1
|
Cortés A, López-Miranda E, Fernández-Ortega A, Carañana V, Servitja S, Urruticoechea A, Lema-Roso L, Márquez A, Lazaris A, Alcalá-López D, Mina L, Gener P, Rodríguez-Morató J, Antonarelli G, Llombart-Cussac A, Pérez-García J, Cortés J. Olaparib monotherapy in advanced triple-negative breast cancer patients with homologous recombination deficiency and without germline mutations in BRCA1/2: The NOBROLA phase 2 study. Breast 2024; 78:103834. [PMID: 39520738 PMCID: PMC11585816 DOI: 10.1016/j.breast.2024.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To evaluate olaparib in advanced triple negative breast cancer (TNBC) patients with homologous recombination deficiency (HRD) and no germline BRCA1/2 mutations (gBRCA1/2mut). METHODS NOBROLA (NCT03367689) is a single-arm, open-label, multicenter, phase IIa trial, enrolling adult patients with advanced TNBC without gBRCA1/2mut and with HRD, who were treated with olaparib. The primary endpoint was clinical benefit rate (CBR) per RECIST v.1.1. RESULTS Six of 114 patients were eligible and received olaparib. Median follow up was 8.5 months. CBR and overall response rate (ORR) were 50 % (95 % CI, 11.8-88.2). CONCLUSIONS The observed results could prompt further investigation. TRIAL ClinicalTrials.gov identifier NCT03367689.
Collapse
Affiliation(s)
| | - Elena López-Miranda
- Hospital Universitario Ramón y Cajal, Madrid, Spain; Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | | | - Vicente Carañana
- Department of Medical Oncology, Hospital Arnau de Vilanova, Valencia, Spain
| | | | | | | | - Antonia Márquez
- UGCI Oncología Médica, Hospital Universitario Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Alexandros Lazaris
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Daniel Alcalá-López
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Leonardo Mina
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Petra Gener
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Jose Rodríguez-Morató
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Gabriele Antonarelli
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA; Department of Medical Oncology, Hospital Arnau de Vilanova, Valencia, Spain.
| | - José Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA; International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA; International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| |
Collapse
|
2
|
Hu X, Liu H, Luo T, Chen L, Peng T, Wen M, Luo W, Xu Q, Xie Y, Li M, Liu M, Liu X, Liu S, Zhu S, Zou Z, Luo Z. Naphthoquinone-derived ZSW-4B induces apoptosis in triple-negative breast cancer via AMPK signalling activation. Sci Rep 2024; 14:28559. [PMID: 39558000 PMCID: PMC11574302 DOI: 10.1038/s41598-024-79592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant molecular subtype of breast cancer and is characterized by aggressiveness, high mortality, significant heterogeneity, and poor prognosis. AMPK plays a critical role in maintaining the cellular energy balance, and its inactivation is associated with malignant breast cancer. Here, we identified the pharmacological mechanism of the 1,4-naphthoquinone derivative ZSW-4B. MTT, colony formation, and nude mouse xenograft tumour models demonstrated that ZSW-4B selectively inhibits the proliferation of TNBC cells both in vitro and in vivo. Flow cytometry and Western blot analysis revealed that ZSW-4B induces apoptosis in TNBC cells. Phosphoproteomic analysis revealed activation of the AMPK signalling pathway by ZSW-4B. Additionally, the application of the CRISPR-Cas9 system to genetically knockout AMPK in TNBC cell lines was demonstrated to reverse the antitumour effects elicited by ZSW-4B both in vitro and in vivo. In summary, ZSW-4B inhibits TNBC by inducing cellular apoptosis through the activation of AMPK.
Collapse
Affiliation(s)
- Xiyuan Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Hongdou Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410008, China
| | - Ling Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Ting Peng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Min Wen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China
| | - Wensong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qunfang Xu
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China
| | - Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Mo Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Mingquan Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Xiaohe Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Suyou Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Shuaiwen Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Zizheng Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China.
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Yuan P, Ma N, Xu B. Poly (adenosine diphosphate-ribose) polymerase inhibitors in the treatment of triple-negative breast cancer with homologous repair deficiency. Med Res Rev 2024; 44:2774-2792. [PMID: 38922930 DOI: 10.1002/med.22058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.
