1
|
Ahmadi S, Pourebrahimi S, Malloum A, Pirooz M, Osagie C, Ghosh S, Zafar MN, Dehghani MH. Hydrogel-based materials as antibacterial agents and super adsorbents for the remediation of emerging pollutants: A comprehensive review. EMERGING CONTAMINANTS 2024; 10:100336. [DOI: 10.1016/j.emcon.2024.100336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Gahane AY, Verma DP, Sarkar S, Thakur AK. Evaluation of Pharmacokinetic and Pharmacodynamic (PK/PD) of Novel Fluorenylmethoxycarbonyl- Phenylalanine Antimicrobial Agent. Pharm Res 2024; 41:687-698. [PMID: 38519814 DOI: 10.1007/s11095-024-03690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE To assess the pharmacokinetic profile, in-vivo toxicity, and efficacy of 9-Fluorenylmethoxycarbonyl-L-phenylalanine (Fmoc-F) as a potential antibacterial agent, with a focus on its suitability for clinical translation. METHODS An RP-HPLC-based bio-analytical method was developed and qualified to quantify Fmoc-F levels in mouse plasma for pharmacokinetic analysis. Oral bioavailability was determined, and in-vivo toxicity was evaluated following intra-peritoneal administration. Efficacy was assessed by measuring the reduction in Staphylococcus aureus burden and survival rates in BALB/c mice. RESULTS The RP-HPLC method is highly sensitive, detecting as low as 0.8 µg mL-1 (~ 2 µM) of Fmoc-F in blood plasma. This study revealed that Fmoc-F has an oral bioavailability of 65 ± 18% and suitable pharmacokinetic profile. Further, we showed that intra-peritoneal administration of Fmoc-F is well tolerated by BALB/c mice and Fmoc-F treatment (100 mg/kg, i.p.) significantly reduces Staphylococcus aureus burden from visceral organs in BALB/c mice but falls short in enhancing survival rates at higher bacterial loads. CONCLUSIONS The study provides crucial insights into the pharmacokinetic and pharmacodynamic properties of Fmoc-F. The compound displayed favourable oral bioavailability and in-vivo tolerance. Its significant reduction of bacterial burden underscores its potential as a treatment for systemic infections. However, limited effectiveness for severe infections, short half-life, and inflammatory response at higher doses need to be addressed for its clinical application.
Collapse
Affiliation(s)
- Avinash Y Gahane
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Devesh Pratap Verma
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Swagata Sarkar
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ashwani K Thakur
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
3
|
Qu H, Yao Q, Chen T, Wu H, Liu Y, Wang C, Dong A. Current status of development and biomedical applications of peptide-based antimicrobial hydrogels. Adv Colloid Interface Sci 2024; 325:103099. [PMID: 38330883 DOI: 10.1016/j.cis.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Microbial contamination poses a serious threat to human life and health. Through the intersection of material science and modern medicine, advanced bionic hydrogels have shown great potential for biomedical applications due to their unique bioactivity and ability to mimic the extracellular matrix environment. In particular, as a promising antimicrobial material, the synthesis and practical biomedical applications of peptide-based antimicrobial hydrogels have drawn increasing research interest. The synergistic effect of peptides and hydrogels facilitate the controlled release of antimicrobial agents and mitigation of their biotoxicity while achieving antimicrobial effects and protecting the active agents from degradation. This review reports on the progress and trends of researches in the last five years and provides a brief outlook, aiming to provide theoretical background on peptide-based antimicrobial hydrogels and make suggestions for future related work.
Collapse
Affiliation(s)
- Huihui Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Quanfu Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, People's Republic of China
| | - Ting Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China.
| | - Cong Wang
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
4
|
Yuan R, Zhang Y, Liao L, Ge Y, Li W, Zhi Q. Biomineralization-Inspired Anti-Caries Strategy Based on Multifunctional Nanogels as Mineral Feedstock Carriers. Int J Nanomedicine 2023; 18:4933-4947. [PMID: 37693886 PMCID: PMC10488770 DOI: 10.2147/ijn.s418465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Dentin caries remains a significant public concern, with no clinically viable material that effectively combines remineralization and antimicrobial properties. To address this issue, this study focused on the development of a bio-inspired multifunctional nanogel with both antibacterial and biomineralization properties. Methods First, p(NIPAm-co-DMC) (PNPDC) copolymers were synthesized from N-isopropylacrylamide (NIPAm) and 2-methacryloyloxyethyl-trimethyl ammonium chloride (DMC). Subsequently, PNPDC was combined with γ-polyglutamic acid (γ-PGA) through physical cross-linking to form nanogels. These nanogels served as templates for the mineralization of calcium phosphate (Cap), resulting in Cap-loaded PNPDC/PGA nanogels. The nanogels were characterized using various techniques, including TEM, particle tracking analysis, XRD, and FTIR. The release properties of ions were also assessed. In addition, the antibacterial properties of the Cap-loaded PNPDC/PGA nanogels were evaluated using the broth microdilution method and a biofilm formation assay. The remineralization effects were examined on both demineralized dentin and type I collagen in vitro. Results PNPDC/PGA nanogels were successfully synthesized and loaded with Cap. The diameter of the Cap-loaded PNPDC/PGA nanogels was measured as 196.5 nm at 25°C and 162.3 nm at 37°C. These Cap-loaded nanogels released Ca2+ and PO43- ions quickly, effectively blocking dental tubules with a depth of 10 μm and promoting the remineralization of demineralized dentin within 7 days. Additionally, they facilitated the heavy intrafibrillar mineralization of type I collagen within 3 days. Moreover, the Cap-loaded nanogels exhibited MIC50 and MIC90 values of 12.5 and 50 mg/mL against Streptococcus mutans, respectively, with an MBC value of 100 mg/mL. At a concentration of 50 mg/mL, the Cap-loaded nanogels also demonstrated potent inhibitory effects on biofilm formation by Streptococcus mutans while maintaining good biocompatibility. Conclusion Cap-loaded PNPDC/PGA nanogels are a multifunctional biomimetic system with antibacterial and dentin remineralization effects. This strategy of using antibacterial nanogels as mineral feedstock carriers offered fresh insight into the clinical management of caries.
