1
|
Li M, Peng B, Lyu Q, Chen X, Hu Z, Zhang X, Xiong B, Zhang L, Zhu J. Scalable production of structurally colored composite films by shearing supramolecular composites of polymers and colloids. Nat Commun 2024; 15:1874. [PMID: 38424168 PMCID: PMC10904808 DOI: 10.1038/s41467-024-46237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Structurally colored composite films, composed of orderly arranged colloids in polymeric matrix, are emerging flexible optical materials, but their production is bottlenecked by time-consuming procedures and limited material choices. Here, we present a mild approach to producing large-scale structurally colored composite films by shearing supramolecular composites composed of polymers and colloids with supramolecular interactions. Leveraging dynamic connection and dissociation of supramolecular interactions, shearing force stretches the polymer chains and drags colloids to migrate directionally within the polymeric matrix with reduced viscous resistance. We show that meter-scale structurally colored composite films with iridescence color can be produced within several minutes at room temperature. Significantly, the tunability and diversity of supramolecular interactions allow this shearing approach extendable to various commonly-used polymers. This study overcomes the traditional material limitations of manufacturing structurally colored composite films by shearing method and opens an avenue for mildly producing ordered composites with commonly-available materials via supramolecular strategies.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zhen Hu
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiujuan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bijin Xiong
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Jintao Zhu
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
2
|
Siegwardt L, Glößner V, Boehm A, Schneider M, Gallei M. Poly(4-vinylpyridine) and Poly(methacrylic acid) Particle Architectures for pH-Responsive and Mechanochromic Opal Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10722-10735. [PMID: 38350063 DOI: 10.1021/acsami.3c17974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
While stimuli-responsive structural colors are commonly found in nature, mimicking these in artificial materials is challenging. Dynamically switchable and tunable coloration, however, is in high demand in widespread fields of applications, including advanced display and monitoring technologies, smart sensing, and anticounterfeiting. This work reports a scalable protocol for the synthesis of tailor-made core-shell particles and subsequent processing to opal films with iridescent, pH-responsive, and mechanochromic structural color. Novel monodisperse core-shell architectures based on hard polystyrene core particles are synthesized via stepwise emulsion polymerization in a starved-feed mode. The incorporation of 4-vinylpyridine and methacrylic acid as functional comonomers in the soft particle shell facilitates pH-responsive swelling and deswelling. Mechanically stable and well-ordered colloidal crystal films are obtained by the self-assembly of the particles during processing with the powerful melt-shear organization technique. Thereby obtained opal films show Bragg-scattering at the colloidal crystalline structure and exhibit brilliant green-turquoise to blue-violet reflection colors, dependent on the angle of view and illumination. Upon changes in the pH value or mechanical deformation, the reflected wavelength shifts by more than 100 nm, leading to intriguing changes in the visible structural color. Excellent reversibility is achieved by the subsequent application of a convenient UV cross-linking strategy, corroborating the high application potential of these advanced functional materials.
Collapse
Affiliation(s)
- Lukas Siegwardt
- Polymer Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Victoria Glößner
- Polymer Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Anna Boehm
- Polymer Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken 66123, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Saarbrücken 66123, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Saarbrücken 66123, Germany
| |
Collapse
|
3
|
Rosetta G, Gunn M, Tomes JJ, Butters M, Pieschel J, Hartmann F, Gallei M, Finlayson CE. Transparent Polymer Opal Thin Films with Intense UV Structural Color. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123774. [PMID: 35744899 PMCID: PMC9230526 DOI: 10.3390/molecules27123774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
We report on shear-ordered polymer photonic crystals demonstrating intense structural color with a photonic bandgap at 270 nm. Our work examines this UV structural color, originating from a low refractive index contrast polymer composite system as a function of the viewing angle. We report extensive characterization of the angle-dependent nature of this color in the form of 'scattering cones', which showed strong reflectivity in the 275-315 nm range. The viewing range of the scattering was fully quantified for a number of planes and angles, and we additionally discuss the unique spectral anisotropy observed in these structures. Such films could serve as low-cost UV reflection coatings with applications in photovoltaics due to the fact of their non-photobleaching and robust mechanical behavior in addition to their favorable optical properties.
Collapse
Affiliation(s)
- Giselle Rosetta
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK; (G.R.); (M.G.); (J.J.T.)
- Varichem Co., Ltd., Brynmawr NP23 4BX, UK
| | - Matthew Gunn
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK; (G.R.); (M.G.); (J.J.T.)
| | - John J. Tomes
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK; (G.R.); (M.G.); (J.J.T.)
| | - Mike Butters
- Minton Treharne and Davies, Cardiff CF14 7HY, UK;
| | - Jens Pieschel
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (J.P.); (F.H.); (M.G.)
| | - Frank Hartmann
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (J.P.); (F.H.); (M.G.)
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (J.P.); (F.H.); (M.G.)
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Chris E. Finlayson
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK; (G.R.); (M.G.); (J.J.T.)