Collapse
Affiliation(s)
- Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Ma
- Value & Implementation, Global Medical & Scientific Affairs, MSD China, Shanghai, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Bergstrom EN, Abbasi A, Díaz-Gay M, Galland L, Ladoire S, Lippman SM, Alexandrov LB. Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response From Histologic Slides. J Clin Oncol 2024; 42:3550-3560. [PMID: 39083703 PMCID: PMC11469627 DOI: 10.1200/jco.23.02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/23/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE Cancers with homologous recombination deficiency (HRD) can benefit from platinum salts and poly(ADP-ribose) polymerase inhibitors. Standard diagnostic tests for detecting HRD require molecular profiling, which is not universally available. METHODS We trained DeepHRD, a deep learning platform for predicting HRD from hematoxylin and eosin (H&E)-stained histopathological slides, using primary breast (n = 1,008) and ovarian (n = 459) cancers from The Cancer Genome Atlas (TCGA). DeepHRD was compared with four standard HRD molecular tests using breast (n = 349) and ovarian (n = 141) cancers from multiple independent data sets, including platinum-treated clinical cohorts with RECIST progression-free survival (PFS), complete response (CR), and overall survival (OS) endpoints. RESULTS DeepHRD predicted HRD from held-out H&E-stained breast cancer slides in TCGA with an AUC of 0.81 (95% CI, 0.77 to 0.85). This performance was confirmed in two independent primary breast cancer cohorts (AUC, 0.76 [95% CI, 0.71 to 0.82]). In an external platinum-treated metastatic breast cancer cohort, samples predicted as HRD had higher complete CR (AUC, 0.76 [95% CI, 0.54 to 0.93]) with 3.7-fold increase in median PFS (14.4 v 3.9 months; P = .0019) and hazard ratio (HR) of 0.45 (P = .0047). There were no significant differences in nonplatinum treatment outcome by predicted HRD status in three breast cancer cohorts, including CR (AUC, 0.39) and PFS (HR, 0.98, P = .95) in taxane-treated metastatic breast cancer. Through transfer learning to high-grade serous ovarian cancer, DeepHRD-predicted HRD samples had better OS after first-line (HR, 0.46; P = .030) and neoadjuvant (HR, 0.49; P = .015) platinum therapy in two cohorts. CONCLUSION DeepHRD can predict HRD in breast and ovarian cancers directly from routine H&E slides across multiple external cohorts, slide scanners, and tissue fixation variables. When compared with molecular testing, DeepHRD classified 1.8- to 3.1-fold more patients with HRD, which exhibited better OS in high-grade serous ovarian cancer and platinum-specific PFS in metastatic breast cancer.
Collapse
Affiliation(s)
- Erik N. Bergstrom
- Moores Cancer Center, UC San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
- Department of Bioengineering, UC San Diego, La Jolla, CA
| | - Ammal Abbasi
- Moores Cancer Center, UC San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
- Department of Bioengineering, UC San Diego, La Jolla, CA
| | - Marcos Díaz-Gay
- Moores Cancer Center, UC San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
- Department of Bioengineering, UC San Diego, La Jolla, CA
| | - Loïck Galland
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- Platform of Transfer in Biological Oncology, Centre Georges-François Leclerc, Dijon, France
- University of Burgundy-Franche Comté, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- Platform of Transfer in Biological Oncology, Centre Georges-François Leclerc, Dijon, France
- University of Burgundy-Franche Comté, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | | | - Ludmil B. Alexandrov
- Moores Cancer Center, UC San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
- Department of Bioengineering, UC San Diego, La Jolla, CA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA
| |
Collapse
|
5
|
Sahu P, Camarillo IG, Dettin M, Zamuner A, Teresa Conconi M, Barozzi M, Giri P, Sundararajan R, Sieni E. Electroporation enhances cell death in 3D scaffold-based MDA-MB-231 cells treated with metformin. Bioelectrochemistry 2024; 159:108734. [PMID: 38762949 DOI: 10.1016/j.bioelechem.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G Camarillo
- Deptartment of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy; Department of Civil, Environmental, and Architectural Engineering, University of Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Marco Barozzi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy
| | - Pragatheiswar Giri
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy.
