1
|
McHendrie R, Nguyen NH, Nguyen MT, Fallahnezhad K, Vasilev K, Truong VK, Hashemi R. Development of Novel Antibacterial Ti-Nb-Ga Alloys with Low Stiffness for Medical Implant Applications. J Funct Biomater 2024; 15:167. [PMID: 38921540 PMCID: PMC11204729 DOI: 10.3390/jfb15060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
With the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with the aim of offering beneficial antibacterial properties while having a reduced stiffness level to minimise the effect of stress shielding when in contact with bone. The focus is on the microstructure, mechanical properties, antimicrobial activity, and cytocompatibility to inform the suitability of the designed alloys as biometals. Novel Ti-33Nb-xGa alloys (x = 3, 5 wt%) were produced via casting followed by homogenisation treatment, where all results were compared to the currently employed alloy Ti-6Al-4V. Optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) results depicted a single beta (β) phase microstructure in both Ga-containing alloys, where Ti-33Nb-5Ga was also dominated by dendritic alpha (α) phase grains in a β-phase matrix. EDS analysis indicated that the α-phase dendrites in Ti-33Nb-5Ga were enriched with titanium, while the β-phase was richer in niobium and gallium elements. Mechanical properties were measured using nanoindentation and microhardness methods, where the Young's modulus for Ti-33Nb-3Ga and Ti-33Nb-5Ga was found to be 75.4 ± 2.4 and 67.2 ± 1.6 GPa, respectively, a significant reduction of 37% and 44% with respect to Ti-6Al-4V. This reduction helps address the disproportionate Young's modulus between titanium implant components and cortical bone. Importantly, both alloys successfully achieved superior antimicrobial properties against Gram-negative P. aeruginosa and Gram-positive S. aureus bacteria. Antibacterial efficacy was noted at up to 90 ± 5% for the 3 wt% alloy and 95 ± 3% for the 5 wt% alloy. These findings signify a substantial enhancement of the antimicrobial performance when compared to Ti-6Al-4V which exhibited very small rates (up to 6.3 ± 1.5%). No cytotoxicity was observed in hGF cell lines over 24 h. Cell morphology and cytoskeleton distribution appeared to depict typical morphology with a prominent nucleus, elongated fibroblastic spindle-shaped morphology, and F-actin filamentous stress fibres in a well-defined structure of parallel bundles along the cellular axis. The developed alloys in this work have shown very promising results and are suggested to be further examined towards the use of orthopaedic implant components.
Collapse
Affiliation(s)
- Rhianna McHendrie
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| | - Ngoc Huu Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Manh Tuong Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Khosro Fallahnezhad
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Reza Hashemi
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| |
Collapse
|
2
|
Liu T, Yang G, Li T, Wang Q, Liu H, He F. Preparation of Ag@3D-TiO 2 Scaffolds and Determination of its Antimicrobial Properties and Osteogenesis-promoting Ability. Orthop Surg 2024; 16:1445-1460. [PMID: 38706035 PMCID: PMC11144495 DOI: 10.1111/os.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES The micro-nano structure of 3D-printed porous titanium (Ti) alloy with excellent performance in avoiding stress shielding and promoting bone tissue differentiation provides a new opportunity for the development of bone implants, but it necessitates higher requirements for bone tissue differentiation and the antibacterial properties of bone implants in clinical practice. METHODS This study investigated the preparation, antimicrobial properties, and osteogenesis-promoting ability of the 3D printed porous Ti alloy anodic oxidized Ag-carrying (Ag@3D-TiO2) scaffolds. The 3D printed porous Ti alloy (3D-Ti), anodized 3D printed porous Ti alloy (3D-TiO2), and Ag@3D-TiO2 scaffolds were synthesized using electron beam melting. The antimicrobial properties of the scaffolds were examined using antibacterial tests and their cytocompatibility was assessed using a cell proliferation assay and acridine orange/ethidium bromide (AO/EB) staining. In vitro cellular assays were used to investigate the effects of the scaffold microstructural features on cell activity, proliferation, and osteogenesis-related genes and proteins. In vivo animal experiments were used to evaluate the anti-inflammatory and osteogenesis-promoting abilities of the scaffolds. RESULTS The Ag@3D-TiO2 scaffolds exhibited sustained anti-microbial activity over time, enhanced cell proliferation, facilitated osteogenic differentiation, and increased extracellular matrix mineralization. In addition, alkaline phosphatase (ALP), collagen type I (COL-I), and osteocalcin (OCN)-related genes and proteins were upregulated. In vivo animal implantation experiments, the anti-inflammatory effect of the Ag@3D-TiO2 scaffolds were observed using histology, and a large amount of fibrous connective tissue was present around it; the Ag@3D-TiO2 scaffolds were more bio-compatible with the surrounding tissues compared with 3D-Ti and 3D-TiO2; a large amount of uniformly distributed neoplastic bone tissue existed in their pores, and the chronic systemic toxicity test showed that the 3D-Ti, 3D-TiO2, and Ag@3D-TiO2 scaffolds are biologically safe. CONCLUSION The goal of this study was to create a scaffold that exhibits antimicrobial properties and can aid bone growth, making it highly suitable for use in bone tissue engineering.
