we also sampled potential fugitive dust. By comparing the composition of soil and dust samples, we determined the role of dust dispersal in structuring the biogeography of soil microorganisms across the landscape. For Bacteria/Archaea, we found dust associated taxa to have on average, higher regional occupancies compared to soil associated taxa. Complementarily, we found dust samples to harbor a higher amount of widely distributed taxa compared to soil samples. Overall, our study shows how dust dispersal plays a role in the spatial distribution of soil Bacteria/Archaea, but not soil Fungi, and might inform indicators of soil health and stability in arid ecosystems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gabriele Schiro
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Joseph C Blankinship
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
11
|
Morphological and Molecular Identification of Plant Pathogenic Fungi Associated with Dirty Panicle Disease in Coconuts (Cocos nucifera) in Thailand. J Fungi (Basel) 2022; 8:jof8040335. [PMID: 35448566 PMCID: PMC9029170 DOI: 10.3390/jof8040335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Dirty panicle disease in coconuts (Cocos nucifera) was first observed in the KU-BEDO Coconut BioBank, Nakhon Pathom province, Thailand. The occurrence of the disease covers more than 30% of the total coconut plantation area. The symptoms include small brown to dark brown spots and discoloration of male flowers. Herein, three fungal strains were isolated from infected samples. Based on the morphological characteristics the fungal isolates, they were classified into two genera, namely, Alternaria (Al01) and Fusarium (FUO01 and FUP01). DNA sequences of internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-α (tef1-α), and RNA polymerase II second largest subunit (rpb2) revealed Al01 as Alternaria burnsii, whereas DNA sequences of ITS, rpb2, and tef1-α identified FUO01 and FUP01 as Fusarium clavum and F. tricinctum, respectively. A pathogenicity test by the agar plug method demonstrated that these pathogens cause dirty panicle disease similar to that observed in natural infections. To the best of our knowledge, this is the first report on the novel dirty panicle disease in coconuts in Thailand or elsewhere, demonstrating that it is associated with the plant pathogenic fungi A. burnsii, F. clavum, and F. tricinctum.
Collapse
|
12
|
Castañares E, da Cruz Cabral L, Dinolfo MI, Andersen B, Stenglein SA, Patriarca A. Alternaria in malting barley: Characterization and distribution in relation with climatic conditions and barley cultivars. Int J Food Microbiol 2021; 357:109367. [PMID: 34482184 DOI: 10.1016/j.ijfoodmicro.2021.109367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Alternaria is one of the main fungal genera affecting the quality of barley grains. In this study, a polyphasic approach was carried out to characterise the Alternaria population infecting different cultivars of barley grains from the major producing regions of Argentina in the 2014 and 2015 seasons. Its relationship with Fusarium and correlations between predominant species, barley cultivars, and climatic conditions in the growing regions were evaluated. Alternaria incidence exceeded that of Fusarium in all the barley samples and was higher in the drier season (21% in 2014 and 42% in 2015 vs. 6% and 4%, respectively). The main Alternaria species-groups identified were present in both growing seasons in similar frequencies (A. tenuissima sp.-grp., 83.4% in 2014 and 81.7% in 2015; A. infectoria sp.-grp., 11.7% in 2014 and 11.3% in 2015). The dominant Alternaria species-group isolated and identified based on morphological characteristics, DNA sequencing, and metabolite profile was A. tenuissima (72.9%), followed by A. infectoria (14.6%). An association between their frequency and field temperature was observed; A. tenuissima sp.-grp. was more frequent in northern localities, where higher temperatures were registered, while the opposite was observed for A. infectoria sp.-grp. A smaller percentage of A. arborescens sp.-grp. (5%), A. alternata sp.-grp. (3.9%) and A. vaccinii (1.4%) were also identified. Both secondary metabolite profiles and phylogenetic analysis were useful to distinguish isolates from Alternaria section Alternaria and section Infectoriae. Regarding metabolite profiles, alternariol was the most frequent compound produced by isolates of the section Alternaria. Infectopyrones and novae-zelandins were produced by most of the isolates from section Infectoriae. The barley cultivars analysed in this study did not show a particular susceptibility regarding the Alternaria population composition, except for Andreia, which presented the highest frequency of contamination with A. tenuissima sp.-grp. The rest of the cultivars, when grown in different regions, showed different proportion of the Alternaria sp.-grps., suggesting that other factors were determinant in their distribution. The results obtained in the present study will be a valuable tool for health authorities to assess the need for regulations on Alternaria mycotoxins, given the high incidence of Alternaria spp. in barley and the diversity of metabolites that might contaminate the grains.