| |
Collapse
|
6
|
Chen JY, Li JD, He RQ, Huang ZG, Chen G, Zou W. Bibliometric analysis of phosphoglycerate kinase 1 expression in breast cancer and its distinct upregulation in triple-negative breast cancer. World J Clin Oncol 2024; 15:867-894. [PMID: 39071464 PMCID: PMC11271732 DOI: 10.5306/wjco.v15.i7.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Phosphoglycerate kinase 1 (PGK1) has been identified as a possible biomarker for breast cancer (BC) and may play a role in the development and advancement of triple-negative BC (TNBC). AIM To explore the PGK1 and BC research status and PGK1 expression and mechanism differences among TNBC, non-TNBC, and normal breast tissue. METHODS PGK1 and BC related literature was downloaded from Web of Science Core Collection Core Collection. Publication counts, key-word frequency, cooperation networks, and theme trends were analyzed. Normal breast, TNBC, and non-TNBC mRNA data were gathered, and differentially expressed genes obtained. Area under the summary receiver operating characteristic curves, sensitivity and specificity of PGK1 expression were determined. Kaplan Meier revealed PGK1's prognostic implication. PGK1 co-expressed genes were explored, and Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Disease Ontology applied. Protein-protein interaction networks were constructed. Hub genes identified. RESULTS PGK1 and BC related publications have surged since 2020, with China leading the way. The most frequent keyword was "Expression". Collaborative networks were found among co-citations, countries, institutions, and authors. PGK1 expression and BC progression were research hotspots, and PGK1 expression and BC survival were research frontiers. In 16 TNBC vs non-cancerous breast and 15 TNBC vs non-TNBC datasets, PGK1 mRNA levels were higher in 1159 TNBC than 1205 non-cancerous breast cases [standardized mean differences (SMD): 0.85, 95% confidence interval (95%CI): 0.54-1.16, I² = 86%, P < 0.001]. PGK1 expression was higher in 1520 TNBC than 7072 non-TNBC cases (SMD: 0.25, 95%CI: 0.03-0.47, I² = 91%, P = 0.02). Recurrence free survival was lower in PGK1-high-expression than PGK1-low-expression group (hazard ratio: 1.282, P = 0.023). PGK1 co-expressed genes were concentrated in ATP metabolic process, HIF-1 signaling, and glycolysis/gluconeogenesis pathways. CONCLUSION PGK1 expression is a research hotspot and frontier direction in the BC field. PGK1 may play a strong role in promoting cancer in TNBC by mediating metabolism and HIF-1 signaling pathways.
Collapse
Affiliation(s)
- Jing-Yu Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wen Zou
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Cai X, Liu W, Zhang J, Li Z, Liu M, Hu S, Luo J, Peng K, Ye B, Wang Y, Yan R. Study of Iron Complex Photosensitizer with Hollow Double-Shell Nano Structure Used to Enhance Ferroptosis and Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309086. [PMID: 38321834 DOI: 10.1002/smll.202309086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Indexed: 02/08/2024]
Abstract
Ferroptosis therapy, which uses ferroptosis inducers to produce lethal lipid peroxides and induce tumor cell death, is considered a promising cancer treatment strategy. However, challenges remain regarding how to increase the accumulation of reactive oxygen species (ROS) in the tumor microenvironment (TME) to enhance antitumor efficacy. In this study, a hyaluronic acid (HA) encapsulated hollow mesoporous manganese dioxide (H-MnO2) with double-shell nanostructure is designed to contain iron coordinated cyanine near-infrared dye IR783 (IR783-Fe) for synergistic ferroptosis photodynamic therapy against tumors. The nano photosensitizer IR783-Fe@MnO2-HA, in which HA actively targets the CD44 receptor, subsequently dissociates and releases Fe3+ and IR783 in acidic TME. First, Fe3+ consumes glutathione to produce Fe2+, which promotes the Fenton reaction in cells to produce hydroxyl free radicals (·OH) and induce ferroptosis of tumor cells. In addition, MnO2 catalyzes the production of O2 from H2O2 and enhances the production of singlet oxygen (1O2) by IR783 under laser irradiation, thus increasing the production and accumulation of ROS to provide photodynamic therapy. The highly biocompatible IR783-Fe@MnO2-HA nano-photosensitizers have exhibited tumor-targeting ability and efficient tumor inhibition in vivo due to the synergistic effect of photodynamic and ferroptosis antitumor therapies.
Collapse
Affiliation(s)
- Xinrui Cai
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Weixing Liu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiahao Zhang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongrui Li
- Electron Microbeam Analysis Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mengkang Liu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuo Hu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Luo
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Peng
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Baofen Ye
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Wang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Ran Yan
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
8
|
Ding Y, Ye Z, Ding B, Feng S, Zhang Y, Shen Y. Identification of CXCL13 as a Promising Biomarker for Immune Checkpoint Blockade Therapy and PARP Inhibitor Therapy in Ovarian Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01207-5. [PMID: 38856873 DOI: 10.1007/s12033-024-01207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Ovarian cancer has poor response rates to immune checkpoint blockade (ICB) therapy, despite the use of genomic sequencing to identify molecular targets. Homologous recombination deficiency (HRD) is a conventional indicator of genomic instability (GI) and has been used as a marker for targeted therapies. Indicators reflecting HRD status have shown potential in predicting the efficacy of ICB treatment. Public databases, including TCGA, ICGC, and GEO, were used to obtain data. HRD scores, neoantigen load, and TMB were obtained from the TCGA cohort. Candidate biomarkers were validated in multiple databases, such as the Imvigor210 immunotherapy cohort and the open-source single-cell sequencing database. Immunohistochemistry was performed to further validate the results in independent cohorts. CXCL10, CXCL11, and CXCL13 were found to be significantly upregulated in HRD tumors and exhibited prognostic value. A comprehensive analysis of the tumor immune microenvironment (TIME) revealed that CXCL13 expression positively correlated with neoantigen load and immune cell infiltration. In addition, single-cell sequencing data and clinical trial results supported the utility of CXCL13 as a biomarker for ICB therapy. Not only does CXCL13 serve as a biomarker reflecting HRD status, but it also introduces a potentially novel perspective on prognostic biomarkers for ICB in ovarian cancer.
