1
|
Martinelli I, Mandrioli J, Ghezzi A, Zucchi E, Gianferrari G, Simonini C, Cavallieri F, Valzania F. Multifaceted superoxide dismutase 1 expression in amyotrophic lateral sclerosis patients: a rare occurrence? Neural Regen Res 2025; 20:130-138. [PMID: 38767482 PMCID: PMC11246149 DOI: 10.4103/nrr.nrr-d-23-01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 02/26/2024] [Indexed: 05/22/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex, brainstem, and spinal cord. While the typical clinical phenotype of ALS involves both upper and lower motor neurons, human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions, expanding the phenotype of ALS. Although superoxide dismutase 1 (SOD1) mutations represent a minority of ALS cases, the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies. Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1 (SOD1-ALS), no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation. In this narrative review, we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS. The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms, pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
Zhong R, Rua MT, Wei-LaPierre L. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. J Physiol 2024; 602:1519-1549. [PMID: 38010626 PMCID: PMC11032238 DOI: 10.1113/jp284143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China, 110001
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Myology Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
3
|
Tzeplaeff L, Jürs AV, Wohnrade C, Demleitner AF. Unraveling the Heterogeneity of ALS-A Call to Redefine Patient Stratification for Better Outcomes in Clinical Trials. Cells 2024; 13:452. [PMID: 38474416 PMCID: PMC10930688 DOI: 10.3390/cells13050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Despite tremendous efforts in basic research and a growing number of clinical trials aiming to find effective treatments, amyotrophic lateral sclerosis (ALS) remains an incurable disease. One possible reason for the lack of effective causative treatment options is that ALS may not be a single disease entity but rather may represent a clinical syndrome, with diverse genetic and molecular causes, histopathological alterations, and subsequent clinical presentations contributing to its complexity and variability among individuals. Defining a way to subcluster ALS patients is becoming a central endeavor in the field. Identifying specific clusters and applying them in clinical trials could enable the development of more effective treatments. This review aims to summarize the available data on heterogeneity in ALS with regard to various aspects, e.g., clinical, genetic, and molecular.
Collapse
Affiliation(s)
- Laura Tzeplaeff
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, 81675 München, Germany
| | - Alexandra V. Jürs
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Camilla Wohnrade
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Antonia F. Demleitner
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, 81675 München, Germany
| |
Collapse
|
4
|
de Souza PVS, Serrano PDL, Farias IB, Machado RIL, Badia BDML, de Oliveira HB, Barbosa AS, Pereira CA, Moreira VDF, Chieia MAT, Barbosa AR, Braga VL, Pinto WBVDR, Oliveira ASB. Clinical and Genetic Aspects of Juvenile Amyotrophic Lateral Sclerosis: A Promising Era Emerges. Genes (Basel) 2024; 15:311. [PMID: 38540369 PMCID: PMC10969870 DOI: 10.3390/genes15030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 06/14/2024] Open
Abstract
Juvenile Amyotrophic Lateral Sclerosis is a genetically heterogeneous neurodegenerative disorder, which is frequently misdiagnosed due to low clinical suspicion and little knowledge about disease characteristics. More than 20 different genetic loci have been associated with both sporadic and familial juvenile Amyotrophic Lateral Sclerosis. Currently, almost 40% of cases have an identifiable monogenic basis; type 6, associated with FUS gene variants, is the most prevalent globally. Despite several upper motor neuron-dominant forms being generally associated with long-standing motor symptoms and slowly progressive course, certain subtypes with lower motor neuron-dominant features and early bulbar compromise lead to rapidly progressive motor handicap. For some monogenic forms, there is a well-established genotypic-phenotypic correlation. There are no specific biochemical and neuroimaging biomarkers for the diagnosis of juvenile Amyotrophic Lateral Sclerosis. There are several inherited neurodegenerative and neurometabolic disorders which can lead to the signs of motor neuron impairment. This review emphasizes the importance of high clinical suspicion, assessment, and proper diagnostic work-up for juvenile Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Paulo Victor Sgobbi de Souza
- Motor Neuron Disease Unit, Division of Neuromuscular Diseases, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-060, Brazil; (P.d.L.S.); (W.B.V.d.R.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Borghero G, Pili F, Muroni A, Ercoli T, Pateri MI, Pilotto S, Maccabeo A, Defazio G. Disease survival and progression in TARDBP ALS patients from Sardinia, Italy. J Neurol 2024; 271:929-934. [PMID: 37855870 DOI: 10.1007/s00415-023-12037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Common genes implicated in amyotrophic lateral sclerosis (ALS) development may also influence its progression rate. The C9orf72 mutations featured a faster progression rate while the European SOD1 mutations were associated with a slower progression. In this study, we assessed the relationship between TARDBP and ALS progression/survival. METHODS ALS incident patients (2010-2019) were diagnosed by El Escorial revised criteria and staged over the disease course by the King's staging system. Disease progression was analysed by Kaplan-Meier survival curves and Cox regression models, with survival measured from symptom onset to death/tracheostomy or censor date. RESULTS The study population included 76 patients carrying TARDBP mutations (A382T/G295S), 28 patients carrying the C9orf72 GGGGCC expansion, and 158 patients who had no evidence of causative genetic mutations (nmALS group). TARDBP patients reached death/tracheostomy later than C9orf72 and nmALS patients, independently of possible prognostic indicators (sex, age at ALS onset, diagnostic delay, phenotype at onset, and family history of ALS). On King's staging, the time elapsed between disease onset (King's stage 1) and involvement of the second body region (King's stage 2B) was similar in TARDBP and nmALS patients but longer in TARDBP than in C9orf72 patients. TARDBP patients reached King's stages 3 and 4 later than C9orf72 and nmALS patients. CONCLUSIONS TARDBP patients have a better survival/prognosis than C9orf72-positive and nmALS patients. King's staging also suggested that the higher survival rate and the slower progression associated with the TARDBP mutation could mainly be attributed to the longer time elapsed between King's stages 2B to 3.
Collapse
Affiliation(s)
- Giuseppe Borghero
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Francesca Pili
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Antonella Muroni
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy.
| | - Tommaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Maria Ida Pateri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvy Pilotto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Maccabeo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
- Department of Translational Biomedicine and Neurosciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
6
|
Tsui A, Kouznetsova VL, Kesari S, Fiala M, Tsigelny IF. Role of Senataxin in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2023; 73:996-1009. [PMID: 37982993 DOI: 10.1007/s12031-023-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, uncurable neurodegenerative disorder characterized by the degradation of motor neurons leading to muscle impairment, failure, and death. Senataxin, encoded by the SETX gene, is a human helicase protein whose mutations have been linked with ALS onset, particularly in its juvenile ALS4 form. Using senataxin's yeast homolog Sen1 as a model for study, it is suggested that senataxin's N-terminus interacts with RNA polymerase II, whilst its C-terminus engages in helicase activity. Senataxin is heavily involved in transcription regulation, termination, and R-loop resolution, enabled by recruitment and interactions with enzymes such as ubiquitin protein ligase SAN1 and ribonuclease H (RNase H). Senataxin also engages in DNA damage response (DDR), primarily interacting with the exosome subunit Rrp45. The Sen1 mutation E1597K, alongside the L389S and R2136H gain-of-function mutations to senataxin, is shown to cause negative structural and thus functional effects to the protein, thus contributing to a disruption in WT functions, motor neuron (MN) degeneration, and the manifestation of ALS clinical symptoms. This review corroborates and summarizes published papers concerning the structure and function of senataxin as well as the effects of their mutations in ALS pathology in order to compile current knowledge and provide a reference for future research. The findings compiled in this review are indicative of the experimental and therapeutic potential of senataxin and its mutations as a target in future ALS treatment/cure discovery, with some potential therapeutic routes also being discussed in the review.