Collapse
Affiliation(s)
- Tiansheng Liu
- Department of OrthopaedicsTianjin Hospital, Tianjin UniversityTianjinChina
| | - Guijun Yang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin UniversityTianjinChina
| | - Tong Li
- Department of Training and Sports MedicineCharacteristic Medical Center of Chinese People's Armed Police ForceTianjinChina
| | - Qi Wang
- Department of Training and Sports MedicineCharacteristic Medical Center of Chinese People's Armed Police ForceTianjinChina
| | - Houjiang Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin UniversityTianjinChina
| | - Fang He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin UniversityTianjinChina
| |
Collapse
|
3
|
Cojocaru VD, Șerban N, Cojocaru EM, Zărnescu-Ivan N, Gălbinașu BM. The Effect of Solution Treatment Duration on the Microstructural and Mechanical Properties of a Cold-Deformed-by-Rolling Ti-Nb-Zr-Ta-Sn-Fe Alloy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:864. [PMID: 38399115 PMCID: PMC10890699 DOI: 10.3390/ma17040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
The study presented in this paper is focused on the effect of varying the solution treatment duration on both the microstructural and mechanical properties of a cold-deformed by rolling Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy, referred to as TNZTSF. Cold-crucible induction using the levitation synthesis technique, conducted under an argon-controlled atmosphere, was employed to fabricate the TNZTSF alloy. After synthesis, the alloy underwent cold deformation by rolling, reaching a total deformation degree (total applied thickness reduction) of 60%. Subsequently, a solution treatment was conducted at 850 °C, with varying treatment durations ranging from 2 to 30 min in 2 min increments. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were utilized for the structural analysis, while the mechanical properties were assessed using both tensile and hardness testing. The findings indicate that (i) in both the cold-deformed-by-rolling and solution-treated states, the TNZTSF alloy exhibits a microstructure consisting of a single β-Ti phase; (ii) in the solution-treated state, the microstructure reveals a rise in the average grain size and a decline in the internal average microstrain as the duration of the solution treatment increases; and (iii) owing to the β-phase stability, a favorable mix of elevated strength and considerable ductility properties can be achieved.
Collapse
Affiliation(s)
- Vasile Dănuț Cojocaru
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.Ș.); (E.M.C.)
| | - Nicolae Șerban
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.Ș.); (E.M.C.)
| | - Elisabeta Mirela Cojocaru
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.Ș.); (E.M.C.)
| | - Nicoleta Zărnescu-Ivan
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.Ș.); (E.M.C.)
| | - Bogdan Mihai Gălbinașu
- Dental Medicine Faculty, University of Medicine and Pharmacy “Carol Davila” Bucharest, 020021 Bucharest, Romania;
| |
Collapse
|
4
|
Conradi M, Podgornik B, Remškar M, Klobčar D, Kocijan A. Tribological Evaluation of Vegetable Oil/MoS 2 Nanotube-Based Lubrication of Laser-Textured Stainless Steel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5844. [PMID: 37687537 PMCID: PMC10488841 DOI: 10.3390/ma16175844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
In the present work, the functionalisation of austenitic stainless steel, AISI 316L surfaces via nanosecond Nd:YAG laser texturing in order to modify the surface morphology with crosshatch and dimple patterns is presented. A tribological analysis under lubrication with sunflower and jojoba oil with and without the addition of a solid lubricant, MoS2 nanotubes, was performed. In conjunction with friction/wear response laser-textured surface wettability, oil spreadability and oil retention capacity were also analysed. It was shown that the crosshatch pattern generally exhibited lower friction than the dimple pattern, with the addition of MoS2 nanotubes not having any significant effect on the coefficient of friction under the investigated contact conditions. This was found in addition to the better oil spreadability and oil retention capacity results of the crosshatch-textured surface. Furthermore, texturing reduced the wear of the stainless-steel surfaces but led to an approximately one order of magnitude larger wear rate of the steel counter-body, primarily due to the presence of hard bulges around the textured patterns. Overall, the crosshatch pattern showed better oil retention capacity and lower friction in combination with different vegetable oils, thus making it a promising choice for improving tribological performance in various environmentally friendly applications.