Collapse
Affiliation(s)
- Yue Ding
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Songwei Feng
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, First People's Hospital of Lianyungang, No. 6 East Zhenhua Road, Haizhou, Lianyungang, China.
| | - Yang Shen
- Department of Obstetrics and Gynaecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Huang Y, Qiu Y, Ding L, Ren S, Jiang Y, Luo J, Huang J, Yin X, Fu S, Zhao J, Hu K, Liao J. Somatic mutations in four novel genes contribute to homologous recombination deficiency in breast cancer: a real-world clinical tumor sequencing study. J Pathol Clin Res 2024; 10:e12367. [PMID: 38504382 PMCID: PMC10951049 DOI: 10.1002/2056-4538.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
Breast cancers involving mutations in homologous recombination (HR) genes, most commonly BRCA1 and BRCA2 (BRCA1/2), respond well to PARP inhibitors and platinum-based chemotherapy. However, except for these specific HR genes, it is not clear which other mutations contribute to homologous recombination defects (HRD). Here, we performed next-generation sequencing of tumor tissues and matched blood samples from 119 breast cancer patients using the OncoScreen Plus panel. Genomic mutation characteristics and HRD scores were analyzed. In the HR genes, we found that BRCA1/2 and PLAB2 mutations were related to HRD. HRD was also detected in a subset of patients without germline or somatic mutations in BRCA1/2, PLAB2, or other HR-related genes. Notably, LRP1B, NOTCH3, GATA2, and CARD11 (abbreviated as LNGC) mutations were associated with high HRD scores in breast cancer patients. Furthermore, functional experiments demonstrated that silencing CARD11 and GATA2 impairs HR repair efficiency and enhances the sensitivity of tumor cells to olaparib treatment. In summary, in the absence of mutations in the HR genes, the sensitivity of tumor cells to PARP inhibitors and platinum-based chemotherapy may be enhanced in a subset of breast cancer patients with LNGC somatic mutations.
Collapse
Affiliation(s)
- Yongsheng Huang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Linxiaoxiao Ding
- Breast Tumor Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Shuwei Ren
- Department of Clinical LaboratoryThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jiahuan Luo
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jinghua Huang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Xinke Yin
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Sha Fu
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jianli Zhao
- Breast Tumor Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| |
Collapse
|
10
|
Ali U, Vungarala S, Tiriveedhi V. Genomic Features of Homologous Recombination Deficiency in Breast Cancer: Impact on Testing and Immunotherapy. Genes (Basel) 2024; 15:162. [PMID: 38397152 PMCID: PMC10887603 DOI: 10.3390/genes15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic instability is one of the well-established hallmarks of cancer. The homologous recombination repair (HRR) pathway plays a critical role in correcting the double-stranded breaks (DSB) due to DNA damage in human cells. Traditionally, the BRCA1/2 genes in the HRR pathway have been tested for their association with breast cancer. However, defects in the HRR pathway (HRD, also termed 'BRCAness'), which has up to 50 genes, have been shown to be involved in tumorigenesis and treatment susceptibility to poly-ADP ribose polymerase inhibitors (PARPis), platinum-based chemotherapy, and immune checkpoint inhibitors (ICIs). A reliable consensus on HRD scores is yet to be established. Emerging evidence suggests that only a subset of breast cancer patients benefit from ICI-based immunotherapy. Currently, albeit with limitations, the expression of programmed death-ligand 1 (PDL1) and tumor mutational burden (TMB) are utilized as biomarkers to predict the favorable outcomes of ICI therapy in breast cancer patients. Preclinical studies demonstrate an interplay between the HRR pathway and PDL1 expression. In this review, we outline the current understanding of the role of HRD in genomic instability leading to breast tumorigenesis and delineate outcomes from various clinical trials. Furthermore, we discuss potential strategies for combining HRD-targeted therapy with immunotherapy to achieve the best healthcare outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Umer Ali
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Sunitha Vungarala
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, Nashville, TN 37209, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
11
|
Shin K, Kim R, Park H, Lee W, Lee S, Im J, Lee JE, Kim SH, Connolly-Strong E, Ju YS, Oh BBL, Lee J. Clinical Utility of Whole-Genome Analysis as One-for-All Test for Breast Cancer: A Case Series. Case Rep Oncol 2024; 17:317-328. [PMID: 38404405 PMCID: PMC10890799 DOI: 10.1159/000536087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 02/27/2024] Open
Abstract
Introduction Breast cancer exhibits vast genomic diversity, leading to varied clinical manifestations. Integrating molecular subtyping with in-depth genomic profiling is pivotal for informed treatment choices and prognostic insights. Whole-genome clinical analysis provides a holistic view of genome-wide variations, capturing structural changes and affirming tumor suppressor gene loss of heterozygosity. Case Presentation Here we detail four unique breast cancer cases from Seoul St. Mary's Hospital, highlighting the actionable benefits and clinical value of whole-genome sequencing (WGS). As an all-in-one test, WGS demonstrates significant clinical utility in these cases, including: (1) detecting homologous recombination deficiency with underlying somatic causal variants (case 1), (2) distinguishing double primary cancer from metastasis (case 2), (3) uncovering microsatellite instability (case 3), and (4) identifying rare germline pathogenic variants in TP53 gene (case 4). Our observations underscore the enhanced clinical relevance of WGS-based testing beyond pinpointing a few driver mutations in conventional targeted panel sequencing platforms. Conclusion With genomic advancements and decreasing sequencing costs, WGS stands out as a transformative tool in oncology, paving the way for personalized treatment plans rooted in individual genetic blueprints.