Collapse
Affiliation(s)
- Eliana Castañares
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul 7300, Buenos Aires, Argentina
| | - Lucía da Cruz Cabral
- CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria I Dinolfo
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul 7300, Buenos Aires, Argentina
| | - Birgitte Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sebastián A Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul 7300, Buenos Aires, Argentina
| | - Andrea Patriarca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Laboratorio de Microbiología de Alimentos, CONICET, Instituto de Micología y Botánica (INMIBO), Buenos Aires, Argentina.
| |
Collapse
|
13
|
Quantifying the Role of Ground Beetles for the Dispersal of Fusarium and Alternaria Fungi in Agricultural Landscapes. J Fungi (Basel) 2021; 7:jof7100863. [PMID: 34682284 PMCID: PMC8537540 DOI: 10.3390/jof7100863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
The spread by arthropods (zoochory) is an essential dispersal mechanism for many microorganisms, like plant pathogens. Carabid beetles are very abundant and mobile ground-dwelling insects. However, their role in the dispersal of economically relevant phytopathogens, like Fusarium and Alternaria fungi is basically unknown. We quantified the total fungal, Fusarium, and Alternaria load of carabid species collected in the transition zones between small water bodies and wheat fields by screening (i) their body surface for fungal propagules with a culture-dependent method and (ii) their entire bodies for fungal DNA with a qPCR approach. The analysis of entire bodies detects fungal DNA in all carabid beetles but Alternaria DNA in 98% of them. We found that 74% of the carabids carried fungal propagules on the body surface, of which only half (49%) carried Fusarium propagules. We identified eight Fusarium and four Alternaria species on the body surface; F. culmorum was dominant. The fungal, Fusarium and Alternaria, load differed significantly between the carabid species and was positively affected by the body size and weight of the carabids. Carabid beetles reveal a remarkable potential to disseminate different fungi. Dispersal by ground-dwelling arthropods could affect the spatial-temporal patterns of plant disease and microorganisms in general.
Collapse
|
14
|
Raatz L, Pirhofer Walzl K, Müller MEH, Scherber C, Joshi J. Who is the culprit: Is pest infestation responsible for crop yield losses close to semi-natural habitats? Ecol Evol 2021; 11:13232-13246. [PMID: 34646465 PMCID: PMC8495789 DOI: 10.1002/ece3.8046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Semi-natural habitats (SNHs) are becoming increasingly scarce in modern agricultural landscapes. This may reduce natural ecosystem services such as pest control with its putatively positive effect on crop production. In agreement with other studies, we recently reported wheat yield reductions at field borders which were linked to the type of SNH and the distance to the border. In this experimental landscape-wide study, we asked whether these yield losses have a biotic origin while analyzing fungal seed and fungal leaf pathogens, herbivory of cereal leaf beetles, and weed cover as hypothesized mediators between SNHs and yield. We established experimental winter wheat plots of a single variety within conventionally managed wheat fields at fixed distances either to a hedgerow or to an in-field kettle hole. For each plot, we recorded the fungal infection rate on seeds, fungal infection and herbivory rates on leaves, and weed cover. Using several generalized linear mixed-effects models as well as a structural equation model, we tested the effects of SNHs at a field scale (SNH type and distance to SNH) and at a landscape scale (percentage and diversity of SNHs within a 1000-m radius). In the dry year of 2016, we detected one putative biotic culprit: Weed cover was negatively associated with yield values at a 1-m and 5-m distance from the field border with a SNH. None of the fungal and insect pests, however, significantly affected yield, neither solely nor depending on type of or distance to a SNH. However, the pest groups themselves responded differently to SNH at the field scale and at the landscape scale. Our findings highlight that crop losses at field borders may be caused by biotic culprits; however, their negative impact seems weak and is putatively reduced by conventional farming practices.