Collapse
Affiliation(s)
- Marjetka Conradi
- Institute of Metals and Technology, Lepi Pot 11, 1000 Ljubljana, Slovenia; (B.P.); (A.K.)
| | - Bojan Podgornik
- Institute of Metals and Technology, Lepi Pot 11, 1000 Ljubljana, Slovenia; (B.P.); (A.K.)
| | - Maja Remškar
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Damjan Klobčar
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia;
| | - Aleksandra Kocijan
- Institute of Metals and Technology, Lepi Pot 11, 1000 Ljubljana, Slovenia; (B.P.); (A.K.)
| |
Collapse
|
5
|
Yang G, Liu H, Li A, Liu T, Lu Q, He F. Antibacterial Structure Design of Porous Ti6Al4V by 3D Printing and Anodic Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5206. [PMID: 37569910 PMCID: PMC10420244 DOI: 10.3390/ma16155206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Titanium alloy Ti6Al4V is a commonly used bone implant material, primarily prepared as a porous material to better match the elastic modulus of human bone. However, titanium alloy is biologically inert and does not have antibacterial properties. At the same time, the porous structure with a large specific surface area also increases the risk of infection, leading to surgical failure. In this paper, we prepared three porous samples with different porosities of 60%, 75%, and 85%, respectively (for short, 3D-60, 3D-75, and 3D-85) using 3D printing technology and clarified the mechanical properties. Through tensile experiments, when the porosity was 60%, the compressive modulus was within the elastic modulus of human bone. Anodic oxidation technology carried out the surface modification of a 3D-printed porous titanium alloy with 60% porosity. Through change, the different voltages and times on the TiO2 oxide layer on the 3D-printed porous titanium alloy are different, and it reveals the growth mechanism of the TiO2 oxide layer on a 3D-printed unique titanium alloy. The surface hydrophilic and antibacterial properties of 3D-printed porous titanium alloy were significantly improved after modification by anodic oxidation.
Collapse
Affiliation(s)
- Guijun Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Houjiang Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| | - Ang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| | - Tiansheng Liu
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Qiqin Lu
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Fang He
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| |
Collapse
|
6
|
Surface Optimization of Commercial Porous Ti Substrates by EPD of Titanium Nitride. MEMBRANES 2022; 12:membranes12050531. [PMID: 35629857 PMCID: PMC9144476 DOI: 10.3390/membranes12050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023]
Abstract
In this work, the infiltration of TiN powders by electrophoretic deposition (EPD) in aqueous media was considered as alternative method to reduce the size craters and the roughness of commercial porous Ti substrates. Ti substrates can be used as suitable supports for the deposition of dense hydrogen separation TiNx-based membranes by physical vapor deposition (PVD) techniques. The influence of various EPD deposition parameters on surface morphology and roughness of TiN-infiltrated substrates were investigated in order to optimize their surface properties. The results suggest that a multi-step EPD procedure is an effective technique for reducing substrate surface defects of commercial porous Ti substrates which could then be successfully used as proper supports for the deposition of dense and defect-free TiNx layers, also aligning the thermal mismatch between the active layer and the porous substrate.
Collapse
|
7
|
Pascu CI, Nicolicescu C, Cioateră N, Gheorghe Ș, Geonea I, Didu A. Characterization of Titanium Alloy Obtained by Powder Metallurgy. MATERIALS 2022; 15:ma15062057. [PMID: 35329509 PMCID: PMC8950171 DOI: 10.3390/ma15062057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Ti-based alloys are an important class of materials suitable especially for medical applications, but they are also used in the industrial sector. Due to their low tribological properties it is necessary to find optimal technologies and alloying elements in order to develop new alloys with improved properties. In this paper, a study on the influence of sintering treatments on the final properties of a titanium alloy is presented. The alloy of interest was obtained using the powders in following weight ratio: 80% wt Ti, 8% wt Mn, 3% wt Sn, 6% wt Aluminix123, 2% wt Zr and 1% wt graphite. Two sintering methods were used, namely two-step sintering (TSS) and multiple-step sintering (MSS), as alternatives to conventional sintering which uses a single sintering dwell time. Evolution of sample morphology, composition and crystalline structure with sintering method was evidenced. The lower values for the friction coefficient and for the wear rate was attained in the case of the sample obtained by TSS.