Collapse
Affiliation(s)
- Andrew Tsui
- REHS Program, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
- CureScience Institute, San Diego, CA, USA
- BiAna, San Diego, La Jolla, CA, USA
| | | | - Milan Fiala
- Department of Integrative Biology and Physiology, School of Medicine, UCLA, Los Angeles, CA, USA
| | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
- CureScience Institute, San Diego, CA, USA.
- BiAna, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Colombo E, Gentile F, Maranzano A, Doretti A, Verde F, Olivero M, Gagliardi D, Faré M, Meneri M, Poletti B, Maderna L, Corti S, Corbo M, Morelli C, Silani V, Ticozzi N. The impact of upper motor neuron involvement on clinical features, disease progression and prognosis in amyotrophic lateral sclerosis. Front Neurol 2023; 14:1249429. [PMID: 37822527 PMCID: PMC10562695 DOI: 10.3389/fneur.2023.1249429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
ObjectivesIn amyotrophic lateral sclerosis (ALS) both upper (UMNs) and lower motor neurons (LMNs) are involved in the process of neurodegeneration, accounting for the great disease heterogeneity. We evaluated the associations of the burden of UMN impairment, assessed through the Penn Upper Motor Neuron Score (PUMNS), with demographic and clinical features of ALS patients to define the independent role of UMN involvement in generating disease heterogeneity, predicting disease progression and prognosis.MethodsWe collected the following clinical parameters on a cohort of 875 ALS patients: age and site of onset, survival, MRC scale, lower motor neuron score (LMNS), PUMNS, ALSFRS-R, change in ALSFRS-R over time (DFS), MITOS and King’s staging systems (KSS). Transcranial magnetic stimulation was performed on a subgroup of patients and central motor conduction time (CMCT) and cortical silent period (CSP) were calculated.ResultsWe observed that patients with an earlier age at onset and bulbar onset had higher PUMNS values. Higher values were also associated to lower ALSFRS-R and to higher DFS scores, as well as to higher MITOS and KSS, indicating that a greater UMN burden correlates with disease severity. Conversely, we did not appreciate any association between UMN involvement and survival or markers of LMN impairment. Moreover, PUMNS values showed a positive association with CMCT and a negative one with CSP values.InterpretationOur results suggest that the burden of UMN pathology, assessed through PUMNS, has an important independent role in defining clinical characteristics, functional disability, disease progression and prognosis in ALS patients. We also support the role of TMS in defining severity of UMN involvement.
Collapse
Affiliation(s)
- Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Francesco Gentile
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marco Olivero
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Delia Gagliardi
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Faré
- Department of Neurology, San Gerardo Hospital ASST, Monza, Italy
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Megi Meneri
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefania Corti
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea (CCI), Milan, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Martinelli I, Zucchi E, Simonini C, Gianferrari G, Zamboni G, Pinti M, Mandrioli J. The landscape of cognitive impairment in superoxide dismutase 1-amyotrophic lateral sclerosis. Neural Regen Res 2023; 18:1427-1433. [PMID: 36571338 PMCID: PMC10075107 DOI: 10.4103/1673-5374.361535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although mutations in the superoxide dismutase 1 gene account for only a minority of total amyotrophic lateral sclerosis cases, the discovery of this gene has been crucial for amyotrophic lateral sclerosis research. Since the identification of superoxide dismutase 1 in 1993, the field of amyotrophic lateral sclerosis genetics has considerably widened, improving our understanding of the diverse pathogenic basis of amyotrophic lateral sclerosis. In this review, we focus on cognitive impairment in superoxide dismutase 1-amyotrophic lateral sclerosis patients. Literature has mostly reported that cognition remains intact in superoxide dismutase 1-amyotrophic lateral sclerosis patients, but recent reports highlight frontal lobe function frailty in patients carrying different superoxide dismutase 1-amyotrophic lateral sclerosis mutations. We thoroughly reviewed all the various mutations reported in the literature to contribute to a comprehensive database of superoxide dismutase 1-amyotrophic lateral sclerosis genotype-phenotype correlation. Such a resource could ultimately improve our mechanistic understanding of amyotrophic lateral sclerosis, enabling a more robust assessment of how the amyotrophic lateral sclerosis phenotype responds to different variants across genes, which is important for the therapeutic strategy targeting genetic mutations. Cognition in superoxide dismutase 1-amyotrophic lateral sclerosis deserves further longitudinal research since this peculiar frailty in patients with similar mutations can be conditioned by external factors, including environment and other unidentified agents including modifier genes.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Zamboni
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
9
|
Yan R, Shen Y, Zhang X, Xu P, Wang J, Li J, Ren F, Ye D, Zhou SK. Histopathological bladder cancer gene mutation prediction with hierarchical deep multiple-instance learning. Med Image Anal 2023; 87:102824. [PMID: 37126973 DOI: 10.1016/j.media.2023.102824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Gene mutation detection is usually carried out by molecular biological methods, which is expensive and has a long-time cycle. In contrast, pathological images are ubiquitous. If clinically significant gene mutations can be predicted only through pathological images, it will greatly promote the widespread use of gene mutation detection in clinical practice. However, current gene mutation prediction methods based on pathological images are ineffective because of the inability to identify mutated regions in gigapixel Whole Slide Image (WSI). To address this challenge, hereby we propose a carefully designed framework for WSI-based gene mutation prediction, which consists of three parts. (i) The first part of cancerous area segmentation, based on supervised learning, quickly filters out a large number of non-mutated regions; (ii) the second part of cancerous patch clustering, based on the representations derived from contrastive learning, ensures the comprehensiveness of patch selection; and (iii) the third part of mutation classification, based on the proposed hierarchical deep multi-instance learning method (HDMIL), ensures that sufficient patches are considered and inaccurate selections are ignored. In addition, benefiting from a two-stage attention mechanism in HDMIL, the patches that are highly correlated with gene mutations can be identified. This interpretability can help a pathologist to analyze the correlation between gene mutation and histopathological morphology. Experimental results demonstrate that the proposed gene mutation prediction framework significantly outperforms the state-of-the-art methods. In the TCGA bladder cancer dataset, five clinically relevant gene mutations are well predicted.