Collapse
Affiliation(s)
- Kabsoo Shin
- Division of Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ryul Kim
- Genome Insight, San Diego, CA, USA
| | | | | | | | | | - Ji Eun Lee
- Division of Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hun Kim
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | - Jeongmin Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Beas-Lozano EL, Verduzco-Aguirre HC, Gonzalez-Salazar R, Chavarri-Guerra Y. Real-world data in patients with BRCA mutated breast cancer treated with poly (ADP-ribose) polymerase inhibitors. Ecancermedicalscience 2023; 17:1633. [PMID: 38414963 PMCID: PMC10898914 DOI: 10.3332/ecancer.2023.1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 02/29/2024] Open
Abstract
Breast cancer is the most common type of cancer globally. Hereditary breast cancer accounts for 10% of new cases and 4%-5% of cases are associated to pathogenic variants in BRCA1 or BRCA2 genes. In recent years, poly-adenosine-diphosphate-ribose polymerase inhibitors (PARPi) olaparib and talazoparib have been approved for patients with BRCA-associated, HER2 -negative breast cancer. These drugs have shown positive results in the early and advanced setting with a favourable toxicity profile based on the OlympiAD, OlympiA and EMBRACA phase 3 trials. However, patients included in these randomised trials are highly selected, making toxicity and efficacy in patients encountered in routine clinical care a concern. Since the approval of olaparib and talazoparib for advanced human epidermal growth factor receptor 2-negative (HER2-negative) breast cancer, several phase IIIb-IV trials, expanded access cohorts, and retrospective cohorts have provided information on the efficacy and tolerability of these treatments in patient subgroups underrepresented in the registration trials, such as older adults, patients with poor performance status, and heavily pretreated patients. The aim of this review is to present a critical review of the information regarding the use of PARPi in real-world breast cancer patients.
Collapse
Affiliation(s)
- Evelyn Lilian Beas-Lozano
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Haydeé Cristina Verduzco-Aguirre
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Roberto Gonzalez-Salazar
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Yanin Chavarri-Guerra
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| |
Collapse
|
13
|
Luo LZ, Li S, Wei C, Ma J, Qian LM, Chen YX, Wang SX, Zhao Q. Unveiling the interplay between mutational signatures and tumor microenvironment: a pan-cancer analysis. Front Immunol 2023; 14:1186357. [PMID: 37283742 PMCID: PMC10239828 DOI: 10.3389/fimmu.2023.1186357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Background While recent studies have separately explored mutational signatures and the tumor microenvironment (TME), there is limited research on the associations of both factors in a pan-cancer context. Materials and methods We performed a pan-cancer analysis of over 8,000 tumor samples from The Cancer Genome Atlas (TCGA) project. Machine learning methods were employed to systematically explore the relationship between mutational signatures and TME and develop a risk score based on TME-associated mutational signatures to predict patient survival outcomes. We also constructed an interaction model to explore how mutational signatures and TME interact and influence cancer prognosis. Results Our analysis revealed a varied association between mutational signatures and TME, with the Clock-like signature showing the most widespread influence. Risk scores based on mutational signatures mainly induced by Clock-like and AID/APOBEC activity exhibited strong pan-cancer survival stratification ability. We also propose a novel approach to predict transcriptome decomposed infiltration levels using genome-derived mutational signatures as an alternative approach for exploring TME cell types when transcriptome data are unavailable. Our comprehensive analysis revealed that certain mutational signatures and their interaction with immune cells significantly impact clinical outcomes in particular cancer types. For instance, T cell infiltration levels only served as a prognostic biomarker in melanoma patients with high ultraviolet radiation exposure, breast cancer patients with high homologous recombination deficiency signature, and lung adenocarcinoma patients with high tobacco-associated mutational signature. Conclusion Our study comprehensively explains the complex interplay between mutational signatures and immune infiltration in cancer. The results highlight the importance of considering both mutational signatures and immune phenotypes in cancer research and their significant implications for developing personalized cancer treatments and more effective immunotherapy.