Collapse
Affiliation(s)
- Cristina Ileana Pascu
- Faculty of Mechanics, University of Craiova, 200512 Craiova, Romania; (C.I.P.); (Ș.G.); (I.G.)
| | - Claudiu Nicolicescu
- Faculty of Mechanics, University of Craiova, 200512 Craiova, Romania; (C.I.P.); (Ș.G.); (I.G.)
- Correspondence: (C.N.); (A.D.)
| | - Nicoleta Cioateră
- Faculty of Sciences, University of Craiova, 200585 Craiova, Romania;
| | - Ștefan Gheorghe
- Faculty of Mechanics, University of Craiova, 200512 Craiova, Romania; (C.I.P.); (Ș.G.); (I.G.)
| | - Ionuț Geonea
- Faculty of Mechanics, University of Craiova, 200512 Craiova, Romania; (C.I.P.); (Ș.G.); (I.G.)
| | - Anca Didu
- Faculty of Mechanics, University of Craiova, 200512 Craiova, Romania; (C.I.P.); (Ș.G.); (I.G.)
- Correspondence: (C.N.); (A.D.)
| |
Collapse
|
8
|
Gherasim O, Grumezescu AM, Grumezescu V, Andronescu E, Negut I, Bîrcă AC, Gălățeanu B, Hudiță A. Bioactive Coatings Loaded with Osteogenic Protein for Metallic Implants. Polymers (Basel) 2021; 13:4303. [PMID: 34960852 PMCID: PMC8703935 DOI: 10.3390/polym13244303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoconductive and osteoinductive coatings represent attractive and tunable strategies towards the enhanced biomechanics and osseointegration of metallic implants, providing accurate local modulation of bone-to-implant interface. Composite materials based on polylactide (PLA) and hydroxyapatite (HAp) are proved beneficial substrates for the modulation of bone cells' development, being suitable mechanical supports for the repair and regeneration of bone tissue. Moreover, the addition of osteogenic proteins represents the next step towards the fabrication of advanced biomaterials for hard tissue engineering applications, as their regulatory mechanisms beneficially contribute to the new bone formation. In this respect, laser-processed composites, based on PLA, Hap, and bone morphogenetic protein 4(BMP4), are herein proposed as bioactive coatings for metallic implants. The nanostructured coatings proved superior ability to promote the adhesion, viability, and proliferation of osteoprogenitor cells, without affecting their normal development and further sustaining the osteogenic differentiation of the cells. Our results are complementary to previous studies regarding the successful use of chemically BMP-modified biomaterials in orthopedic and orthodontic applications.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| |
Collapse
|
9
|
β-Ti Alloys for Orthopedic and Dental Applications: A Review of Progress on Improvement of Properties through Surface Modification. COATINGS 2021. [DOI: 10.3390/coatings11121446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ti and Ti alloys have charming comprehensive properties (high specific strength, strong corrosion resistance, and excellent biocompatibility) that make them the ideal choice in orthopedic and dental applications, especially in the particular fabrication of orthopedic and dental implants. However, these alloys present some shortcomings, specifically elastic modulus, wear, corrosion, and biological performance. Beta-titanium (β-Ti) alloys have been studied as low elastic modulus and low toxic or non-toxic elements. The present work summarizes the improvements of the properties systematically (elastic modulus, hardness, wear resistance, corrosion resistance, antibacterial property, and bone regeneration) for β-Ti alloys via surface modification to address these shortcomings. Additionally, the shortcomings and prospects of the present research are put forward. β-Ti alloys have potential regarding implants in biomedical fields.