Collapse
Affiliation(s)
- Rui Yan
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xueyuan Zhang
- Zhijian Life Technology Co., Ltd., Beijing, 100036, China
| | - Peihang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jintao Li
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Ren
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; SKLP, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - S Kevin Zhou
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; School of Biomedical Engineering & Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China.
| |
Collapse
|
10
|
Gianferrari G, Martinelli I, Simonini C, Zucchi E, Fini N, Caputo M, Ghezzi A, Gessani A, Canali E, Casmiro M, De Massis P, Curro' Dossi M, De Pasqua S, Liguori R, Longoni M, Medici D, Morresi S, Patuelli A, Pugliatti M, Santangelo M, Sette E, Stragliati F, Terlizzi E, Vacchiano V, Zinno L, Ferro S, Amedei A, Filippini T, Vinceti M, Mandrioli J. Insight into Elderly ALS Patients in the Emilia Romagna Region: Epidemiological and Clinical Features of Late-Onset ALS in a Prospective, Population-Based Study. Life (Basel) 2023; 13:life13040942. [PMID: 37109471 PMCID: PMC10144747 DOI: 10.3390/life13040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Few studies have focused on elderly (>80 years) amyotrophic lateral sclerosis (ALS) patients, who represent a fragile subgroup generally not included in clinical trials and often neglected because they are more difficult to diagnose and manage. We analyzed the clinical and genetic features of very late-onset ALS patients through a prospective, population-based study in the Emilia Romagna Region of Italy. From 2009 to 2019, 222 (13.76%) out of 1613 patients in incident cases were over 80 years old at diagnosis, with a female predominance (F:M = 1.18). Elderly ALS patients represented 12.02% of patients before 2015 and 15.91% from 2015 onwards (p = 0.024). This group presented with bulbar onset in 38.29% of cases and had worse clinical conditions at diagnosis compared to younger patients, with a lower average BMI (23.12 vs. 24.57 Kg/m2), a higher progression rate (1.43 vs. 0.95 points/month), and a shorter length of survival (a median of 20.77 vs. 36 months). For this subgroup, genetic analyses have seldom been carried out (25% vs. 39.11%) and are generally negative. Finally, elderly patients underwent less frequent nutritional- and respiratory-supporting procedures, and multidisciplinary teams were less involved at follow-up, except for specialist palliative care. The genotypic and phenotypic features of elderly ALS patients could help identify the different environmental and genetic risk factors that determine the age at which disease onset occurs. Since multidisciplinary management can improve a patient's prognosis, it should be more extensively applied to this fragile group of patients.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
- Neuroscience Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Maria Caputo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Annalisa Gessani
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Elena Canali
- Department of Neurology, IRCCS Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy
| | - Mario Casmiro
- Department of Neurology, Faenza and Ravenna Hospital, 48100 Ravenna, Italy
| | | | | | | | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40126 Bologna, Italy
| | - Marco Longoni
- Department of Neurology, Infermi Hospital, 48018 Rimini, Italy
- Department of Neurology, Bufalini Hospital, 47521 Cesena, Italy
| | - Doriana Medici
- Department of Neurology, Fidenza Hospital, 43036 Parma, Italy
| | | | | | - Maura Pugliatti
- Department of Neurosciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Neurology, St. Anna Hospital, 44124 Ferrara, Italy
| | | | - Elisabetta Sette
- Department of Neurology, St. Anna Hospital, 44124 Ferrara, Italy
| | - Filippo Stragliati
- Department of General and Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Emilio Terlizzi
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy
| | - Veria Vacchiano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40126 Bologna, Italy
| | - Lucia Zinno
- Department of General and Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Salvatore Ferro
- Department of Hospital Services, Emilia Romagna Regional Health Authority, 40127 Bologna, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Tommaso Filippini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Research Centre in Environmental, Genetic and Nutritional Epidemiology-CREAGEN, University of Modena and Reggio Emilia, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Research Centre in Environmental, Genetic and Nutritional Epidemiology-CREAGEN, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| |
Collapse
|
11
|
Lant JT, Hasan F, Briggs J, Heinemann IU, O’Donoghue P. Genetic Interaction of tRNA-Dependent Mistranslation with Fused in Sarcoma Protein Aggregates. Genes (Basel) 2023; 14:518. [PMID: 36833445 PMCID: PMC9956149 DOI: 10.3390/genes14020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
High-fidelity protein synthesis requires properly aminoacylated transfer RNAs (tRNAs), yet diverse cell types, from bacteria to humans, show a surprising ability to tolerate errors in translation resulting from mutations in tRNAs, aminoacyl-tRNA synthetases, and other components of protein synthesis. Recently, we characterized a tRNASerAGA G35A mutant (tRNASerAAA) that occurs in 2% of the human population. The mutant tRNA decodes phenylalanine codons with serine, inhibits protein synthesis, and is defective in protein and aggregate degradation. Here, we used cell culture models to test our hypothesis that tRNA-dependent mistranslation will exacerbate toxicity caused by amyotrophic lateral sclerosis (ALS)-associated protein aggregation. Relative to wild-type tRNA, we found cells expressing tRNASerAAA showed slower but effective aggregation of the fused in sarcoma (FUS) protein. Despite reduced levels in mistranslating cells, wild-type FUS aggregates showed similar toxicity in mistranslating cells and normal cells. The aggregation kinetics of the ALS-causative FUS R521C variant were distinct and more toxic in mistranslating cells, where rapid FUS aggregation caused cells to rupture. We observed synthetic toxicity in neuroblastoma cells co-expressing the mistranslating tRNA mutant and the ALS-causative FUS R521C variant. Our data demonstrate that a naturally occurring human tRNA variant enhances cellular toxicity associated with a known causative allele for neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julia Briggs
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
12
|
Vasilopoulou C, McDaid-McCloskey SL, McCluskey G, Duguez S, Morris AP, Duddy W. Genome-Wide Gene-Set Analysis Identifies Molecular Mechanisms Associated with ALS. Int J Mol Sci 2023; 24:4021. [PMID: 36835433 PMCID: PMC9966913 DOI: 10.3390/ijms24044021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset motor neuron disease characterized by the loss of the upper and lower motor neurons. Our understanding of the molecular basis of ALS pathology remains elusive, complicating the development of efficient treatment. Gene-set analyses of genome-wide data have offered insight into the biological processes and pathways of complex diseases and can suggest new hypotheses regarding causal mechanisms. Our aim in this study was to identify and explore biological pathways and other gene sets having genomic association to ALS. Two cohorts of genomic data from the dbGaP repository were combined: (a) the largest available ALS individual-level genotype dataset (N = 12,319), and (b) a similarly sized control cohort (N = 13,210). Following comprehensive quality control pipelines, imputation and meta-analysis, we assembled a large European descent ALS-control cohort of 9244 ALS cases and 12,795 healthy controls represented by genetic variants of 19,242 genes. Multi-marker analysis of genomic annotation (MAGMA) gene-set analysis was applied to an extensive collection of 31,454 gene sets from the molecular signatures database (MSigDB). Statistically significant associations were observed for gene sets related to immune response, apoptosis, lipid metabolism, neuron differentiation, muscle cell function, synaptic plasticity and development. We also report novel interactions between gene sets, suggestive of mechanistic overlaps. A manual meta-categorization and enrichment mapping approach is used to explore the overlap of gene membership between significant gene sets, revealing a number of shared mechanisms.