Collapse
Affiliation(s)
- Larissa Raatz
- Institute of Biochemistry and BiologyUniversität PotsdamUniversität PotsdamPotsdamGermany
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
| | - Karin Pirhofer Walzl
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
- Institute at Brown for Environment and SocietyBrown UniversityProvidenceRIUSA
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Christoph Scherber
- Zoological Research Museum Alexander Koenig (ZFMK)Centre for Biodiversity MonitoringBonnGermany
| | - Jasmin Joshi
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Institute for Landscape and Open SpaceEastern Switzerland University of Applied SciencesJona‐RapperswilSwitzerland
| |
Collapse
|
15
|
Orina AS, Gavrilova OP, Gogina NN, Gannibal PB, Gagkaeva TY. Natural Occurrence of Alternaria Fungi and Associated Mycotoxins in Small-Grain Cereals from The Urals and West Siberia Regions of Russia. Toxins (Basel) 2021; 13:toxins13100681. [PMID: 34678974 PMCID: PMC8538951 DOI: 10.3390/toxins13100681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/04/2023] Open
Abstract
Alternaria fungi dominate the grain microbiota in many regions of the world; therefore, the detection of species that are able to produce mycotoxins has received much attention. A total of 178 grain samples of wheat, barley and oat obtained from the Urals and West Siberia regions of Russia in 2017–2019 were included in the study. Grain contamination with Alternaria fungi belonging to sections Alternaria and Infectoriae was analysed using qPCR with specific primers. The occurrence of four mycotoxins produced by Alternaria, AOH, AME, TEN, and TeA, was defined by HPLC-MS/MS. Alternaria DNA was found in all analysed grain samples. The prevalence of DNA of Alternaria sect. Alternaria fungi (range 53 × 10−4–21,731 × 10−4 pg/ng) over the DNA of Alternaria sect. Infectoriae (range 11 × 10−4‒4237 × 10−4 pg/ng) in the grain samples was revealed. Sixty-two percent of grain samples were contaminated by at least two Alternaria mycotoxins. The combination of TEN and TeA was found most often. Eight percent of grain samples were contaminated by all four mycotoxins, and only 3% of samples were free from the analysed secondary toxic metabolites. The amounts varied in a range of 2–53 µg/kg for AOH, 3–56 µg/kg for AME, 3–131 µg/kg for TEN and 9–15,000 µg/kg for TeA. To our knowledge, a new global maximum level of natural contamination of wheat grain with TeA was detected. A positive correlation between the amount of DNA from Alternaria sect. Alternaria and TeA was observed. The significant effects of cereal species and geographic origin of samples on the amounts of DNA and mycotoxins of Alternaria spp. in grain were revealed. Barley was the most heavily contaminated with fungi belonging to both sections. The content of AOH in oat grain was, on average, higher than that found in wheat and barley. The content of TEN in the grain of barley was lower than that in wheat and similar to that in oat. The content of TeA did not depend on the cereal crop. The effect of weather conditions (summer temperature and rainfall) on the final fungal and mycotoxin contamination of grain was discussed. The frequent co-occurrence of different Alternaria fungi and their mycotoxins in grain indicates the need for further studies investigating this issue.
Collapse
Affiliation(s)
- Aleksandra S. Orina
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, 196608 St. Petersburg, Russia; (O.P.G.); (P.B.G.); (T.Y.G.)