Collapse
|
10
|
Oleksik V, Trzepieciński T, Szpunar M, Chodoła Ł, Ficek D, Szczęsny I. Single-Point Incremental Forming of Titanium and Titanium Alloy Sheets. MATERIALS 2021; 14:ma14216372. [PMID: 34771897 PMCID: PMC8585273 DOI: 10.3390/ma14216372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
Incremental sheet forming of titanium and its alloys has a significant role in modern manufacturing techniques because it allows for the production of high-quality products with complex shapes at low production costs. Stamping processes are a major contributor to plastic working techniques in industries such as automotive, aerospace and medicine. This article reviews the development of the single-point incremental forming (SPIF) technique in titanium and its alloys. Problems of a tribological and microstructural nature that make it difficult to obtain components with the desired geometric and shape accuracy are discussed. Great emphasis is placed on current trends in SPIF of difficult-to-form α-, α + β- and β-type titanium alloys. Potential uses of SPIF for forming products in various industries are also indicated, with a particular focus on medical applications. The conclusions of the review provide a structured guideline for scientists and practitioners working on incremental forming of titanium and titanium alloy sheets. One of the ways to increase the formability and minimize the springback of titanium alloys is to treat them at elevated temperatures. The main approaches developed for introducing temperature into a workpiece are friction heating, electrical heating and laser heating. The selection of an appropriate lubricant is a key aspect of the forming process of titanium and its alloys, which exhibit unfavorable tribological properties such as high adhesion and a tendency to adhesive wear. A review of the literature showed that there are insufficient investigations into the synergistic effect of rotational speed and tool rotation direction on the surface roughness of workpieces.
Collapse
Affiliation(s)
- Valentin Oleksik
- Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
- Correspondence: (V.O.); (T.T.)
| | - Tomasz Trzepieciński
- Department of Manufacturing and Production Engineering, Faculty of Mechanical Engineering and Aerionautics, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
- Correspondence: (V.O.); (T.T.)
| | - Marcin Szpunar
- Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, al. Powst. Warszawy 12, 35-959 Rzeszów, Poland;
| | - Łukasz Chodoła
- Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland;
| | - Daniel Ficek
- Department of Aerospace Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland; (D.F.); (I.S.)
| | - Ireneusz Szczęsny
- Department of Aerospace Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland; (D.F.); (I.S.)
| |
Collapse
|
11
|
Modeling of Friction Phenomena of Ti-6Al-4V Sheets Based on Backward Elimination Regression and Multi-Layer Artificial Neural Networks. MATERIALS 2021; 14:ma14102570. [PMID: 34063434 PMCID: PMC8156283 DOI: 10.3390/ma14102570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
This paper presents the application of multi-layer artificial neural networks (ANNs) and backward elimination regression for the prediction of values of the coefficient of friction (COF) of Ti-6Al-4V titanium alloy sheets. The results of the strip drawing test were used as data for the training networks. The strip drawing test was carried out under conditions of variable load and variable friction. Selected types of synthetic oils and environmentally friendly bio-degradable lubricants were used in the tests. ANN models were conducted for different network architectures and training methods: the quasi-Newton, Levenberg-Marquardt and back propagation. The values of root mean square (RMS) error and determination coefficient were adopted as evaluation criteria for ANNs. The minimum value of the RMS error for the training set (RMS = 0.0982) and the validation set (RMS = 0.1493) with the highest value of correlation coefficient (R2 = 0.91) was observed for a multi-layer network with eight neurons in the hidden layer trained using the quasi-Newton algorithm. As a result of the non-linear relationship between clamping and friction force, the value of the COF decreased with increasing load. The regression model F-value of 22.13 implies that the model with R2 = 0.6975 is significant. There is only a 0.01% chance that an F-value this large could occur due to noise.