Collapse
Affiliation(s)
- Christina Vasilopoulou
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | | | - Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9PT, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| |
Collapse
|
13
|
Jin S, Sun Z, Fang X, Chen H, Yang W. A patient carrying a heterozygous p.Asn267Ser TARDBP missense mutation diagnosed as ALS and only involving lower motor neurons. Neurol Sci 2023; 44:777-782. [PMID: 36527522 DOI: 10.1007/s10072-022-06555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease involving upper motor neurons (UMN) and lower motor neurons (LMN), which can be caused by mutations of pathogenic genes such as superoxide dismutase 1 (SOD1), sarcoma fusion (FUS), and TAR-DNA binding protein (TARBDP/TDP-43). Among these pathogenic genes, TARBDP mutation accounts for approximately 1% of sporadic ALS (sALS). The clinical phenotype of ALS is heterogeneous owing to different mutant genes and sites. Here, we report a case of sALS from China, the pathogenic site (c.800A > G) of TARDBP in this patient was identified by whole-exome sequencing. But his clinical symptoms involve only the LMN, presented with progressive limb weakness, and dyspnea, without obvious limb muscle atrophy. We considered this patient as a possible LMN-dominant ALS variant and this report further explores the genotype-phenotype correlations of ALS10. Furthermore, interestingly, the pathogenic site in this person was previously reported in a Parkinson's disease (PD) patient and frontotemporal dementia (FTD) patient. Our findings illustrate the clinical heterogeneity and the types of diseases which carry p.Asn267Ser TDP-43 mutation were broadened furtherly. Meanwhile, considering that the range of neurodegenerative diseases associated with this mutant site may be expanding, the mechanism of different neurodegenerative changes mediated by the same pathogenic site still needs to be further studied.
Collapse
Affiliation(s)
- Shan Jin
- Neurology Department I, The First Affiliated Hospital of Anhui University of Chinese Medicine, Shushan District, No.117, Meishan Road, Hefei, 230000, Anhui, China
| | - Zhengzhe Sun
- Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Xiang Fang
- Neurology Department I, The First Affiliated Hospital of Anhui University of Chinese Medicine, Shushan District, No.117, Meishan Road, Hefei, 230000, Anhui, China.
| | - Huaizhen Chen
- Neurology Department I, The First Affiliated Hospital of Anhui University of Chinese Medicine, Shushan District, No.117, Meishan Road, Hefei, 230000, Anhui, China
| | - Wenming Yang
- Neurology Department I, The First Affiliated Hospital of Anhui University of Chinese Medicine, Shushan District, No.117, Meishan Road, Hefei, 230000, Anhui, China.,Key Laboratory of Xin'an Medicine Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
14
|
Zogopoulos VL, Malatras A, Kyriakidis K, Charalampous C, Makrygianni EA, Duguez S, Koutsi MA, Pouliou M, Vasileiou C, Duddy WJ, Agelopoulos M, Chrousos GP, Iconomidou VA, Michalopoulos I. HGCA2.0: An RNA-Seq Based Webtool for Gene Coexpression Analysis in Homo sapiens. Cells 2023; 12:cells12030388. [PMID: 36766730 PMCID: PMC9913097 DOI: 10.3390/cells12030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Genes with similar expression patterns in a set of diverse samples may be considered coexpressed. Human Gene Coexpression Analysis 2.0 (HGCA2.0) is a webtool which studies the global coexpression landscape of human genes. The website is based on the hierarchical clustering of 55,431 Homo sapiens genes based on a large-scale coexpression analysis of 3500 GTEx bulk RNA-Seq samples of healthy individuals, which were selected as the best representative samples of each tissue type. HGCA2.0 presents subclades of coexpressed genes to a gene of interest, and performs various built-in gene term enrichment analyses on the coexpressed genes, including gene ontologies, biological pathways, protein families, and diseases, while also being unique in revealing enriched transcription factors driving coexpression. HGCA2.0 has been successful in identifying not only genes with ubiquitous expression patterns, but also tissue-specific genes. Benchmarking showed that HGCA2.0 belongs to the top performing coexpression webtools, as shown by STRING analysis. HGCA2.0 creates working hypotheses for the discovery of gene partners or common biological processes that can be experimentally validated. It offers a simple and intuitive website design and user interface, as well as an API endpoint.
Collapse
Affiliation(s)
- Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Apostolos Malatras
- Biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, 2029 Nicosia, Cyprus
| | - Konstantinos Kyriakidis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Charalampous
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evanthia A. Makrygianni
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stéphanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| | - Marianna A. Koutsi
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Marialena Pouliou
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Christos Vasileiou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Engineering Design and Computing Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - William J. Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| | - Marios Agelopoulos
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
15
|
Gianferrari G, Martinelli I, Simonini C, Zucchi E, Fini N, Carra S, Moglia C, Mandrioli J. Case report: p.Glu134del SOD1 mutation in two apparently unrelated ALS patients with mirrored phenotype. Front Neurol 2023; 13:1052341. [PMID: 36686515 PMCID: PMC9846158 DOI: 10.3389/fneur.2022.1052341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
With upcoming personalized approaches based on genetics, it is important to report new mutations in amyotrophic lateral sclerosis (ALS) genes in order to understand their pathogenicity and possible patient responses to specific therapies. SOD1 mutations are the second most frequent genetic cause of ALS in European populations. Here, we describe two seemingly unrelated Italian patients with ALS carrying the same SOD1 heterozygous c.400_402 deletion (p.Glu134del). Both patients had spinal onset in their lower limbs, progressive muscular weakness with respiratory involvement, and sparing bulbar function. In addition to the clinical picture, we discuss the possible pathogenic role of this unfamiliar SOD1 mutation.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy,Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena, Italy,*Correspondence: Ilaria Martinelli ✉
| | - Cecilia Simonini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy,Neurosciences PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Moglia
- S.C Neurology 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza Torino, Torino, Italy,“Rita Levi Montalcini” Department of Neuroscience, University of Turin, Torino, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
16
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Anakor E, Duddy WJ, Duguez S. The Cellular and Molecular Signature of ALS in Muscle. J Pers Med 2022; 12:1868. [PMID: 36579600 PMCID: PMC9692882 DOI: 10.3390/jpm12111868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a disease affecting upper and lower motor neurons. Although motor neuron death is the core event of ALS pathology, it is increasingly recognized that other tissues and cell types are affected in the disease, making potentially major contributions to the occurrence and progression of pathology. We review here the known cellular and molecular characteristics of muscle tissue affected by ALS. Evidence of toxicity in skeletal muscle tissue is considered, including metabolic dysfunctions, impaired proteostasis, and deficits in muscle regeneration and RNA metabolism. The role of muscle as a secretory organ, and effects on the skeletal muscle secretome are also covered, including the increase in secretion of toxic factors or decrease in essential factors that have consequences for neuronal function and survival.