Collapse
Affiliation(s)
- Rui Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Yuwen Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Liqiong Liao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Yige Ge
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Qinghui Zhi
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| |
Collapse
|
5
|
Niu Y, Wu J, Kang Y, Sun P, Xiao Z, Zhao D. Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications. Int J Biol Macromol 2023; 247:125722. [PMID: 37419264 DOI: 10.1016/j.ijbiomac.2023.125722] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Magnetic chitosan hydrogels are organic-inorganic composite material with the characteristics of both magnetic materials and natural polysaccharides. Due to its biocompatibility, low toxicity and biodegradability, chitosan, a natural polymer has been widely used for preparing magnetic hydrogels. The addition of magnetic nanoparticles to chitosan hydrogels not only improves their mechanical strength, but also endows them with magnetic thermal effects, targeting capabilities, magnetically-sensitive release characteristics, easy separation and recovery, thus enabling them to be used in various applications including drug delivery, magnetic resonance imaging, magnetothermal therapy, and adsorption of heavy metals and dyes. In this review, the physical and chemical crosslinking methods of chitosan hydrogels and the methods for binding magnetic nanoparticles in hydrogel networks are first introduced. Subsequently, the properties of magnetic chitosan hydrogels were summarized including mechanical properties, self-healing, pH responsiveness and properties in magnetic fields. Finally, the potential for further technological and applicative advancements of magnetic chitosan hydrogels is discussed.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Jiahe Wu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
6
|
Bright LME, Wu Y, Brisbois EJ, Handa H. Advances in Nitric Oxide-Releasing Hydrogels for Biomedical Applications. Curr Opin Colloid Interface Sci 2023; 66:101704. [PMID: 37694274 PMCID: PMC10489397 DOI: 10.1016/j.cocis.2023.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hydrogels provide a plethora of advantages to biomedical treatments due to their highly hydrophilic nature and tissue-like mechanical properties. Additionally, the numerous and widespread endogenous roles of nitric oxide have led to an eruption in research developing biomimetic solutions to the many challenges the biomedical world faces. Though many design factors and fabrication details must be considered, utilizing hydrogels as nitric oxide delivery vehicles provides promising materials in several applications. Such applications include cardiovascular therapy, vasodilation and angiogenesis, antimicrobial treatments, wound dressings, and stem cell research. Herein, a recent update on the progress of NO-releasing hydrogels is presented in depth. In addition, considerations for the design and fabrication of hydrogels and specific biomedical applications of nitric oxide-releasing hydrogels are discussed.
Collapse
Affiliation(s)
- Lori M. Estes Bright
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Yi Wu
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J. Brisbois
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
7
|
Edirisinghe DIU, D’Souza A, Ramezani M, Carroll RJ, Chicón Q, Muenzel CL, Soule J, Monroe MBB, Patteson AE, Makhlynets OV. Antibacterial and Cytocompatible pH-Responsive Peptide Hydrogel. Molecules 2023; 28:4390. [PMID: 37298865 PMCID: PMC10254169 DOI: 10.3390/molecules28114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
A short peptide, FHHF-11, was designed to change stiffness as a function of pH due to changing degree of protonation of histidines. As pH changes in the physiologically relevant range, G' was measured at 0 Pa (pH 6) and 50,000 Pa (pH 8). This peptide-based hydrogel is antimicrobial and cytocompatible with skin cells (fibroblasts). It was demonstrated that the incorporation of unnatural AzAla tryptophan analog residue improves the antimicrobial properties of the hydrogel. The material developed can have a practical application and be a paradigm shift in the approach to wound treatment, and it will improve healing outcomes for millions of patients each year.
Collapse
Affiliation(s)
| | - Areetha D’Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Maryam Ramezani
- Biomedical and Chemical Engineering, Syracuse University, Bowne Hall, Syracuse, NY 13210, USA
| | | | - Quenten Chicón
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Cheyene L. Muenzel
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Jonathan Soule
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | | | | | - Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Zhou Z, Zhou S, Zhang X, Zeng S, Xu Y, Nie W, Zhou Y, Xu T, Chen P. Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjug Chem 2023; 34:302-325. [PMID: 36748912 DOI: 10.1021/acs.bioconjchem.2c00598] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Zhenyang Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shuguang Zhou
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 236000, China
| | - Xiran Zhang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Sarabia-Vallejos MA, Cerda-Iglesias FE, Pérez-Monje DA, Acuña-Ruiz NF, Terraza-Inostroza CA, Rodríguez-Hernández J, González-Henríquez CM. Smart Polymer Surfaces with Complex Wrinkled Patterns: Reversible, Non-Planar, Gradient, and Hierarchical Structures. Polymers (Basel) 2023; 15:polym15030612. [PMID: 36771913 PMCID: PMC9920088 DOI: 10.3390/polym15030612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
This review summarizes the relevant developments in preparing wrinkled structures with variable characteristics. These include the formation of smart interfaces with reversible wrinkle formation, the construction of wrinkles in non-planar supports, or, more interestingly, the development of complex hierarchically structured wrinkled patterns. Smart wrinkled surfaces obtained using light-responsive, pH-responsive, temperature-responsive, and electromagnetic-responsive polymers are thoroughly described. These systems control the formation of wrinkles in particular surface positions and the reversible construction of planar-wrinkled surfaces. This know-how of non-planar substrates has been recently extended to other structures, thus forming wrinkled patterns on solid, hollow spheres, cylinders, and cylindrical tubes. Finally, this bibliographic analysis also presents some illustrative examples of the potential of wrinkle formation to create more complex patterns, including gradient structures and hierarchically multiscale-ordered wrinkles. The orientation and the wrinkle characteristics (amplitude and period) can also be modulated according to the requested application.
Collapse
Affiliation(s)
- Mauricio A. Sarabia-Vallejos
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Sede Santiago, Santiago 8420524, Chile
| | - Felipe E. Cerda-Iglesias
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Programa PhD en Ciencia de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Dan A. Pérez-Monje
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Nicolas F. Acuña-Ruiz
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Claudio A. Terraza-Inostroza
- Research Laboratory for Organic Polymer (RLOP), Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain
| | - Carmen M. González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
- Correspondence:
| |
Collapse
|
10
|
Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022; 24:ijms24010186. [PMID: 36613630 PMCID: PMC9820439 DOI: 10.3390/ijms24010186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Self-assembled peptide-based gels provide several advantages for technological applications. Recently, the co-assembly of gelators has been a strategy to modulate and tune gel properties and even implement stimuli-responsiveness. However, it still comprises limitations regarding the required library of compounds and outcoming properties. Hence, efforts have been made to combine peptide-based gels and (in)organic composites (e.g., magnetic nanoparticles, metal nanoparticles, liposomes, graphene, silica, clay, titanium dioxide, cadmium sulfide) to endow stimuli-responsive materials and achieve suitable properties in several fields ranging from optoelectronics to biomedical. Herein, we discuss the recent developments with composite peptide-based gels including the fabrication, tunability of gels' properties, and challenges on (bio)technological applications.
Collapse
|
11
|
Gonçalves S, Martins IC, Santos NC. Nanoparticle‐peptide conjugates for bacterial detection and neutralization: Potential applications in diagnostics and therapy. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1819. [DOI: 10.1002/wnan.1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Ivo C. Martins
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
12
|
Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
D'Souza A, Marshall LR, Yoon J, Kulesha A, Edirisinghe DIU, Chandrasekaran S, Rathee P, Prabhakar R, Makhlynets OV. Peptide hydrogel with self-healing and redox-responsive properties. NANO CONVERGENCE 2022; 9:18. [PMID: 35478076 PMCID: PMC9046503 DOI: 10.1186/s40580-022-00309-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/06/2022] [Indexed: 06/12/2023]
Abstract
We have rationally designed a peptide that assembles into a redox-responsive, antimicrobial metallohydrogel. The resulting self-healing material can be rapidly reduced by ascorbate under physiological conditions and demonstrates a remarkable 160-fold change in hydrogel stiffness upon reduction. We provide a computational model of the hydrogel, explaining why position of nitrogen in non-natural amino acid pyridyl-alanine results in drastically different gelation properties of peptides with metal ions. Given its antimicrobial and rheological properties, the newly designed hydrogel can be used for removable wound dressing application, addressing a major unmet need in clinical care.