Collapse
|
12
|
Sandomierski M, Buchwald T, Patalas A, Voelkel A. Improving the abrasion resistance of Ti6Al4V alloy by modifying its surface with a diazonium salt and attaching of polyurethane. Sci Rep 2020; 10:19289. [PMID: 33159155 PMCID: PMC7648627 DOI: 10.1038/s41598-020-76360-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Commonly used endoprostheses in the orthopedic industry are those made of Ti6Al4V titanium alloy. Unfortunately, this material has low abrasion resistance, and therefore methods of their modification are still sought. A sensible approach is coating the alloy with a layer of a polymer having higher abrasion resistance. The adhesion of polymers to alloy is low, therefore the alloy requires prior modification. In this work, the alloy was modified with three types of diazonium salt and the influence of substituent on the effectiveness of modification was determined. Then, five or ten polyurethane layers were attached to the surface of the modified alloy. Using Raman mapping, the uniform distribution of layers was proved. Layers are stable in simulated human body fluids. The effectiveness of attaching subsequent layers of polyurethane was also confirmed by nanoindentation. The main focus of this work was to improve the wear resistance of the titanium alloy. The obtained results indicate that the titanium alloy with a polyurethane layer has almost ten times lower coefficient of friction compared to pure alloy. Such a low value has not been described in the literature so far. These results are the first step for obtaining endoprostheses with very high abrasion resistance.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Tomasz Buchwald
- Institute of Materials Research and Quantum Engineering, Poznań University of Technology, Piotrowo 3, 60-965, Poznan, Poland
| | - Adam Patalas
- Institute of Mechanical Technology, Poznań University of Technology, Piotrowo 3, 60-965, Poznan, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| |
Collapse
|
13
|
New Nanostructured Carbon Coating Inhibits Bacterial Growth, but Does Not Influence on Animal Cells. NANOMATERIALS 2020; 10:nano10112130. [PMID: 33120890 PMCID: PMC7692575 DOI: 10.3390/nano10112130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
An electrospark technology has been developed for obtaining a colloidal solution containing nanosized amorphous carbon. The advantages of the technology are its low cost and high performance. The colloidal solution of nanosized carbon is highly stable. The coatings on its basis are nanostructured. They are characterized by high adhesion and hydrophobicity. It was found that the propagation of microorganisms on nanosized carbon coatings is significantly hindered. At the same time, eukaryotic animal cells grow and develop on nanosized carbon coatings, as well as on the nitinol medical alloy. The use of a colloidal solution as available, cheap and non-toxic nanomaterial for the creation of antibacterial coatings to prevent biofilm formation seems to be very promising for modern medicine, pharmaceutical and food industries.
Collapse
|
14
|
Pratap T, Patra K. Tribological performances of symmetrically micro-textured Ti-6Al-4V alloy for hip joint. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES 2020; 182:105736. [DOI: 10.1016/j.ijmecsci.2020.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
15
|
Herranz G, Berges C, Naranjo JA, García C, Garrido I. Mechanical performance, corrosion and tribological evaluation of a Co-Cr-Mo alloy processed by MIM for biomedical applications. J Mech Behav Biomed Mater 2020; 105:103706. [PMID: 32279850 DOI: 10.1016/j.jmbbm.2020.103706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/23/2020] [Accepted: 02/16/2020] [Indexed: 11/15/2022]
Abstract
In this study, the processing parameters mechanical performance, corrosion and tribological evaluation of a low carbon content Co-Cr-Mo alloy are discussed. The production of parts using the Metal Injection Moulding (MIM) process is optimized, specifically concerning the rheological analysis of the prepared feedstocks, the optimum choice of the powder loading and the design of the debinding and sintering cycles. The mechanical properties as regards hardness, tensile strength and bending strength, as well as fatigue tests and wear characterization, are discussed for the full densified specimens obtained. Additionally, corrosion behaviour with the different methods and electrolytic solutions that simulate the biological environment has also been investigated. This approach allows us to confirm that the low-carbon cobalt alloy processed by MIM exhibits an adequate equilibrium between its mechanical and corrosion behaviour, with a notable performance during fatigue and wear tests. In the light of these findings, the use of this material for biomedical applications is discussed.
Collapse
Affiliation(s)
- Gemma Herranz
- UCLM PIM Research Laboratory, INEI-ETSII, Universidad de Castilla-La Mancha (UCLM), ETSI Industriales, E-13071, Ciudad Real, Spain.
| | - Cristina Berges
- UCLM PIM Research Laboratory, INEI-ETSII, Universidad de Castilla-La Mancha (UCLM), ETSI Industriales, E-13071, Ciudad Real, Spain
| | - Juan Alfonso Naranjo
- UCLM PIM Research Laboratory, INEI-ETSII, Universidad de Castilla-La Mancha (UCLM), ETSI Industriales, E-13071, Ciudad Real, Spain
| | - Cristina García
- Ciencia de los Materiales e Ingeniería Metalúrgica, EII, Universidad de Valladolid, C/Paseo del Cauce no 59, E-47011, Valladolid, Spain
| | - Ignacio Garrido
- Escuela de Arquitectura, Departamento de Ingeniería Mecánica, Universidad de Castilla - La Mancha, Av. Carlos III s/n, 45071, Toledo, Spain
| |
Collapse
|