Collapse
Affiliation(s)
| | | | - Stephanie Duguez
- Northern Ireland Center for Personalised Medicine, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| |
Collapse
|
18
|
Cognition and motor phenotypes in ALS: a retrospective study. Neurol Sci 2022; 43:5397-5402. [PMID: 35608739 PMCID: PMC9385798 DOI: 10.1007/s10072-022-06157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Background Amyotrophic lateral sclerosis (ALS) is phenotypically heterogeneous in motor manifestations, and the extent of upper vs. lower motor neuron involvement is a widespread descriptor. This study aimed to examine cognition across different ALS motor phenotypes. Methods ALS patients (N = 124) were classified as classical (N = 66), bulbar (N = 13), predominant-upper motor neuron (PUMN; N = 19), and predominant-lower motor neuron (PLMN; N = 26) phenotypes. Cognition was assessed with the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and function with the ALS Functional Rating Scale—Revised (ALSFRS-R). Revised ALS-FTD consensus criteria were applied for cognitive/behavioral phenotyping. Results Defective ECAS-total scores were detected in all groups — bulbar: 15.4%, classical: 30.3%, PLMN: 23.1%, and PUMN: 36.8%. Classical and PUMN ALS patients performed worse than PLMN ones on ECAS-total, ALS-specific, Fluency, and Executive measures. No other difference was detected. Worse ASLFRS-R scores correlated with poorer ECAS-total scores in classical ALS patients. Conclusions Frontotemporal cognitive deficits are more prevalent in PUMN and classical ALS and linked to disease severity in the latter, but occur also in PLMN phenotypes. Supplementary information The online version contains supplementary material available at 10.1007/s10072-022-06157-x
Collapse
|
19
|
McCluskey G, Donaghy C, Morrison KE, McConville J, Duddy W, Duguez S. The Role of Sphingomyelin and Ceramide in Motor Neuron Diseases. J Pers Med 2022; 12:jpm12091418. [PMID: 36143200 PMCID: PMC9501626 DOI: 10.3390/jpm12091418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA), and Spinal Muscular Atrophy (SMA) are motor neuron diseases (MNDs) characterised by progressive motor neuron degeneration, weakness and muscular atrophy. Lipid dysregulation is well recognised in each of these conditions and occurs prior to neurodegeneration. Several lipid markers have been shown to predict prognosis in ALS. Sphingolipids are complex lipids enriched in the central nervous system and are integral to key cellular functions including membrane stability and signalling pathways, as well as being mediators of neuroinflammation and neurodegeneration. This review highlights the metabolism of sphingomyelin (SM), the most abundant sphingolipid, and of its metabolite ceramide, and its role in the pathophysiology of neurodegeneration, focusing on MNDs. We also review published lipidomic studies in MNDs. In the 13 studies of patients with ALS, 12 demonstrated upregulation of multiple SM species and 6 demonstrated upregulation of ceramides. SM species also correlated with markers of clinical progression in five of six studies. These data highlight the potential use of SM and ceramide as biomarkers in ALS. Finally, we review potential therapeutic strategies for targeting sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Dundonald, Belfast BT16 1RH, UK
| | - William Duddy
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence:
| |
Collapse
|
20
|
Ilaria M, Elisabetta Z, Viviana P, Cinzia G, Bryan J T, Giulia G, Adriano C, Jessica M. G507D mutation in FUS gene causes familial amyotrophic lateral sclerosis with a specific genotype-phenotype correlation. Neurobiol Aging 2022; 118:124-128. [DOI: 10.1016/j.neurobiolaging.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/17/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
|
21
|
Gianferrari G, Martinelli I, Zucchi E, Simonini C, Fini N, Vinceti M, Ferro S, Gessani A, Canali E, Valzania F, Sette E, Pugliatti M, Tugnoli V, Zinno L, Stano S, Santangelo M, De Pasqua S, Terlizzi E, Guidetti D, Medici D, Salvi F, Liguori R, Vacchiano V, Casmiro M, Querzani P, Currò Dossi M, Patuelli A, Morresi S, Longoni M, De Massis P, Rinaldi R, Borghi A, Amedei A, Mandrioli J. Epidemiological, Clinical and Genetic Features of ALS in the Last Decade: A Prospective Population-Based Study in the Emilia Romagna Region of Italy. Biomedicines 2022; 10:biomedicines10040819. [PMID: 35453569 PMCID: PMC9031824 DOI: 10.3390/biomedicines10040819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Increased incidence rates of amyotrophic lateral sclerosis (ALS) have been recently reported across various Western countries, although geographic and temporal variations in terms of incidence, clinical features and genetics are not fully elucidated. This study aimed to describe demographic, clinical feature and genotype–phenotype correlations of ALS cases over the last decade in the Emilia Romagna Region (ERR). From 2009 to 2019, our prospective population-based registry of ALS in the ERR of Northern Italy recorded 1613 patients receiving a diagnosis of ALS. The age- and sex-adjusted incidence rate was 3.13/100,000 population (M/F ratio: 1.21). The mean age at onset was 67.01 years; women, bulbar and respiratory phenotypes were associated with an older age, while C9orf72-mutated patients were generally younger. After peaking at 70–75 years, incidence rates, among women only, showed a bimodal distribution with a second slight increase after reaching 90 years of age. Familial cases comprised 12%, of which one quarter could be attributed to an ALS-related mutation. More than 70% of C9orf72-expanded patients had a family history of ALS/fronto-temporal dementia (FTD); 22.58% of patients with FTD at diagnosis had C9orf72 expansion (OR 6.34, p = 0.004). In addition to a high ALS incidence suggesting exhaustiveness of case ascertainment, this study highlights interesting phenotype–genotype correlations in the ALS population of ERR.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.G.); (M.V.); (J.M.)
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-05-9396-1640; Fax: +39-05-9396-3775
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.G.); (M.V.); (J.M.)
- Department of Science of Public Health, Research Centre in Environmental, Genetic and Nutritional Epidemiology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Salvatore Ferro
- Department of Hospital Services, Emilia Romagna Regional Health Authority, 40127 Bologna, Italy;
| | - Annalisa Gessani
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| | - Elena Canali
- Neurology Unit, Arcispedale Santa Maria Nuova, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (F.V.)
| | - Franco Valzania
- Neurology Unit, Arcispedale Santa Maria Nuova, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (F.V.)
| | - Elisabetta Sette
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy; (E.S.); (M.P.); (V.T.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy; (E.S.); (M.P.); (V.T.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Tugnoli
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy; (E.S.); (M.P.); (V.T.)
| | - Lucia Zinno
- Department of Neuroscience, University of Parma, 43121 Parma, Italy; (L.Z.); (S.S.)
| | - Salvatore Stano
- Department of Neuroscience, University of Parma, 43121 Parma, Italy; (L.Z.); (S.S.)
| | - Mario Santangelo
- Department of Neurology, Carpi Hospital, 41014 Modena, Italy; (M.S.); (S.D.P.)
| | - Silvia De Pasqua
- Department of Neurology, Carpi Hospital, 41014 Modena, Italy; (M.S.); (S.D.P.)
| | - Emilio Terlizzi
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy; (E.T.); (D.G.)
| | - Donata Guidetti
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy; (E.T.); (D.G.)