Collapse
Affiliation(s)
- Areetha D'Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Jennifer Yoon
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Alona Kulesha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Dona I U Edirisinghe
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Siddarth Chandrasekaran
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14583, USA
| | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
14
|
Novel antibacterial hydrogels based on gelatin/polyvinyl-alcohol and graphene oxide/silver nanoconjugates: formulation, characterization, and preliminary biocompatibility evaluation. Heliyon 2022; 8:e09145. [PMID: 35846480 PMCID: PMC9280498 DOI: 10.1016/j.heliyon.2022.e09145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
|
15
|
Zhao E, Liu H, Jia Y, Xiao T, Li J, Zhou G, Wang J, Zhou X, Liang XJ, Zhang J, Li Z. Engineering a photosynthetic bacteria-incorporated hydrogel for infected wound healing. Acta Biomater 2022; 140:302-313. [PMID: 34954107 DOI: 10.1016/j.actbio.2021.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Treating wounds with multidrug-resistant bacterial infections remains a huge and arduous challenge. In this work, we prepared a "live-drug"-encapsulated hydrogel dressing for the treatment of multidrug-resistant bacterial infections and full-thickness skin incision repair. Our live dressing was comprised of photosynthetic bacteria (PSB) and extracellular matrix (ECM) gel with photothermal, antibacterial and antioxidant properties, as well as good cytocompatibility and blood compatibility. More interestingly, live PSB could be regarded as not only photothermal agents but also as anti-inflammatory agents to promote wound healing owing to their antioxidant metabolites. In vitro and in vivo studies showed that the PSB hydrogel not only had a high killing rate against methicillin-resistant Staphylococcus aureus (MRSA) but it also accelerated collagen deposition and granulation tissue formation by promoting cell proliferation and migration, which significantly promoted skin tissue regeneration and wound healing. We believe that the large-scale production of PSB Gel-based therapeutic dressings has the advantages of easy use and promising clinical applications. STATEMENT OF SIGNIFICANCE: Rapid wound healing and the treatment of bacterial infections have always been the two biggest challenges in the field of wound care. We prepared a "live drug" dressing by encapsulating photosynthetic bacteria into an extracellular matrix hydrogel to sterilize the wound and promote wound healing. First, photosynthetic bacteria are not only a photothermal agent for photothermal wound sterilization, but also possess the anti-inflammatory capacity to enhance wound healing due to their antioxidant metabolites. Second, the extracellular matrix hydrogel is rich in a variety of growth factors and nutrients to promote cell migration and accelerate wound healing. Third, photosynthetic bacteria are not only green and non-toxic, but also can be obtained on a large scale, which facilitates manufacturing and clinical transformation.
Collapse
Affiliation(s)
- Erman Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| | - Yaru Jia
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Jiaxin Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - June Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xiaohan Zhou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China; College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China.
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China.
| |
Collapse
|
16
|
Firlar I, Altunbek M, McCarthy C, Ramalingam M, Camci-Unal G. Functional Hydrogels for Treatment of Chronic Wounds. Gels 2022; 8:127. [PMID: 35200508 PMCID: PMC8871490 DOI: 10.3390/gels8020127] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds severely affect 1-2% of the population in developed countries. It has been reported that nearly 6.5 million people in the United States suffer from at least one chronic wound in their lifetime. The treatment of chronic wounds is critical for maintaining the physical and mental well-being of patients and improving their quality of life. There are a host of methods for the treatment of chronic wounds, including debridement, hyperbaric oxygen therapy, ultrasound, and electromagnetic therapies, negative pressure wound therapy, skin grafts, and hydrogel dressings. Among these, hydrogel dressings represent a promising and viable choice because their tunable functional properties, such as biodegradability, adhesivity, and antimicrobial, anti-inflammatory, and pre-angiogenic bioactivities, can accelerate the healing of chronic wounds. This review summarizes the types of chronic wounds, phases of the healing process, and key therapeutic approaches. Hydrogel-based dressings are reviewed for their multifunctional properties and their advantages for the treatment of chronic wounds. Examples of commercially available hydrogel dressings are also provided to demonstrate their effectiveness over other types of wound dressings for chronic wound healing.
Collapse
Affiliation(s)
- Ilayda Firlar
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA 01854, USA;
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (M.A.); (C.M.)
| | - Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (M.A.); (C.M.)
| | - Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (M.A.); (C.M.)
| | - Murugan Ramalingam
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China;
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Korea
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (M.A.); (C.M.)
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Carpa R, Remizovschi A, Culda CA, Butiuc-Keul AL. Inherent and Composite Hydrogels as Promising Materials to Limit Antimicrobial Resistance. Gels 2022; 8:70. [PMID: 35200452 PMCID: PMC8870943 DOI: 10.3390/gels8020070] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 01/25/2023] Open
Abstract
Antibiotic resistance has increased significantly in the recent years, and has become a global problem for human health and the environment. As a result, several technologies for the controlling of health-care associated infections have been developed over the years. Thus, the most recent findings in hydrogel fabrication, particularly antimicrobial hydrogels, could offer valuable solutions for these biomedical challenges. In this review, we discuss the most promising strategies in the development of antimicrobial hydrogels and the application of hydrogels in the treatment of microbial infections. The latest advances in the development of inherently and composite antimicrobial hydrogels will be discussed, as well as hydrogels as carriers of antimicrobials, with a focus on antibiotics, metal nanoparticles, antimicrobial peptides, and biological extracts. The emergence of CRISR-Cas9 technology for removing the antimicrobial resistance has led the necessity of new and performant carriers for delivery of the CRISPR-Cas9 system. Different delivery systems, such as composite hydrogels and many types of nanoparticles, attracted a great deal of attention and will be also discussed in this review.
Collapse
Affiliation(s)
- Rahela Carpa
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alexei Remizovschi
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Carla Andreea Culda
- Parasitology and Parasitic Diseases Department, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Anca Livia Butiuc-Keul
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Kawabata K, Totani M, Kawaguchi D, Matsuno H, Tanaka K. Two-Dimensional Cellular Patterning on a Polymer Film Based on Interfacial Stiffness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14911-14919. [PMID: 34902971 DOI: 10.1021/acs.langmuir.1c02776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanical properties in the outermost region of a polymer film strongly affect various material functions. We here propose a novel and promising strategy for the two-dimensional regulation of the mechanical properties of a polymer film at the water interface based on an inkjet drawing of silica nanoparticles (SNPs) underneath it. A film of poly(2-hydroxyethyl methacrylate) (PHEMA), which exhibits excellent bioinertness properties at the water interface, was well fabricated on a substrate with a pattern of SNPs. X-ray photoelectron spectroscopy and atomic force microscopy confirmed that the surface of the PHEMA film was flat and chemically homogeneous. However, the film surface was in-plane heterogeneous in stiffness due to the presence of the underlying SNP lines. It was also noted that NIH/3T3 fibroblast cells selectively adhered and formed aggregates on the areas under which an SNP line was drawn.