- Correspondence: ; Tel.: +7-812-333-3764
| | - Olga P. Gavrilova
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, 196608 St. Petersburg, Russia; (O.P.G.); (P.B.G.); (T.Y.G.)
| | - Nadezhda N. Gogina
- Laboratory of Biochemical Analysis, All-Russian Scientific Research and Technological Institute of Poultry, 141311 Sergiev Posad, Russia;
| | - Philipp B. Gannibal
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, 196608 St. Petersburg, Russia; (O.P.G.); (P.B.G.); (T.Y.G.)
| | - Tatiana Yu. Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, 196608 St. Petersburg, Russia; (O.P.G.); (P.B.G.); (T.Y.G.)
| |
Collapse
|
16
|
Karlsson I, Persson P, Friberg H. Fusarium Head Blight From a Microbiome Perspective. Front Microbiol 2021; 12:628373. [PMID: 33732223 PMCID: PMC7956947 DOI: 10.3389/fmicb.2021.628373] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
The fungal genus Fusarium causes several diseases in cereals, including Fusarium head blight (FHB). A number of Fusarium species are involved in disease development and mycotoxin contamination. Lately, the importance of interactions between plant pathogens and the plant microbiome has been increasingly recognized. In this review, we address the significance of the cereal microbiome for the development of Fusarium-related diseases. Fusarium fungi may interact with the host microbiome at multiple stages during their life cycles and in different plant organs including roots, stems, leaves, heads, and crop residues. There are interactions between Fusarium and other fungi and bacteria as well as among Fusarium species. Recent studies have provided a map of the cereal microbiome and revealed how different biotic and abiotic factors drive microbiome assembly. This review synthesizes the current understanding of the cereal microbiome and the implications for Fusarium infection, FHB development, disease control, and mycotoxin contamination. Although annual and regional variations in predominant species are significant, much research has focused on Fusarium graminearum. Surveying the total Fusarium community in environmental samples is now facilitated with novel metabarcoding methods. Further, infection with multiple Fusarium species has been shown to affect disease severity and mycotoxin contamination. A better mechanistic understanding of such multiple infections is necessary to be able to predict the outcome in terms of disease development and mycotoxin production. The knowledge on the composition of the cereal microbiome under different environmental and agricultural conditions is growing. Future studies are needed to clearly link microbiome structure to Fusarium suppression in order to develop novel disease management strategies for example based on conservation biological control approaches.
Collapse
Affiliation(s)
- Ida Karlsson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paula Persson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Friberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Matić S, Tabone G, Garibaldi A, Gullino ML. Alternaria Leaf Spot Caused by Alternaria Species: An Emerging Problem on Ornamental Plants in Italy. PLANT DISEASE 2020; 104:2275-2287. [PMID: 32584157 DOI: 10.1094/pdis-02-20-0399-re] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Serious outbreaks of Alternaria leaf spot and plant decay have recently been recorded on several ornamental plants in the Biella Province (Northern Italy). Twenty-two fungal isolates were obtained from Alternaria infected plant tissues from 13 ornamental hosts. All the isolates were identified morphologically as small-spored Alternaria species. Multilocus sequence typing, carried out by means of ITS, rpb2, tef1, endoPG, Alt a 1, and OPA10-2, assigned 19 isolates as Alternaria alternata, two isolates as belonging to the Alternaria arborescens species complex, and one isolate as an unknown Alternaria sp. Haplotype analyses of ornamental and reference A. alternata isolates from 12 countries identified 14 OPA10-2 and 11 endoPG haplotypes showing a relatively high haplotype diversity. A lack of host specialization or geographic distribution was observed. The host range of the studied A. alternata isolates expanded in cross-pathogenicity assays, and more aggressiveness was frequently observed on the experimental plants than on the host plants from which the fungal isolates were originally isolated. High disease severity, population expansion, intraspecies diversity, and increased range of experimental hosts were seen in the emergence of Alternaria disease on ornamentals. More epidemiological and molecular studies should be performed to better understand these diseases, taking into consideration factors such as seed transmission and ongoing climate changes.