| | - Doriana Medici
- Department of Neurology, Fidenza Hospital, 43036 Parma, Italy;
| | - Fabrizio Salvi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna and IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (R.L.); (V.V.)
| | - Veria Vacchiano
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna and IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy; (R.L.); (V.V.)
| | - Mario Casmiro
- Department of Neurology, Faenza and Ravenna Hospital, 48121 Ravenna, Italy; (M.C.); (P.Q.)
| | - Pietro Querzani
- Department of Neurology, Faenza and Ravenna Hospital, 48121 Ravenna, Italy; (M.C.); (P.Q.)
| | - Marco Currò Dossi
- Department of Neurology, Infermi Hospital, 47923 Rimini, Italy; (M.C.D.); (M.L.)
| | - Alberto Patuelli
- Department of Neurology and Stroke Unit, “Morgagni-Pierantoni” Hospital, 47121 Forlì, Italy;
| | - Simonetta Morresi
- Department of Neurology and Stroke Unit, Bufalini Hospital, 47521 Cesena, Italy;
| | - Marco Longoni
- Department of Neurology, Infermi Hospital, 47923 Rimini, Italy; (M.C.D.); (M.L.)
- Department of Neurology and Stroke Unit, Bufalini Hospital, 47521 Cesena, Italy;
| | | | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Clinica Neurologica Metropolitana (NeuroMet), 40139 Bologna, Italy;
| | - Annamaria Borghi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center, Maggiore Hospital, 40133 Bologna, Italy;
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.G.); (M.V.); (J.M.)
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (E.Z.); (C.S.); (N.F.); (A.G.)
| |
Collapse
|
22
|
The Neurotoxicity of Vesicles Secreted by ALS Patient Myotubes Is Specific to Exosome-Like and Not Larger Subtypes. Cells 2022; 11:cells11050845. [PMID: 35269468 PMCID: PMC8909615 DOI: 10.3390/cells11050845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles can mediate communication between tissues, affecting the physiological conditions of recipient cells. They are increasingly investigated in Amyotrophic Lateral Sclerosis, the most common form of Motor Neurone Disease, as transporters of misfolded proteins including SOD1, FUS, TDP43, or other neurotoxic elements, such as the dipeptide repeats resulting from C9orf72 expansions. EVs are classified based on their biogenesis and size and can be separated by differential centrifugation. They include exosomes, released by the fusion of multivesicular bodies with the plasma membrane, and ectosomes, also known as microvesicles or microparticles, resulting from budding or pinching of the plasma membrane. In the current study, EVs were obtained from the myotube cell culture medium of ALS patients or healthy controls. EVs of two different sizes, separating at 20,000 or 100,000 g, were then compared in terms of their effects on recipient motor neurons, astrocytes, and myotubes. Compared to untreated cells, the smaller, exosome-like vesicles of ALS patients reduced the survival of motor neurons by 31% and of myotubes by 18%, decreased neurite length and branching, and increased the proportion of stellate astrocytes, whereas neither those of healthy subjects, nor larger EVs of ALS or healthy subjects, had such effects.
Collapse
|
23
|
McCluskey G, Duddy W, Haffey S, Morrison K, Donaghy C, Duguez S. Epidemiology and survival trends of motor neurone disease in Northern Ireland from 2015 to 2019. Eur J Neurol 2021; 29:707-714. [PMID: 34748676 DOI: 10.1111/ene.15172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE This study evaluates the incidence, prevalence and survival trends of motor neurone disease (MND) in Northern Ireland from 2015 to 2019. METHODS A capture-recapture analysis was performed using five independent data sources. Incidence and prevalence rates were standardized to the European Standard Population. Survival outcomes were analysed using Kaplan-Meier curves and Cox regression analysis. RESULTS Amongst 254 total cases of MND, capture-recapture analysis estimated three missing cases (case ascertainment 98.8%). Age standardized incidence of captured cases was 3.12 per 100,000 (2.73, 3.50) and standardized prevalence ranged from 9.45 to 6.49 per 100,000 from 2015 to 2019. Standardized incidence and prevalence rates in 2006 were 1.4 and 3.3 per 100,000 respectively. Of identified cases, 133 (52.4%) were male; 94.5% had amyotrophic lateral sclerosis; median age of onset was 67 years; median time to diagnosis was 12 months (95% confidence interval 11.2, 12.8); survival from diagnosis was 12 months (95% confidence interval 10.6, 15.4); 25 (9.8%) reported a family history of MND or frontotemporal dementia; and a known MND-associated genetic mutation was identified in 7.9% of total cases, of which the most common was C9orf72 (5.7% of all patients). Factors associated with improved survival were younger age at onset, longer time to diagnosis, attendance at regional MND clinic, and initial neurology presentation as outpatient (all p < 0.001). CONCLUSION The incidence and prevalence of MND in Northern Ireland has increased over the last 10 years, in line with increasing rates reported from other European countries. Improved survival was associated with younger age at onset, longer time to diagnosis, attendance at a regional MND clinic and outpatient presentation to a Neurology Department.
Collapse
Affiliation(s)
- Gavin McCluskey
- Department of Neurology, Royal Victoria Hospital, Belfast, UK.,Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Derry, UK
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Derry, UK
| | - Stephen Haffey
- Department of Neurophysiology, Royal Victoria Hospital, Belfast, UK
| | - Karen Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast, UK.,Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, UK
| | | | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Derry, UK
| |
Collapse
|
24
|
Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S. Exosomes in Ageing and Motor Neurone Disease: Biogenesis, Uptake Mechanisms, Modifications in Disease and Uses in the Development of Biomarkers and Therapeutics. Cells 2021; 10:2930. [PMID: 34831153 PMCID: PMC8616058 DOI: 10.3390/cells10112930] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Intercellular communication between neurons and their surrounding cells occurs through the secretion of soluble molecules or release of vesicles such as exosomes into the extracellular space, participating in brain homeostasis. Under neuro-degenerative conditions associated with ageing, such as amyotrophic lateral sclerosis (ALS), Alzheimer's or Parkinson's disease, exosomes are suspected to propagate toxic proteins. The topic of this review is the role of exosomes in ageing conditions and more specifically in ALS. Our current understanding of exosomes and exosome-related mechanisms is first summarized in a general sense, including their biogenesis and secretion, heterogeneity, cellular interaction and intracellular fate. Their role in the Central Nervous System (CNS) and ageing of the neuromotor system is then considered in the context of exosome-induced signaling. The review then focuses on exosomes in age-associated neurodegenerative disease. The role of exosomes in ALS is highlighted, and their use as potential biomarkers to diagnose and prognose ALS is presented. The therapeutic implications of exosomes for ALS are considered, whether as delivery vehicles, neurotoxic targets or as corrective drugs in and of themselves. A diverse set of mechanisms underpin the functional roles, both confirmed and potential, of exosomes, generally in ageing and specifically in motor neurone disease. Aspects of their contents, biogenesis, uptake and modifications offer many plausible routes towards the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| | - Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Trust, University College London, London WC1N 1EH, UK
| | - Julie Dumonceaux
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Trust, University College London, London WC1N 1EH, UK
| | - William John Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| |
Collapse
|
25
|
Ricci C, Giannini F, Riolo G, Bocci S, Casali S, Battistini S. A Novel Variant in Superoxide Dismutase 1 Gene ( p.V119M) in Als Patients with Pure Lower Motor Neuron Presentation. Genes (Basel) 2021; 12:genes12101544. [PMID: 34680939 PMCID: PMC8535540 DOI: 10.3390/genes12101544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal disorder characterized by degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord. Most cases of ALS appear sporadically, but 5–10% of patients have a family history of disease. Mutations in the superoxide dismutase 1 gene (SOD1) have been found in 12–23% of familial cases and in 1–2% of sporadic cases. Currently, more than 180 different SOD1 gene variants have been identified in ALS patients. Here, we describe two apparently sporadic ALS patients carrying the same SOD1 c.355G>A variant, leading to the p.V119M substitution, not previously described. Both the patients showed pure lower motor neuron phenotype. The former presented with the flail leg syndrome, a rare ALS variant, characterized by progressive distal onset weakness and atrophy of lower limbs, slow progression and better survival than typical ALS. The latter exhibited rapidly progressive weakness of upper and lower limbs, neither upper motor neuron nor bulbar involvement, and shorter survival than typical ALS. We provide an accurate description of the phenotype, and a bioinformatics analysis of the p.V119M variant on protein structure. This study may increase the knowledge about genotype-phenotype correlations in ALS and improve the approach to ALS patients.