Collapse
Affiliation(s)
- Kento Kawabata
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Masayasu Totani
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Centre for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Hisao Matsuno
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Centre for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Centre for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
|
20
|
Du C, Gao D, Gao M, Yuan H, Liu X, Wang B, Xing C. Property Regulation of Conjugated Oligoelectrolytes with Polyisocyanide to Achieve Efficient Photodynamic Antibacterial Biomimetic Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27955-27962. [PMID: 34124876 DOI: 10.1021/acsami.1c06659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabricating antibacterial hydrogels with antimicrobial drugs and synthetic biocompatible biomimetic hydrogels is a promising strategy for practical medical applications. Here, we report a bicomponent hydrogel composed of a biomimetic polyisocyanopetide (PIC) hydrogel and a photodynamic antibacterial membrane-intercalating conjugated oligoelectrolyte (COE). The aggregation behavior and aggregate size of the COEs in water can be regulated using the PIC hydrogel, which could induce COEs with higher reactive oxygen species (ROS) production efficiency and increased association of COEs toward bacteria, therefore enhancing the antibacterial efficiency. This strategy provides a facile method for developing biomimetic hydrogels with high antibacterial capability.
Collapse
Affiliation(s)
- Changsheng Du
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Dong Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Mengshi Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiaoning Liu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Bing Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Chengfen Xing
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
21
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
22
|
Eckhart KE, Arnold AM, Starvaggi FA, Sydlik SA. Tunable, bacterio-instructive scaffolds made from functional graphenic materials. Biomater Sci 2021; 9:2467-2479. [PMID: 33404025 DOI: 10.1039/d0bm01471k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The balance of bacterial populations in the human body is critical for human health. Researchers have aimed to control bacterial populations using antibiotic substrates. However, antibiotic materials that non-selectively kill bacteria can compromise health by eliminating beneficial bacteria, which leaves the body vulnerable to colonization by harmful pathogens. Due to their chemical tunablity and unique surface properties, graphene oxide (GO)-based materials - termed "functional graphenic materials" (FGMs) - have been previously designed to be antibacterial but have the capacity to actively adhere and instruct probiotics to maintain human health. Numerous studies have demonstrated that negatively and positively charged surfaces influence bacterial adhesion through electrostatic interactions with the negatively charged bacterial surface. We found that tuning the surface charge of FGMs provides an avenue to control bacterial attachment without compromising vitality. Using E. coli as a model organism for Gram-negative bacteria, we demonstrate that negatively charged Claisen graphene (CG), a reduced and carboxylated FGM, is bacterio-repellent through electrostatic repulsion with the bacterial surface. Though positively charged poly-l-lysine (PLL) is antibacterial when free in solution by inserting into the bacterial cell wall, here, we found that covalent conjugation of PLL to CG (giving PLLn-G) masks the antimicrobial activity of PLL by restricting polypeptide mobility. This allows the immobilized positive charge of the PLLn-Gs to be leveraged for E. coli adhesion through electrostatic attraction. We identified the magnitude of positive charge of the PLLn-G conjugates, which is modulated by the length of the PLL peptide, as an important parameter to tune the balance between the opposing forces of bacterial adhesion and proliferation. We also tested adhesion of Gram-positive B. subtilis to these FGMs and found that the effect of FGM charge is less pronounced. B. subtilis adheres nondiscriminatory to all FGMs, regardless of charge, but adhesion is scarce and localized. Overall, this work demonstrates that FGMs can be tuned to selectively control bacterial response, paving the way for future development of FGM-based biomaterials as bacterio-instructive scaffolds through careful design of FGM surface chemistry.
Collapse
Affiliation(s)
- Karoline E Eckhart
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
23
|
Monteiro DR, de Souza Batista VE, Caldeirão ACM, Jacinto RDC, Pessan JP. Oral prosthetic microbiology: aspects related to the oral microbiome, surface properties, and strategies for controlling biofilms. BIOFOULING 2021; 37:353-371. [PMID: 34139899 DOI: 10.1080/08927014.2021.1912741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The oral cavity is an environment that allows for the development of complex ecosystems; the placement of prosthetic devices as a consequence of partial or total tooth loss may alter the diversity of microbial communities. Biofilms on the surface of materials used in dental prostheses can promote important changes in the mechanic and aesthetic properties of the material itself and may cause local and systemic diseases for the prosthetic wearer. This review presents the main features of the oral microbiome associated with complete or partial dentures and dental implants. The main diseases associated with microbial colonization of prosthetic surfaces, factors that may affect biofilm formation on prosthetic materials, as well as novel alternative therapies aiming to reduce biofilm formation and/or to eradicate biofilms formed on these materials are also explored.
Collapse
Affiliation(s)
- Douglas Roberto Monteiro
- Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | | | | | - Rogério de Castilho Jacinto
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Juliano Pelim Pessan
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| |
Collapse
|
24
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
25
|
Zhang X, Qin M, Xu M, Miao F, Merzougui C, Zhang X, Wei Y, Chen W, Huang D. The fabrication of antibacterial hydrogels for wound healing. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110268] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Jin SE, Jin HE. Antimicrobial Activity of Zinc Oxide Nano/Microparticles and Their Combinations against Pathogenic Microorganisms for Biomedical Applications: From Physicochemical Characteristics to Pharmacological Aspects. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:263. [PMID: 33498491 PMCID: PMC7922830 DOI: 10.3390/nano11020263] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/31/2022]
Abstract
Zinc oxide (ZnO) nano/microparticles (NPs/MPs) have been studied as antibiotics to enhance antimicrobial activity against pathogenic bacteria and viruses with or without antibiotic resistance. They have unique physicochemical characteristics that can affect biological and toxicological responses in microorganisms. Metal ion release, particle adsorption, and reactive oxygen species generation are the main mechanisms underlying their antimicrobial action. In this review, we describe the physicochemical characteristics of ZnO NPs/MPs related to biological and toxicological effects and discuss the recent findings of the antimicrobial activity of ZnO NPs/MPs and their combinations with other materials against pathogenic microorganisms. Current biomedical applications of ZnO NPs/MPs and combinations with other materials are also presented. This review will provide the better understanding of ZnO NPs/MPs as antibiotic alternatives and aid in further development of antibiotic agents for industrial and clinical applications.
Collapse
Affiliation(s)
- Su-Eon Jin
- Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea
| |
Collapse
|
27
|
Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, Spencer P, Tamerler C. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater 2021; 113:104135. [PMID: 33160267 PMCID: PMC8101502 DOI: 10.1016/j.jmbbm.2020.104135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Sheng-Xue Xie
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA.
| |
Collapse
|
28
|
Gahane AY, Singh V, Kumar A, Kumar Thakur A. Development of mechanism-based antibacterial synergy between Fmoc-phenylalanine hydrogel and aztreonam. Biomater Sci 2020; 8:1996-2006. [PMID: 32073033 DOI: 10.1039/c9bm01978b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, fluorenylmethyloxycarbonyl (Fmoc) conjugated amino acids (Fmoc-AA), especially Fmoc-phenylalanine (Fmoc-F), have been discovered to have antimicrobial properties specific to Gram-positive bacteria including MRSA. Their weak antibacterial activity against Gram-negative bacteria is due to their inability to cross the bacterial membrane. Here in order to increase the antibacterial spectrum of Fmoc-F, we prepared a formulation of Fmoc-F with the Gram-negative specific antibiotic aztreonam (AZT). This formulation displayed antibacterial activity against both Gram-positive and Gram-negative bacteria and significantly reduced the bacterial load in a mouse wound infection model. The combination produced a synergistic effect and higher efficacy against P. aeruginosa due to the increased Fmoc-F permeability by AZT through the bacterial membrane. This combinatorial approach could be an effective strategy for other Fmoc-AA having a Gram-positive specific antibacterial effect for the better management of bacterial wound infections.