Collapse
Affiliation(s)
- Li-Zhi Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Sheng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Chen Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiao Ma
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Li-Mei Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Xiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Pipek O, Alpár D, Rusz O, Bödör C, Udvarnoki Z, Medgyes-Horváth A, Csabai I, Szállási Z, Madaras L, Kahán Z, Cserni G, Kővári B, Kulka J, Tőkés AM. Genomic Landscape of Normal and Breast Cancer Tissues in a Hungarian Pilot Cohort. Int J Mol Sci 2023; 24:ijms24108553. [PMID: 37239898 DOI: 10.3390/ijms24108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
A limited number of studies have focused on the mutational landscape of breast cancer in different ethnic populations within Europe and compared the data with other ethnic groups and databases. We performed whole-genome sequencing of 63 samples from 29 Hungarian breast cancer patients. We validated a subset of the identified variants at the DNA level using the Illumina TruSight Oncology (TSO) 500 assay. Canonical breast-cancer-associated genes with pathogenic germline mutations were CHEK2 and ATM. Nearly all the observed germline mutations were as frequent in the Hungarian breast cancer cohort as in independent European populations. The majority of the detected somatic short variants were single-nucleotide polymorphisms (SNPs), and only 8% and 6% of them were deletions or insertions, respectively. The genes most frequently affected by somatic mutations were KMT2C (31%), MUC4 (34%), PIK3CA (18%), and TP53 (34%). Copy number alterations were most common in the NBN, RAD51C, BRIP1, and CDH1 genes. For many samples, the somatic mutational landscape was dominated by mutational processes associated with homologous recombination deficiency (HRD). Our study, as the first breast tumor/normal sequencing study in Hungary, revealed several aspects of the significantly mutated genes and mutational signatures, and some of the copy number variations and somatic fusion events. Multiple signs of HRD were detected, highlighting the value of the comprehensive genomic characterization of breast cancer patient populations.
Collapse
Affiliation(s)
- Orsolya Pipek
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Orsolya Rusz
- Department of Pathology, Forensic and Insurance Medicine, SE NAP, Brain Metastasis Research Group, Semmelweis University, 1091 Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zoltán Udvarnoki
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anna Medgyes-Horváth
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zoltán Szállási
- Department of Pathology, Forensic and Insurance Medicine, SE NAP, Brain Metastasis Research Group, Semmelweis University, 1091 Budapest, Hungary
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Lilla Madaras
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, University of Szeged, 6720 Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
- Department of Pathology, Bács-Kiskun County Teaching Hospital, 6000 Kecskemét, Hungary
| | - Bence Kővári
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
- Department of Pathology, Henry Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Janina Kulka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Anna Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| |
Collapse
|
15
|
Chen Y, Wang X, Du F, Yue J, Si Y, Zhao X, Cui L, Zhang B, Bei T, Xu B, Yuan P. Association between homologous recombination deficiency and outcomes with platinum and platinum-free chemotherapy in patients with triple-negative breast cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0525. [PMID: 36861447 PMCID: PMC9978893 DOI: 10.20892/j.issn.2095-3941.2022.0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE The choice of chemotherapeutic regimen for triple-negative breast cancer (TNBC) remains controversial. Homologous recombination deficiency (HRD) has attracted increasing attention in informing chemotherapy treatment. This study was aimed at investigating the feasibility of HRD as a clinically actionable biomarker for platinum-containing and platinum-free therapy. METHODS Chinese patients with TNBC who received chemotherapy between May 1, 2008 and March 31, 2020 were retrospectively analyzed with a customized 3D-HRD panel. HRD positivity was defined by an HRD score ≥ 30 or deleterious BRCA1/2 mutation. A total of 386 chemotherapy-treated patients with TNBC were screened from a surgical cohort (NCT01150513) and a metastatic cohort, and 189 patients with available clinical and tumor sequencing data were included. RESULTS In the entire cohort, 49.2% (93/189) of patients were identified as HRD positive (40 with deleterious BRCA1/2 mutations and 53 with BRCA1/2 intact with an HRD score of ≥ 30). In the first-line metastatic setting, platinum therapy was associated with longer median progression-free survival (mPFS) than platinum-free therapy [9.1 vs. 3.0 months; hazard ratio (HR), 0.43; 95% confidence interval 0.22-0.84; P = 0.01]. Among HRD-positive patients, the mPFS was significantly longer in those treated with platinum rather than platinum-free therapy (13.6 vs. 2.0 months; HR, 0.11; P = 0.001). Among patients administered a platinum-free regimen, HRD-negative patients showed a PFS significantly superior to that of HRD-positive patients (P = 0.02; treatment-biomarker P-interaction = 0.001). Similar results were observed in the BRCA1/2-intact subset. In the adjuvant setting, HRD-positive patients tended to benefit more from platinum chemotherapy than from platinum-free chemotherapy (P = 0.05, P-interaction = 0.02). CONCLUSIONS HRD characterization may guide decision-making regarding the use of platinum treatment in patients with TNBC in both adjuvant and metastatic settings.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Medical Oncology and Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Feng Du