Collapse
|
26
|
Amor S, Nutma E, Marzin M, Puentes F. Imaging immunological processes from blood to brain in amyotrophic lateral sclerosis. Clin Exp Immunol 2021; 206:301-313. [PMID: 34510431 PMCID: PMC8561688 DOI: 10.1111/cei.13660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Manuel Marzin
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Feng F, Wang H, Liu J, Wang Z, Xu B, Zhao K, Tao X, He Z, Yang F, Huang X. Genetic and clinical features of Chinese sporadic amyotrophic lateral sclerosis patients with TARDBP mutations. Brain Behav 2021; 11:e2312. [PMID: 34333853 PMCID: PMC8413724 DOI: 10.1002/brb3.2312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigate the genetic and clinical features of Chinese sporadic amyotrophic lateral sclerosis (SALS) patients with TARDBP mutations, we carried out a genetic analysis in a cohort of 391 SALS patients and explored the clinical manifestations of patients with TARDBP variants. MATERIALS AND METHODS The coding region of all five coding exons of TARDBP, exons 2-6, were sequenced for mutations in 391 Chinese SALS patients. The clinical features of patients with TARDBP mutations were described and compared with cases in literatures. RESULTS Two missense mutations in TARDBP gene, c.1132A > G (p.N378D) and c.1147A > G (p.I383V), were detected in three cases, showing a low frequency (0.77%, 3/391) of TARDBP missense mutations in Chinese SALS patients. Based on a retrospective analysis of literatures, p.N378D mutation mainly presents a phenotype of early onset, whereas p.I383V mutation presents pure ALS or ALS alongside semantic variant primary progressive aphasia (svPPA), a type of frontotemporal dementia (FTD). CONCLUSIONS Our results demonstrate that TARDBP mutation is a rare cause of Chinese SALS patients and expand the spectrum of phenotype. It is implied that genetic analysis of SALS patients plays a crucial role in uncovering the cause of disease, especially for cases developing early onset or alongside FTD.
Collapse
Affiliation(s)
- Feng Feng
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hongfen Wang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiajin Liu
- Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Baixuan Xu
- Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kun Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyong Tao
- Department of Neurology, Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhengqing He
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Hypoventilation syndrome in neuromuscular disorders (NMDs) is primarily due to respiratory muscle weakness and results in increased morbidity and mortality. This article highlights current aspects of neuromuscular hypoventilation syndrome, including pathophysiology, clinical symptoms, assessment, respiratory involvement in various NMD, and causal and symptomatic treatments with an emphasis on recent research and advances. RECENT FINDINGS AND SUMMARY New therapeutic agents have been developed within the last years, proving a positive effect on respiratory system. Symptomatic therapies, including mechanical ventilation and cough assistance approaches, are important in NMD and respiratory muscle training may have benefit in strengthening respiratory muscles and should be offered patients with respiratory muscle weakness the same way as physiotherapy. Correct respiratory assessments and their correct interpretation are hallmarks for early diagnosis of hypoventilation syndrome and treatment.
Collapse
|
29
|
Mohassel P, Donkervoort S, Lone MA, Nalls M, Gable K, Gupta SD, Foley AR, Hu Y, Saute JAM, Moreira AL, Kok F, Introna A, Logroscino G, Grunseich C, Nickolls AR, Pourshafie N, Neuhaus SB, Saade D, Gangfuß A, Kölbel H, Piccus Z, Le Pichon CE, Fiorillo C, Ly CV, Töpf A, Brady L, Specht S, Zidell A, Pedro H, Mittelmann E, Thomas FP, Chao KR, Konersman CG, Cho MT, Brandt T, Straub V, Connolly AM, Schara U, Roos A, Tarnopolsky M, Höke A, Brown RH, Lee CH, Hornemann T, Dunn TM, Bönnemann CG. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat Med 2021; 27:1197-1204. [PMID: 34059824 PMCID: PMC9309980 DOI: 10.1038/s41591-021-01346-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.
Collapse
Affiliation(s)
- Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Museer A Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jonas Alex Morales Saute
- Medical Genetics division and Neurology division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, and Internal Medicine Department; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Lucila Moreira
- Neurology Department, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Kok
- Neurogenetics Outpatient Service, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil and Mendelics, São Paulo, Brazil
| | - Alessandro Introna
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Giancarlo Logroscino
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari at 'Pia Fondazione Card G. Panico' Hospital Tricase (Le), Bari, Italy
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alec R Nickolls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dimah Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Gangfuß
- Department of Paediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Clinic Essen, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - Heike Kölbel
- Department of Paediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Clinic Essen, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - Zoe Piccus
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chiara Fiorillo
- Paediatric Neurology and Muscular Diseases Unit, G. Gaslini Institute and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, Genoa, Italy
| | - Cindy V Ly
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lauren Brady
- Division of Neuromuscular & Neurometabolic Disorders, Department of Paediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Sabine Specht
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Aliza Zidell
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Helio Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Eric Mittelmann
- Department of Neurology, Hereditary Neuropathy Foundation Center of Excellence, Neuroscience Institute, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Florian P Thomas
- Department of Neurology, Hereditary Neuropathy Foundation Center of Excellence, Neuroscience Institute, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Katherine R Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chamindra G Konersman
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | | | | | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anne M Connolly
- Department of Paediatrics, Neurology Division, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Ulrike Schara
- Department of Paediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Clinic Essen, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - Andreas Roos
- Department of Paediatric Neurology, Center for Neuromuscular Disorders in Children and Adolescents, University Clinic Essen, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - Mark Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Department of Paediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, USA.