Collapse
Affiliation(s)
- Avinash Yashwant Gahane
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
29
|
Min JG, Sanchez Rangel UJ, Franklin A, Oda H, Wang Z, Chang J, Fox PM. Topical Antibiotic Elution in a Collagen-Rich Hydrogel Successfully Inhibits Bacterial Growth and Biofilm Formation In Vitro. Antimicrob Agents Chemother 2020; 64:e00136-20. [PMID: 32690648 PMCID: PMC7508589 DOI: 10.1128/aac.00136-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023] Open
Abstract
Chronic wounds are a prominent concern, accounting for $25 billion of health care costs annually. Biofilms have been implicated in delayed wound closure, but they are susceptible to developing antibiotic resistance and treatment options continue to be limited. A novel collagen-rich hydrogel derived from human extracellular matrix presents an avenue for treating chronic wounds by providing appropriate extracellular proteins for healing and promoting neovascularization. Using the hydrogel as a delivery system for localized secretion of a therapeutic dosage of antibiotics presents an attractive means of maximizing delivery while minimizing systemic side effects. We hypothesize that the hydrogel can provide controlled elution of antibiotics leading to inhibition of bacterial growth and disruption of biofilm formation. The rate of antibiotic elution from the collagen-rich hydrogel and the efficacy of biofilm disruption was assessed with Pseudomonas aeruginosa Bacterial growth inhibition, biofilm disruption, and mammalian cell cytotoxicity were quantified using in vitro models. The antibiotic-loaded hydrogel showed sustained release of antibiotics for up to 24 h at therapeutic levels. The treatment inhibited bacterial growth and disrupted biofilm formation at multiple time points. The hydrogel was capable of accommodating various classes of antibiotics and did not result in cytotoxicity in mammalian fibroblasts or adipose stem cells. The antibiotic-loaded collagen-rich hydrogel is capable of controlled antibiotic release effective for bacteria cell death without native cell death. A human-derived hydrogel that is capable of eluting therapeutic levels of antibiotic is an exciting prospect in the field of chronic wound healing.
Collapse
Affiliation(s)
- Jung Gi Min
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Uriel J Sanchez Rangel
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Austin Franklin
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Hiroki Oda
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Zhen Wang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - James Chang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Paige M Fox
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
30
|
Ebhodaghe SO. Hydrogel – based biopolymers for regenerative medicine applications: a critical review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1809409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Kumaraswamy S, Patil SL, Mallaiah SH. In vitro biocompatibility evaluation of radiolytically synthesized silver/polyvinyl hydrogel nanocomposites for wound dressing applications. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520944428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nano silver/polyvinyl alcohol hydrogel nanocomposites have been prepared using gamma irradiation technique. Gamma irradiation serves as a crosslinking agent for the polyvinyl alcohol hydrogels and also acts as a reducing agent for reduction of Ag+ ions to zero valent Ag0 within the polyvinyl alcohol crosslinked network. The microstructural characteristics of the prepared composites were studied using powder X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy and field emission scanning electron microscopy analysis. The data obtained by these characterizations indicate the homogeneous distribution of silver nanoparticles on the polyvinyl alcohol network. The swelling properties and mechanical parameters of the silver/polyvinyl alcohol hydrogel nanocomposites tend to show improvements, making them a better material for wound care applications. The silver/polyvinyl alcohol hydrogel nanocomposites have shown good antibacterial potential against both Gram-positive and Gram-negative bacteria and shown nil or minimal cytotoxic effect on human melanoma (SK-MEL-2) and mouse melanoma (B16-F1) cell lines. Overall, it was concluded that under optimized condition, silver/polyvinyl alcohol hydrogel nanocomposites synthesized using gamma irradiation technique are excellent candidates for wound dressing application.
Collapse
Affiliation(s)
- Swaroop Kumaraswamy
- Centre for Application of Radioisotopes and Radiation Technology (CARRT), Mangalore University, Mangalore, India
| | | | - Somashekarappa H Mallaiah
- Centre for Application of Radioisotopes and Radiation Technology (CARRT), Mangalore University, Mangalore, India
| |
Collapse
|
32
|
Lopez-Carrizales M, Mendoza-Mendoza E, Peralta-Rodriguez RD, Pérez-Díaz MA, Portales-Pérez D, Magaña-Aquino M, Aragón-Piña A, Infante-Martínez R, Barriga-Castro ED, Sánchez-Sánchez R, Martinez-Castañon GA, Martinez-Gutierrez F. Characterization, antibiofilm and biocompatibility properties of chitosan hydrogels loaded with silver nanoparticles and ampicillin: an alternative protection to central venous catheters. Colloids Surf B Biointerfaces 2020; 196:111292. [PMID: 32777661 DOI: 10.1016/j.colsurfb.2020.111292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to generate novel chitosan hydrogels (CHs) loaded with silver nanoparticles (AgNPs) and ampicillin (AMP) to prevent early formation of biofilms. AgNPs and CHs were characterized by UV-Vis, DLS, TEM, rheology, FT-IR, Raman, and SEM. The antibiofilm effect of the formulations was investigated against four multidrug-resistant and extensively drug-resistant pathogens using a colony biofilm, a high cell density and gradients model. Also, their hemostatic properties and cytotoxic effect were evaluated. Rheology results showed that CHs with AgNPs and AMP are typical non-Newtonian pseudoplastic fluids. The CH with 25 ppm of AgNPs and 50 ppm AMP inhibited the formation of biofilms of Acinetobacter baumannii, Enterococcus faecium and Staphylococcus epidermidis, while a ten-fold increase of the antimicrobial's concentration was needed to inhibit the biofilm of the β-lactamase positive Enterobacter cloacae. Further, CH with 250 ppm of AgNPs and 500 ppm AMP showed anticoagulant effect, and it was shown that all formulations were biocompatible. Besides to previous reports that described the bioadhesion properties of chitosan, these results suggest that AgNPs and AMP CHs loaded could be used as prophylactic treatment in patients with central venous catheter (CVC), inhibiting the formation of biofilms in their early stages, in addition to their anticoagulant effect and biocompatibility, those properties could keep the functionality of CVC helping to prevent complications such as sepsis and thrombosis.