Collapse
Affiliation(s)
- Slavica Matić
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, 10095 Grugliasco (TO), Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, 10095 Grugliasco (TO), Italy
| | - Giulia Tabone
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, 10095 Grugliasco (TO), Italy
| | - Angelo Garibaldi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, 10095 Grugliasco (TO), Italy
| | - Maria Lodovica Gullino
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, 10095 Grugliasco (TO), Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, 10095 Grugliasco (TO), Italy
| |
Collapse
|
18
|
Müller T, Lentzsch P, Behrendt U, Barkusky D, Müller MEH. Pseudomonas simiae effects on the mycotoxin formation by fusaria and alternaria in vitro and in a wheat field. Mycotoxin Res 2019; 36:147-158. [PMID: 31755073 DOI: 10.1007/s12550-019-00379-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Fluorescent pseudomonads colonizing wheat ears have a high antagonistic potential against phytopathogenic fungi. To check this hypothesis, the bacterial antagonist Pseudomonas simiae 9 rif+/kan+ was spray-inoculated onto the ears of winter wheat in a locally demarcated experimental field plot. Fusarium and Alternaria fungi naturally occurring on the ears and the formation of their mycotoxins in the ripe grains were investigated. Inoculated bacteria were recovered from the plants in the inoculation cell, but not in the untreated neighboring plots or in the air above the plants. Growth of fusaria and alternaria on the ears was not influenced by the bacterial antagonist. Wheat kernels were co-inoculated in vitro with the antagonist and one mycotoxin-producing strain of Fusarium and Alternaria, respectively. Mycotoxin production was almost completely suppressed in these approaches. Concentrations of zearalenone, deoxynivalenol, alternariol, and tenuazonic acid were also significantly reduced in ripe grains in the field, but to a lesser extent than in vitro. The results of this and previous studies suggest that widespread biological control of the growth of fusaria and alternaria and their mycotoxin formation by naturally occurring pseudomonads with antagonistic activity is rather unlikely.
Collapse
Affiliation(s)
- Thomas Müller
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany.
| | - Peter Lentzsch
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Undine Behrendt
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Dietmar Barkusky
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Marina E H Müller
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| |
Collapse
|
19
|
Leveau JH. A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome. Curr Opin Microbiol 2019; 49:41-49. [PMID: 31707206 DOI: 10.1016/j.mib.2019.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023]
Abstract
The plant leaf surface, or phyllosphere, represents a unique and challenging microbial biome with a diverse and dynamic community of commensal, parasitic, and mutualistic agents of microscopic proportions. This mini-review offers a digest of recently published research dedicated to the study of phyllosphere microbiota, framed in the context of processes and outcomes of microbial community assembly, structure, and (inter)activity in the phyllosphere, with particular focus on the contributions of environment, plant, and microbe, and on the potential benefits of interrogating those contributions at finer resolutions.