- Department of Medical Oncology and Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiran Si
- Department of Medical Oncology and Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaochen Zhao
- The Medical Department, 3D Medicines Inc., Shanghai 201114, China
| | - Lina Cui
- The Medical Department, 3D Medicines Inc., Shanghai 201114, China
| | - Bei Zhang
- The Medical Department, 3D Medicines Inc., Shanghai 201114, China
| | - Ting Bei
- The Medical Department, 3D Medicines Inc., Shanghai 201114, China
| | - Binghe Xu
- Department of Medical Oncology and Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence to: Peng Yuan and Binghe Xu, and
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence to: Peng Yuan and Binghe Xu, and
| |
Collapse
|
16
|
Clinical Utility of Genomic Tests Evaluating Homologous Recombination Repair Deficiency (HRD) for Treatment Decisions in Early and Metastatic Breast Cancer. Cancers (Basel) 2023; 15:cancers15041299. [PMID: 36831640 PMCID: PMC9954086 DOI: 10.3390/cancers15041299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most frequently occurring cancer worldwide. With its increasing incidence, it is a major public health problem, with many therapeutic challenges such as precision medicine for personalized treatment. Thanks to next-generation sequencing (NGS), progress in biomedical technologies, and the use of bioinformatics, it is now possible to identify specific molecular alterations in tumor cells-such as homologous recombination deficiencies (HRD)-enabling us to consider using DNA-damaging agents such as platinum salts or PARP inhibitors. Different approaches currently exist to analyze impairment of the homologous recombination pathway, e.g., the search for specific mutations in homologous recombination repair (HRR) genes, such as BRCA1/2; the use of genomic scars or mutational signatures; or the development of functional tests. Nevertheless, the role and value of these different tests in breast cancer treatment decisions remains to be clarified. In this review, we summarize current knowledge on the clinical utility of genomic tests, evaluating HRR deficiency for treatment decisions in early and metastatic breast cancer.
Collapse
|
17
|
Hong R, Xu B. Breast cancer: an up-to-date review and future perspectives. Cancer Commun (Lond) 2022; 42:913-936. [PMID: 36074908 PMCID: PMC9558690 DOI: 10.1002/cac2.12358] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/16/2022] [Accepted: 08/21/2022] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most common cancer worldwide. The occurrence of breast cancer is associated with many risk factors, including genetic and hereditary predisposition. Breast cancers are highly heterogeneous. Treatment strategies for breast cancer vary by molecular features, including activation of human epidermal growth factor receptor 2 (HER2), hormonal receptors (estrogen receptor [ER] and progesterone receptor [PR]), gene mutations (e.g., mutations of breast cancer 1/2 [BRCA1/2] and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha [PIK3CA]) and markers of the immune microenvironment (e.g., tumor-infiltrating lymphocyte [TIL] and programmed death-ligand 1 [PD-L1]). Early-stage breast cancer is considered curable, for which local-regional therapies (surgery and radiotherapy) are the cornerstone, with systemic therapy given before or after surgery when necessary. Preoperative or neoadjuvant therapy, including targeted drugs or immune checkpoint inhibitors, has become the standard of care for most early-stage HER2-positive and triple-negative breast cancer, followed by risk-adapted post-surgical strategies. For ER-positive early breast cancer, endocrine therapy for 5-10 years is essential. Advanced breast cancer with distant metastases is currently considered incurable. Systemic therapies in this setting include endocrine therapy with targeted agents, such as CDK4/6 inhibitors and phosphoinositide 3-kinase (PI3K) inhibitors for hormone receptor-positive disease, anti-HER2 targeted therapy for HER2-positive disease, poly(ADP-ribose) polymerase inhibitors for BRCA1/2 mutation carriers and immunotherapy currently for part of triple-negative disease. Innovation technologies of precision medicine may guide individualized treatment escalation or de-escalation in the future. In this review, we summarized the latest scientific information and discussed the future perspectives on breast cancer.