Collapse
Affiliation(s)
- Montserrat Lopez-Carrizales
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Esmeralda Mendoza-Mendoza
- Centro de Investigación y Estudios de Posgrado, FCQ, UASLP, Av. Dr. Manuel Nava No.6, Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico; Cátedras-CONACYT, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, Sierra Leona No. 550, Lomas, CP 28210, San Luis Potosí, S.L.P., Mexico
| | - René D Peralta-Rodriguez
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Mario A Pérez-Díaz
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco 289, Arenal Tepepan, CP 14389, Ciudad de México, Mexico; Laboratorio de Biomembranas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, CP 11340, Ciudad de México, Mexico
| | - Diana Portales-Pérez
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Martín Magaña-Aquino
- Hospital Central Dr. Ignacio Morones Prieto, Av. Venustiano Carranza No. 2395, CP 78290, San Luis Potosí, S.L.P., Mexico
| | - Antonio Aragón-Piña
- Instituto de Metalurgia, UASLP, Av. Sierra Leona No. 550, Lomas 2ª sección, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Ramiro Infante-Martínez
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Enrique D Barriga-Castro
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco 289, Arenal Tepepan, CP 14389, Ciudad de México, Mexico
| | - Gabriel A Martinez-Castañon
- Laboratorio de Nanobiomateriales, Facultad de Estomatología, UASLP, Av. Dr. Manuel Nava No. 2 Zona Universitaria, CP 78290, San Luis Potosí, S.L.P., Mexico
| | - Fidel Martinez-Gutierrez
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, Sierra Leona No. 550, Lomas, CP 28210, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
33
|
Pahlevanzadeh F, Emadi R, Valiani A, Kharaziha M, Poursamar SA, Bakhsheshi-Rad HR, Ismail AF, RamaKrishna S, Berto F. Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2663. [PMID: 32545256 PMCID: PMC7321644 DOI: 10.3390/ma13112663] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
Chitosan (CS) has gained particular attention in biomedical applications due to its biocompatibility, antibacterial feature, and biodegradability. Hence, many studies have focused on the manufacturing of CS films, scaffolds, particulate, and inks via different production methods. Nowadays, with the possibility of the precise adjustment of porosity size and shape, fiber size, suitable interconnectivity of pores, and creation of patient-specific constructs, 3D printing has overcome the limitations of many traditional manufacturing methods. Therefore, the fabrication of 3D printed CS scaffolds can lead to promising advances in tissue engineering and regenerative medicine. A review of additive manufacturing types, CS-based printed constructs, their usages as biomaterials, advantages, and drawbacks can open doors to optimize CS-based constructions for biomedical applications. The latest technological issues and upcoming capabilities of 3D printing with CS-based biopolymers for different applications are also discussed. This review article will act as a roadmap aiming to investigate chitosan as a new feedstock concerning various 3D printing approaches which may be employed in biomedical fields. In fact, the combination of 3D printing and CS-based biopolymers is extremely appealing particularly with regard to certain clinical purposes. Complications of 3D printing coupled with the challenges associated with materials should be recognized to help make this method feasible for wider clinical requirements. This strategy is currently gaining substantial attention in terms of several industrial biomedical products. In this review, the key 3D printing approaches along with revealing historical background are initially presented, and ultimately, the applications of different 3D printing techniques for fabricating chitosan constructs will be discussed. The recognition of essential complications and technical problems related to numerous 3D printing techniques and CS-based biopolymer choices according to clinical requirements is crucial. A comprehensive investigation will be required to encounter those challenges and to completely understand the possibilities of 3D printing in the foreseeable future.
Collapse
Affiliation(s)
- Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
| | - Ali Valiani
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
| | - S. Ali Poursamar
- Biomaterials, Nanotechnology, and Tissue Engineering Group, Advanced Medical Technology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia;
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
34
|
Rossetti A, Pizzetti F, Rossi F, Mauri E, Borghi E, Ottaviano E, Sacchetti A. Synthesis and characterization of carbomer-based hydrogels for drug delivery applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1760275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Arianna Rossetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
35
|
Xie SX, Song L, Yuca E, Boone K, Sarikaya R, VanOosten SK, Misra A, Ye Q, Spencer P, Tamerler C. Antimicrobial Peptide-Polymer Conjugates for Dentistry. ACS APPLIED POLYMER MATERIALS 2020; 2:1134-1144. [PMID: 33834166 PMCID: PMC8026165 DOI: 10.1021/acsapm.9b00921] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bacterial adhesion and growth at the composite/adhesive/tooth interface remain the primary cause of dental composite restoration failure. Early colonizers, including Streptococcus mutans, play a critical role in the formation of dental caries by creating an environment that reduces the adhesive's integrity. Subsequently, other bacterial species, biofilm formation, and lactic acid from S. mutans demineralize the adjoining tooth. Because of their broad spectrum of antibacterial activity and low risk for antibiotic resistance, antimicrobial peptides (AMPs) have received significant attention to prevent bacterial biofilms. Harnessing the potential of AMPs is still very limited in dentistry-a few studies have explored peptide-enabled antimicrobial adhesive copolymer systems using mainly nonspecific adsorption. In the current investigation, to avoid limitations from nonspecific adsorption and to prevent potential peptide leakage out of the resin, we conjugated an AMP with a commonly used monomer for dental adhesive formulation. To tailor the flexibility between the peptide and the resin material, we designed two different spacer domains. The spacer-integrated antimicrobial peptides were conjugated to methacrylate (MA), and the resulting MA-AMP monomers were next copolymerized into dental adhesives as AMP-polymer conjugates. The resulting bioactivity of the polymethacrylate-based AMP conjugated matrix activity was investigated. The antimicrobial peptide conjugated to the resin matrix demonstrated significant antimicrobial activity against S. mutans. Secondary structure analyses of conjugated peptides were applied to understand the activity differential. When mechanical properties of the adhesive system were investigated with respect to AMP and cross-linking concentration, resulting AMP-polymer conjugates maintained higher compressive moduli compared to hydrogel analogues including polyHEMA. Overall, our result provides a robust approach to develop a fine-tuned bioenabled peptide adhesive system with improved mechanical properties and antimicrobial activity. The results of this study represent a critical step toward the development of peptide-conjugated dentin adhesives for treatment of secondary caries and the enhanced durability of dental composite restorations.
Collapse
Affiliation(s)
| | | | - Esra Yuca
- University of Kansas (KU), Lawrence, Kansas, and Yildiz Technical University, Istanbul, Turkey
| | - Kyle Boone
- University of Kansas (KU), Lawrence, Kansas
| | | | | | - Anil Misra
- University of Kansas (KU), Lawrence, Kansas
| | - Qiang Ye
- University of Kansas (KU), Lawrence, Kansas
| | | | | |
Collapse
|
36
|
Yuan H, Zhan Y, Rowan AE, Xing C, Kouwer PHJ. Biomimetic Networks with Enhanced Photodynamic Antimicrobial Activity from Conjugated Polythiophene/Polyisocyanide Hybrid Hydrogels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongbo Yuan
- Institute of BiophysicsHebei University of Technology Tianjin 300401 P. R. China
| | - Yong Zhan
- Institute of BiophysicsHebei University of Technology Tianjin 300401 P. R. China
| | - Alan E. Rowan
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Chengfen Xing
- Institute of BiophysicsHebei University of Technology Tianjin 300401 P. R. China
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
37
|
Yuan H, Zhan Y, Rowan AE, Xing C, Kouwer PHJ. Biomimetic Networks with Enhanced Photodynamic Antimicrobial Activity from Conjugated Polythiophene/Polyisocyanide Hybrid Hydrogels. Angew Chem Int Ed Engl 2020; 59:2720-2724. [PMID: 31917502 DOI: 10.1002/anie.201910979] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/25/2019] [Indexed: 12/26/2022]
Abstract
Hybrid biomimetic hydrogels with enhanced reactive oxygen species (ROS)-generation efficiency under 600 nm light show high antibacterial activity. The hybrid gels are composed of helical tri(ethylene glycol)-functionalized polyisocyanides (PICs) and a conformation-sensitive conjugated polythiophene, poly(3-(3'-N,N,N-triethylammonium-1'-propyloxy)-4-methyl-2,5-thiophene chloride) (PMNT). The PIC polymer serves as a scaffold to trap and align the PMNT backbone into a highly ordered conformation, resulting in redshifted, new sharp bands in the absorption and fluorescence spectra. Similar to PIC, the hybrid closely mimics the mechanical properties of biological gels, such as collagen and fibrin, including the strain stiffening properties at low stresses. Moreover, the PMNT/PIC hybrids show much higher ROS production efficiency under red light than PMNT only, leading to an efficient photodynamic antimicrobial effect towards various pathogenic bacteria.