Collapse
Affiliation(s)
- Johan Hj Leveau
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Schiro G, Colangeli P, Müller MEH. A Metabarcoding Analysis of the Mycobiome of Wheat Ears Across a Topographically Heterogeneous Field. Front Microbiol 2019; 10:2095. [PMID: 31552005 PMCID: PMC6746991 DOI: 10.3389/fmicb.2019.02095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Plant associated microbial communities have recently received a lot of attention because thought to play a fundamental role in plant health and development. Focusing on cultivated crops, optimized farming practices must consider the role of these communities when aiming at reducing the impact of pathogens and increasing yields. Typical inhabitants of plant’s phyllosphere are bacteria and microscopic fungi, some of them pathogenic for the plant and dangerous for the consumers, due to the production of toxins. In order to efficiently manage the microbiome, the natural drivers regulating community assembly must be clearly understood. In our study we investigated the within field variation of the phyllosphere mycobiome of wheat ears by metabarcoding of the fungal internal transcribed sequence 1 (ITS1). We selected a field characterized by a high topographic heterogeneity, which is reflected in differences in plant productivity and fitness across it. Samples were taken from 30 sampling points laid across the field where data-loggers were placed, measuring the productivity driven under canopy microclimate. The microclimatic conditions were tested as a source of potential environmental variance. Further independent spatial structures were tested using spatial eigenvector maps (MEMs). Results show considerable differences in the phyllosphere composition across the field. The local under canopy environmental conditions at each point were strong predictors of the community composition. Independent spatial effects given by the geographical position of the sampling points showed also a weaker but significant effect. Moreover we observed different spatial responses from different fungal phyla, with results resembling those described in studies done at a regional scale. This study is the first one to investigate the spatial variation of the phyllosphere mycobiome of a commercial crop within the same field. It contributes to the study of the epidemiology and community assembly dynamics of wheat phyllosphere fungi, showing how in-field community variations are the results of different environmental and spatial processes acting simultaneously. It also shows how heterogeneous fields are a smart and useful system to investigate the ecological mechanisms regulating plant microbiome composition.
Collapse
Affiliation(s)
- Gabriele Schiro
- Leibniz Centre for Agricultural Landscape Research, Research Area 1 "Landscape Functioning", Müncheberg, Germany
| | | | - Marina E H Müller
- Leibniz Centre for Agricultural Landscape Research, Research Area 1 "Landscape Functioning", Müncheberg, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
21
|
Schiro G, Müller T, Verch G, Sommerfeld T, Mauch T, Koch M, Grimm V, Müller MEH. The distribution of mycotoxins in a heterogeneous wheat field in relation to microclimate, fungal and bacterial abundance. J Appl Microbiol 2018; 126:177-190. [PMID: 30216614 DOI: 10.1111/jam.14104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
AIM To observe the variation in accumulation of Fusarium and Alternaria mycotoxins across a topographically heterogeneous field and tested biotic (fungal and bacterial abundance) and abiotic (microclimate) parameters as explanatory variables. METHODS AND RESULTS We selected a wheat field characterized by a diversified topography, to be responsible for variations in productivity and in canopy-driven microclimate. Fusarium and Alternaria mycotoxins where quantified in wheat ears at three sampling dates between flowering and harvest at 40 points. Tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), deoxynivalenol (DON), zearalenone (ZEN) and deoxynivalenol-3-Glucoside (DON.3G) were quantified. In canopy temperature, air and soil humidity were recorded for each point with data-loggers. Fusarium spp. as trichothecene producers, Alternaria spp. and fungal abundances were assessed using qPCR. Pseudomonas fluorescens bacteria were quantified with a culture based method. We only found DON, DON.3G, TeA and TEN to be ubiquitous across the whole field, while AME, AOH and ZEN were only occasionally detected. Fusarium was more abundant in spots with high soil humidity, while Alternaria in warmer and drier spots. Mycotoxins correlated differently to the observed explanatory variables: positive correlations between DON accumulation, tri 5 gene and Fusarium abundance were clearly detected. The correlations among the others observed variables, such as microclimatic conditions, varied among the sampling dates. The results of statistical model identification do not exclude that species coexistence could influence mycotoxin production. CONCLUSIONS Fusarium and Alternaria mycotoxins accumulation varies heavily across the field and the sampling dates, providing the realism of landscape-scale studies. Mycotoxin concentrations appear to be partially explained by biotic and abiotic variables. SIGNIFICANCE AND IMPACT OF THE STUDY We provide a useful experimental design and useful data for understanding the dynamics of mycotoxin biosynthesis in wheat.
Collapse
Affiliation(s)
- G Schiro
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - T Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - G Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - T Sommerfeld
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - T Mauch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - M Koch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - V Grimm
- Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - M E H Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|