Collapse
Affiliation(s)
- Ruoxi Hong
- Department of Medical OncologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Binghe Xu
- State Key Laboratory of Molecular Oncology and Department of Medical OncologyCancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100006P. R. China
| |
Collapse
|
18
|
Hu GN, Wang Y, Tang CH, Jin LL, Huang BF, Wang Q, Shao JK, Wang CQ, Su CM. The impact of Angiopoietin-2 genetic polymorphisms on susceptibility for malignant breast neoplasms. Sci Rep 2022; 12:14522. [PMID: 36008514 PMCID: PMC9411117 DOI: 10.1038/s41598-022-18712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Breast cancer causes morbidity and mortality among women worldwide, despite much research illuminating the genetic basis of this disease. Anti-angiogenesis therapies have been widely studied, although the association between angiopoietin-2 (ANGPT2) single nucleotide polymorphisms (SNPs) and breast cancer subtypes remains unclear. This case-control study included 464 patients with malignant breast neoplasms and 539 cancer-free females. We explored the effects of ANGPT2 SNPs on the susceptibility for a malignant breast neoplasm in a Chinese Han population. Five ANGPT2 SNPs (rs2442598, rs734701, rs1823375, 11,137,037, and rs12674822) were analyzed using TaqMan SNP genotyping. Carriers of the variant GG allele of rs1823375 were less likely than wild-type carriers to be diagnosed with clinically staged breast cancer, while females with human epidermal growth factor receptor 2 (HER2)-enriched disease carrying the CG or the CG+GG genotype at rs1823375 were significantly less likely than CC genotype carriers to be of lymph node status N1-N3. We also found that the T-T-C-A-T ANGPT2 haplotype significantly increased the risk for developing a malignant breast neoplasm by 1.385-fold (95% CI: 1.025-1.871; p < 0.05). Our study is the first to document a correlation between ANGPT2 polymorphisms and the development and progression of a malignant breast neoplasm in females of Chinese Han ethnicity.
Collapse
Affiliation(s)
- Gui-Nv Hu
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Lu-Lu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100, China
| | - Qian Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100, China
| | - Jun-Kang Shao
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100, China.
| | - Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
19
|
Pacheco-Barcia V, Muñoz A, Castro E, Ballesteros AI, Marquina G, González-Díaz I, Colomer R, Romero-Laorden N. The Homologous Recombination Deficiency Scar in Advanced Cancer: Agnostic Targeting of Damaged DNA Repair. Cancers (Basel) 2022; 14:2950. [PMID: 35740616 PMCID: PMC9221128 DOI: 10.3390/cancers14122950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
BRCA1 and BRCA2 are the most recognized tumor-suppressor genes involved in double-strand DNA break repair through the homologous recombination (HR) system. Widely known for its role in hereditary cancer, HR deficiency (HRD) has turned out to be critical beyond breast and ovarian cancer: for prostate and pancreatic cancer also. The relevance for the identification of these patients exceeds diagnostic purposes, since results published from clinical trials with poly-ADP ribose polymerase (PARP) inhibitors (PARPi) have shown how this type of targeted therapy can modify the long-term evolution of patients with HRD. Somatic aberrations in other HRD pathway genes, but also indirect genomic instability as a sign of this DNA repair impairment (known as HRD scar), have been reported to be relevant events that lead to more frequently than expected HR loss of function in several tumor types, and should therefore be included in the current diagnostic and therapeutic algorithm. However, the optimal strategy to identify HRD and potential PARPi responders in cancer remains undefined. In this review, we summarize the role and prevalence of HRD across tumor types and the current treatment landscape to guide the agnostic targeting of damaged DNA repair. We also discuss the challenge of testing patients and provide a special insight for new strategies to select patients who benefit from PARPi due to HRD scarring.
Collapse
Affiliation(s)
- Vilma Pacheco-Barcia
- Department of Medical Oncology, School of Medicine, Alcala University (UAH), Hospital Central de la Defensa “Gómez Ulla”, 28047 Madrid, Spain;
| | - Andrés Muñoz
- Department of Medical Oncology, Hospital Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Elena Castro
- Department of Medical Oncology, Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
| | - Ana Isabel Ballesteros
- Department of Medical Oncology, Hospital Universitario La Princesa, 28006 Madrid, Spain; (A.I.B.); (R.C.)
| | - Gloria Marquina
- Department of Medical Oncology, Department of Medicine, School of Medicine, Complutense University (UCM), Hospital Universitario Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Iván González-Díaz
- Department of Obstetrics and Gynecology, Hospital Universitario Severo Ochoa, 28911 Madrid, Spain;
| | - Ramon Colomer
- Department of Medical Oncology, Hospital Universitario La Princesa, 28006 Madrid, Spain; (A.I.B.); (R.C.)
| | - Nuria Romero-Laorden
- Department of Medical Oncology, Hospital Universitario La Princesa, 28006 Madrid, Spain; (A.I.B.); (R.C.)
| |
Collapse
|
20
|
New Achievements for the Treatment of Triple-Negative Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.
Collapse
|