Collapse
Affiliation(s)
- Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yong Zhan
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Alan E Rowan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengfen Xing
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Wang X, Xu P, Yao Z, Fang Q, Feng L, Guo R, Cheng B. Preparation of Antimicrobial Hyaluronic Acid/Quaternized Chitosan Hydrogels for the Promotion of Seawater-Immersion Wound Healing. Front Bioeng Biotechnol 2019; 7:360. [PMID: 31921796 PMCID: PMC6914676 DOI: 10.3389/fbioe.2019.00360] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/12/2019] [Indexed: 02/02/2023] Open
Abstract
Wound immersion in seawater with high salt, high sodium, and a high abundance of pathogenic bacteria, especially gram-negative bacteria, can cause serious infections and difficulties in wound repair. The present study aimed to prepare a composite hydrogel composed of hyaluronic acid (HA) and quaternized chitosan (QCS) that may promote wound healing of seawater-immersed wounds and prevent bacterial infection. Based on dynamic Schiff base linkage, hydrogel was prepared by mixing oxidized hyaluronic acid (OHA) and hyaluronic acid-hydrazide (HA-ADH) under physiological conditions. With the addition of quaternized chitosan, oxidized hyaluronic acid/hyaluronic acid-hydrazide/quaternized chitosan (OHA/HA-ADH/O-HACC and OHA/HA-ADH/N-HACC) composite hydrogels with good swelling properties and mechanical properties, appropriate water vapor transmission rates (WVTR), and excellent stability were prepared. The biocompatibility of the hydrogels was demonstrated by in vitro fibroblast L929 cell culture study. The results of in vitro and in vivo studies revealed that the prepared antibacterial hydrogels could largely inhibit bacterial growth. The in vivo study further demonstrated that the antibacterial hydrogels exhibited high repair efficiencies in a seawater-immersed wound defect model. In addition, the antibacterial hydrogels decreased pro-inflammatory factors (TNF-α, IL-1β, and IL-6) but enhanced anti-inflammatory factors (TGF-β1) in wound. This work indicates that the prepared antibacterial composite hydrogels have great potential in chronic wound healing applications, such as severe wound cure and treatment of open trauma infections.
Collapse
Affiliation(s)
- Xinlu Wang
- The First Clinical Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Pengcheng Xu
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Zexin Yao
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
- Department of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Fang
- The First Clinical Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longbao Feng
- Beogene Biotech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Jinan University, Guangzhou, China
| | - Biao Cheng
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| |
Collapse
|
39
|
Makowski M, Silva ÍC, Pais do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics 2019; 11:E588. [PMID: 31717337 PMCID: PMC6920925 DOI: 10.3390/pharmaceutics11110588] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been described as excellent candidates to overcome antibiotic resistance. Frequently, AMPs exhibit a wide therapeutic window, with low cytotoxicity and broad-spectrum antimicrobial activity against a variety of pathogens. In addition, some AMPs are also able to modulate the immune response, decreasing potential harmful effects such as sepsis. Despite these benefits, only a few formulations have successfully reached clinics. A common flaw in the druggability of AMPs is their poor pharmacokinetics, common to several peptide drugs, as they may be degraded by a myriad of proteases inside the organism. The combination of AMPs with carrier nanoparticles to improve delivery may enhance their half-life, decreasing the dosage and thus, reducing production costs and eventual toxicity. Here, we present the most recent advances in lipid and metal nanodevices for AMP delivery, with a special focus on metal nanoparticles and liposome formulations.
Collapse
Affiliation(s)
| | | | | | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (M.M.); (Í.C.S.); (C.P.d.A.)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (M.M.); (Í.C.S.); (C.P.d.A.)
| |
Collapse
|
40
|
Mauri E, Naso D, Rossetti A, Borghi E, Ottaviano E, Griffini G, Masi M, Sacchetti A, Rossi F. Design of polymer-based antimicrobial hydrogels through physico-chemical transition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109791. [PMID: 31349504 DOI: 10.1016/j.msec.2019.109791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
The antimicrobial activity represents a cornerstone in the development of biomaterials: it is a leading request in many areas, including biology, medicine, environment and industry. Over the years, different polymeric scaffolds are proposed as solutions, based on the encapsulation of metal ions/particles, antibacterial agents or antibiotics. However, the compliance with the biocompatibility criteria and the concentration of the active principles to avoid under- and over-dosing are being debated. In this work, we propose the synthesis of a versatile hydrogel using branched polyacrylic acid (carbomer 974P) and aliphatic polyetherdiamine (elastamine®) through physico-chemical transition, able to show its ability to counteract the bacterial growth and infections thanks to the polymers used, that are not subjected to further chemical modifications. In particular, the antimicrobial activity is clearly demonstrated against Staphyloccoccus aureus and Candida albicans, two well-known opportunistic pathogens. Moreover, we discuss the hydrogel use as drug carrier to design a unique device able to combine the antibacterial/antimicrobial properties to the controlled drug delivery, as a promising tool for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Davide Naso
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Arianna Rossetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, via Di Rudinì 8, 20142 Milan, Italy
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università degli Studi di Milano, via Di Rudinì 8, 20142 Milan, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
41
|
|
42
|
Fabrication of an Original Transparent PVA/Gelatin Hydrogel: In Vitro Antimicrobial Activity against Skin Pathogens. INT J POLYM SCI 2019. [DOI: 10.1155/2019/7651810] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The design of actively efficient and low-toxicity formulations against virulent bacterial strains causing skin infections remains a challenging task. The aim of the present study was to develop and evaluate in vitro a hydrogel impregnated with a known plant extract for topical applications against major skin bacteria. A poly(vinyl alcohol) (PVA)/gelatin hydrogel, namely HG, was prepared by esterification following the solution casting method. The gelling process was realized by cross-linking the synthetic polymer PVA and the biopolymer gelatin in the presence of hydrochloric acid (HCl). A crude extract of Nigella sativa seeds was then encapsulated in HG, and the resulting HGE was characterized morphologically (by Scanning Electron Microscopy (SEM)), structurally (by X-ray powder diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy), behaviorally (by swelling behavior), and biologically (by the agar well diffusion method). The results of HGE were compared to HG and HG impregnated with 10% acetic acid (HGAA). SEM sections of HGE revealed a dense and porous surface, suggesting a good hydrophilicity. X-ray diffractograms indicated that HGE and HG had a similar degree of crystallinity. FTIR spectra confirmed that esterification occurred between PVA and gelatin suggesting that the amine group is involved in the intercalation of the plant extract components in HG. Further, HGE was found to be as wettable and swellable as HG, suggesting a good biocompatibility. Eventually, HGE exerted a pronounced inhibitory effect against two major skin pathogens, the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus, suggesting a good extract release. Taken together, the experimental data indicated that HGE might be a promising wound dressing.