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Understanding Neuromuscular Health and Disease: Advances in Genetics, Omics, and Molecular Function. J Pers Med 2021; 11:jpm11050438. [PMID: 34065209 PMCID: PMC8161133 DOI: 10.3390/jpm11050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
|
31
|
Broce IJ, Castruita PA, Yokoyama JS. Moving Toward Patient-Tailored Treatment in ALS and FTD: The Potential of Genomic Assessment as a Tool for Biological Discovery and Trial Recruitment. Front Neurosci 2021; 15:639078. [PMID: 33732107 PMCID: PMC7956998 DOI: 10.3389/fnins.2021.639078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and intertwined neurodegenerative diseases. Historically, ALS and FTD were considered distinct disorders given differences in presenting clinical symptoms, disease duration, and predicted risk of developing each disease. However, research over recent years has highlighted the considerable clinical, pathological, and genetic overlap of ALS and FTD, and these two syndromes are now thought to represent different manifestations of the same neuropathological disease spectrum. In this review, we discuss the need to shift our focus from studying ALS and FTD in isolation to identifying the biological mechanisms that drive these diseases-both common and distinct-to improve treatment discovery and therapeutic development success. We also emphasize the importance of genomic data to facilitate a "precision medicine" approach for treating ALS and FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, United States
| | - Patricia A. Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
32
|
Bayesian Network as a Decision Tool for Predicting ALS Disease. Brain Sci 2021; 11:brainsci11020150. [PMID: 33498784 PMCID: PMC7912628 DOI: 10.3390/brainsci11020150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Clinical diagnosis of amyotrophic lateral sclerosis (ALS) is difficult in the early period. But blood tests are less time consuming and low cost methods compared to other methods for the diagnosis. The ALS researchers have been used machine learning methods to predict the genetic architecture of disease. In this study we take advantages of Bayesian networks and machine learning methods to predict the ALS patients with blood plasma protein level and independent personal features. According to the comparison results, Bayesian Networks produced best results with accuracy (0.887), area under the curve (AUC) (0.970) and other comparison metrics. We confirmed that sex and age are effective variables on the ALS. In addition, we found that the probability of onset involvement in the ALS patients is very high. Also, a person’s other chronic or neurological diseases are associated with the ALS disease. Finally, we confirmed that the Parkin level may also have an effect on the ALS disease. While this protein is at very low levels in Parkinson’s patients, it is higher in the ALS patients than all control groups.
Collapse
|
33
|
Borgese N, Navone F, Nukina N, Yamanaka T. Mutant VAPB: Culprit or Innocent Bystander of Amyotrophic Lateral Sclerosis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211022515. [PMID: 37366377 PMCID: PMC10243577 DOI: 10.1177/25152564211022515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 06/28/2023]
Abstract
Nearly twenty years ago a mutation in the VAPB gene, resulting in a proline to serine substitution (p.P56S), was identified as the cause of a rare, slowly progressing, familial form of the motor neuron degenerative disease Amyotrophic Lateral Sclerosis (ALS). Since then, progress in unravelling the mechanistic basis of this mutation has proceeded in parallel with research on the VAP proteins and on their role in establishing membrane contact sites between the ER and other organelles. Analysis of the literature on cellular and animal models reviewed here supports the conclusion that P56S-VAPB, which is aggregation-prone, non-functional and unstable, is expressed at levels that are insufficient to support toxic gain-of-function or dominant negative effects within motor neurons. Instead, insufficient levels of the product of the single wild-type allele appear to be required for pathological effects, and may be the main driver of the disease. In light of the multiple interactions of the VAP proteins, we address the consequences of specific VAPB depletion and highlight various affected processes that could contribute to motor neuron degeneration. In the future, distinction of specific roles of each of the two VAP paralogues should help to further elucidate the basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of
Neuroscience, Vedano al Lambro (MB), Italy
| | | | - Nobuyuki Nukina
- Laboratory of Structural
Neuropathology, Doshisha University Graduate School of Brain Science,
Kyoto, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural
Neuropathology, Doshisha University Graduate School of Brain Science,
Kyoto, Japan
| |
Collapse
|
34
|
Vasilopoulou C, Morris AP, Giannakopoulos G, Duguez S, Duddy W. What Can Machine Learning Approaches in Genomics Tell Us about the Molecular Basis of Amyotrophic Lateral Sclerosis? J Pers Med 2020; 10:E247. [PMID: 33256133 PMCID: PMC7712791 DOI: 10.3390/jpm10040247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common late-onset motor neuron disorder, but our current knowledge of the molecular mechanisms and pathways underlying this disease remain elusive. This review (1) systematically identifies machine learning studies aimed at the understanding of the genetic architecture of ALS, (2) outlines the main challenges faced and compares the different approaches that have been used to confront them, and (3) compares the experimental designs and results produced by those approaches and describes their reproducibility in terms of biological results and the performances of the machine learning models. The majority of the collected studies incorporated prior knowledge of ALS into their feature selection approaches, and trained their machine learning models using genomic data combined with other types of mined knowledge including functional associations, protein-protein interactions, disease/tissue-specific information, epigenetic data, and known ALS phenotype-genotype associations. The importance of incorporating gene-gene interactions and cis-regulatory elements into the experimental design of future ALS machine learning studies is highlighted. Lastly, it is suggested that future advances in the genomic and machine learning fields will bring about a better understanding of ALS genetic architecture, and enable improved personalized approaches to this and other devastating and complex diseases.
Collapse
Affiliation(s)
- Christina Vasilopoulou
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK; (C.V.); (S.D.)
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK;
| | - George Giannakopoulos
- Institute of Informatics and Telecommunications, NCSR Demokritos, 153 10 Aghia Paraskevi, Greece;
- Science For You (SciFY) PNPC, TEPA Lefkippos-NCSR Demokritos, 27, Neapoleos, 153 41 Ag. Paraskevi, Greece
| | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK; (C.V.); (S.D.)
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK; (C.V.); (S.D.)
| |
Collapse
|
35
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
36
|
Le Gall L, Anakor E, Connolly O, Vijayakumar UG, Duddy WJ, Duguez S. Molecular and Cellular Mechanisms Affected in ALS. J Pers Med 2020; 10:E101. [PMID: 32854276 PMCID: PMC7564998 DOI: 10.3390/jpm10030101] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal late-onset condition characterized by the loss of upper and lower motor neurons. Mutations in more than 30 genes are associated to the disease, but these explain only ~20% of cases. The molecular functions of these genes implicate a wide range of cellular processes in ALS pathology, a cohesive understanding of which may provide clues to common molecular mechanisms across both familial (inherited) and sporadic cases and could be key to the development of effective therapeutic approaches. Here, the different pathways that have been investigated in ALS are summarized, discussing in detail: mitochondrial dysfunction, oxidative stress, axonal transport dysregulation, glutamate excitotoxicity, endosomal and vesicular transport impairment, impaired protein homeostasis, and aberrant RNA metabolism. This review considers the mechanistic roles of ALS-associated genes in pathology, viewed through the prism of shared molecular pathways.
Collapse
Affiliation(s)
- Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Owen Connolly
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Udaya Geetha Vijayakumar
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - William J. Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| |
Collapse
|