Collapse
|
43
|
Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581780] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rogelio Rodríguez-Rodríguez
- Unidad Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - Hugo Espinosa-Andrews
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, México
| | | | - Zaira Yunuen García-Carvajal
- Unidad Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| |
Collapse
|
44
|
Marques MS, Zepon ΚM, Heckler JM, Morisso FDP, da Silva Paula MM, Κanis LA. One-pot synthesis of gold nanoparticles embedded in polysaccharide-based hydrogel: Physical-chemical characterization and feasibility for large-scale production. Int J Biol Macromol 2019; 124:838-845. [DOI: 10.1016/j.ijbiomac.2018.11.231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023]
|
45
|
González-Henríquez CM, Sarabia-Vallejos MA, Terraza CA, Del Campo-García A, Lopez-Martinez E, Cortajarena AL, Casado-Losada I, Martínez-Campos E, Rodríguez-Hernández J. Design and fabrication of biocompatible wrinkled hydrogel films with selective antibiofouling properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:803-812. [PMID: 30678971 DOI: 10.1016/j.msec.2018.12.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 11/29/2022]
Abstract
In this article, we explored the selective antibiofouling capacity acquired by functional wrinkled hydrogel films via a fine tuning of their chemical structure through the gradual insertion of hydrophobic radical groups in their network. The hydrogel consists of three main components: hydroxyethyl methacrylate (HEMA, amphiphilic monomer), trifluoroethyl methacrylate (TFMA, hydrophobic monomer), and poly(ethylene glycol) diacrylate (PEGDA, hydrophilic crosslinking agent). Interestingly, the manipulation of the chemical composition affects both, surface morphology and physicochemical characteristics of the patterns, inducing transitions between different surface microstructures, i.e. from wrinkles to creases, to folds, and to crumples. Contact angle measurements show that the insertion of TFMA produces a slight decrease in surface wettability, remaining however highly hydrophilic. By using confocal Raman spectroscopy, important information about wrinkle formation mechanism could be obtained. The procedure presented in this article involves two consecutive thermal and photopolymerization steps, generating a "pseudo" two-layer system, which contracts at different extents when is exposed to external stimuli, leading to the formation of wrinkled surfaces. Finally, bacterial and cellular adhesion/proliferation studies were carried out, evidencing that the amount of TFMA included clearly reduce the bacterial adhesion while mammalian cells are able to still proliferate.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago, Chile; Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago, Chile.
| | - Mauricio A Sarabia-Vallejos
- Escuela de Ingeniería, Departamento de Ingeniería Estructural y Geotecnia, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago, Chile; Instituto de Ingeniería Biológica y Medica, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago, Chile
| | - C A Terraza
- Departamento de Química, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago, Chile
| | | | | | - Aitzibier L Cortajarena
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013 Bilbao, Spain
| | - Isabel Casado-Losada
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid (Associated Unit to the ICTP-CSIC Polymer Functionalization Group), Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid (Associated Unit to the ICTP-CSIC Polymer Functionalization Group), Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
46
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
47
|
Gahane AY, Ranjan P, Singh V, Sharma RK, Sinha N, Sharma M, Chaudhry R, Thakur AK. Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases. SOFT MATTER 2018; 14:2234-2244. [PMID: 29517792 DOI: 10.1039/c7sm02317k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the quest for new antimicrobial materials, hydrogels of Fmoc-protected peptides and amino acids have gained momentum due to their ease of synthesis and cost effectiveness; however, their repertoire is currently limited, and the mechanistic details of their function are not well understood. Herein, we report the antibacterial activity of the hydrogel and solution phases of Fmoc-phenylalanine (Fmoc-F) against a variety of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Fmoc-F, a small molecule hydrogelator, reduces the bacterial load both in vitro and in the skin wound infections of mice. The antibacterial activity of Fmoc-F is predominantly due to its release from the hydrogel. Fmoc-F shows surfactant-like properties with critical micelle concentration nearly equivalent to its minimum bactericidal concentration. Similar to Fmoc-F, some Fmoc-conjugated amino acids (Fmoc-AA) have also shown antibacterial effects that are linearly correlated with their surfactant properties. At low concentrations, where Fmoc-F does not form micelles, it inhibits bacterial growth by entering the cell and reducing the glutathione levels. However, at higher concentrations, Fmoc-F triggers oxidative and osmotic stress and, alters the membrane permeabilization and integrity, which kills Gram-positive bacteria. Herein, we proposed the use of the Fmoc-F hydrogel and its solution for several biomedical applications. This study will open up new avenues to enhance the repertoire of Fmoc-AA to act as antimicrobial agents and improve their structure-activity relationship.
Collapse
Affiliation(s)
- Avinash Y Gahane
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Pritish Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Raj K Sharma
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Mandeep Sharma
- DGCN College of Veterinary and Animal Sciences, CSK HPKV, Palampur-176062, India
| | - Rama Chaudhry
- All India Institute of Medical Sciences, New Delhi, India
| | - Ashwani K Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
48
|
Wang G, Zhu J, Chen X, Dong H, Li Q, Zeng L, Cao X. Alginate based antimicrobial hydrogels formed by integrating Diels-Alder "click chemistry" and the thiol-ene reaction. RSC Adv 2018; 8:11036-11042. [PMID: 35541529 PMCID: PMC9078979 DOI: 10.1039/c8ra00668g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022] Open
Abstract
In recent years medical devices manufacturers have been looking for antimicrobial coatings which are biocompatible and non-toxic for a wide range of medical devices. The demand for these antimicrobial coatings has increased significantly, owing to the increased incidence of hospital-associated infections (HAIs). Hydrogels have been widely used in biomedical applications due to their hydrophilicity, biodegradability, non-toxicity and biocompatibility. In this work, sodium alginate (SA) based antibacterial hydrogels SA/PEG-HHC10 were designed and prepared by combining Diels-Alder (DA) click chemistry and the thiol-ene reaction. The hydrogels were first prepared using DA click chemistry with good mechanical strength, then the cysteine-terminated antimicrobial peptide HHC10-CYS (HHC10) was grafted into the hydrogel by the thiol-ene reaction between the oxy-norbornene group and the thiol group. The results showed that the antimicrobial hydrogels had a strong antibacterial property and good biocompatibility. Therefore, the antimicrobial hydrogels have significant potential application as coatings for implantable medical devices.
Collapse
Affiliation(s)
- Gang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 PR China +86-20-22236066
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 PR China
| | - Jiehua Zhu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 PR China +86-20-22236066
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 PR China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 PR China +86-20-22236066
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 PR China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology Guangzhou 510006 PR China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 PR China +86-20-22236066
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 PR China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology Guangzhou 510006 PR China
| | - Qingtao Li
- School of Medicine, South China University of Technology Guangzhou 510641 PR China
| | - Lei Zeng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 PR China +86-20-22236066
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 PR China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 PR China +86-20-22236066
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 PR China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology Guangzhou 510006 PR China
| |
Collapse
|