- Correspondence:
| |
Collapse
|
4
|
Spectroscopic Ellipsometry and Optical Modelling of Structurally Colored Opaline Thin-Films. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The method of spectroscopic ellipsometry is applied to complex periodic nanomaterials, consisting of shear-ordered polymeric nanosphere composites, with intense resonant structural color. A corresponding multilayer optical quasi-model of the system, parametrizing the inherent degree of sample disorder and encompassing key properties of effective refractive-index and index-contrast, is developed to elucidate the correlation between the ∆ and Ψ ellipsometric parameters and the shear-induced opaline crystallinity. These approaches offer reliable means of in-line tracking of the sample quality of such “polymer opals” in large scale processing and applications.
Collapse
|
5
|
Bitsch M, Boehm AK, Grandjean A, Jung G, Gallei M. Embedding Photoacids into Polymer Opal Structures: Synergistic Effects on Optical and Stimuli-Responsive Features. Molecules 2021; 26:7350. [PMID: 34885932 PMCID: PMC8659009 DOI: 10.3390/molecules26237350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Opal films with their vivid structural colors represent a field of tremendous interest and obtained materials offer the possibility for many applications, such as optical sensors or anti-counterfeiting materials. A convenient method for the generation of opal structures relies on the tailored design of core-interlayer-shell (CIS) particles. Within the present study, elastomeric opal films were combined with stimuli-responsive photoacids to further influence the optical properties of structurally colored materials. Starting from cross-linked polystyrene (PS) core particles featuring a hydroxy-rich and polar soft shell, opal films were prepared by application of the melt-shear organization technique. The photoacid tris(2,2,2-trifluoroethyl) 8-hydroxypyrene-1,3,6-trisulfonate (TFEHTS) could be conveniently incorporated during freeze-drying the particle dispersion and prior to the melt-shear organization. Furthermore, the polar opal matrix featuring hydroxylic moieties enabled excited-state proton transfer (ESPT), which is proved by spectroscopic evaluation. Finally, the influence of the photoacid on the optical properties of the 3-dimensional colloidal crystals were investigated within different experimental conditions. The angle dependence of the emission spectra unambiguously shows the selective suppression of the photoacid's fluorescence in its deprotonated state.
Collapse
Affiliation(s)
- Martin Bitsch
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany; (M.B.); (A.K.B.)
| | - Anna Katharina Boehm
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany; (M.B.); (A.K.B.)
| | - Alexander Grandjean
- Biophysical Chemistry, Saarland University, Campus B2 2, 66123 Saarbrücken, Germany;
| | - Gregor Jung
- Biophysical Chemistry, Saarland University, Campus B2 2, 66123 Saarbrücken, Germany;
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany; (M.B.); (A.K.B.)
- Saarene-Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Finlayson CE, Rosetta G, Baumberg JJ. An Experimental and Theoretical Determination of Oscillatory Shear-Induced Crystallization Processes in Viscoelastic Photonic Crystal Media. MATERIALS 2021; 14:ma14185298. [PMID: 34576523 PMCID: PMC8464957 DOI: 10.3390/ma14185298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022]
Abstract
A study is presented of the oscillatory shear-ordering dynamics of viscoelastic photonic crystal media, using an optical shear cell. The hard-sphere/“sticky”-shell design of these polymeric composite particles produces athermal, quasi-solid rubbery media, with a characteristic viscoelastic ensemble response to applied shear. Monotonic crystallization processes, as directly measured by the photonic stopband transmission, are tracked as a function of strain amplitude, oscillation frequency, and temperature. A complementary generic spatio-temporal model is developed of crystallization due to shear-dependent interlayer viscosity, giving propagating crystalline fronts with increasing applied strain, and a gradual transition from interparticle disorder to order. The introduction of a competing shear-induced flow degradation process, dependent on the global shear rate, gives solutions with both amplitude and frequency dependence. The extracted crystallization timescales show parametric trends which are in good qualitative agreement with experimental observations.
Collapse
Affiliation(s)
- Chris E. Finlayson
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK;
- Correspondence: (C.E.F.); (J.J.B.)
| | - Giselle Rosetta
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK;
| | - Jeremy J. Baumberg
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Correspondence: (C.E.F.); (J.J.B.)
| |
Collapse
|
7
|
Winter T, Boehm A, Presser V, Gallei M. Dye-Loaded Mechanochromic and pH-Responsive Elastomeric Opal Films. Macromol Rapid Commun 2020; 42:e2000557. [PMID: 33251645 DOI: 10.1002/marc.202000557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Indexed: 01/30/2023]
Abstract
In this work, the preparation and fabrication of elastomeric opal films revealing reversible mechanochromic and pH-responsive features are reported. The core-interlayer-shell (CIS) particles are synthesized via stepwise emulsion polymerization leading to hard core (polystyrene), crosslinked interlayer (poly(methyl methacrylate-co-allyl methacrylate), and soft poly(ethyl acrylate-co-butyl acrylate-co-(2-hydroxyethyl) methacrylate) shell particles featuring a size of 294.9 ± 14.8 nm. This particle architecture enables the application of the melt-shear organization technique leading to elastomeric opal films with orange, respectively, green brilliant reflection colors dependent on the angle of view. Moreover, the hydroxyl moieties as part of the particle shell are advantageously used for subsequent thermally induced crosslinking reactions enabling the preparation of reversibly tunable mechanochromic structural colors based on Bragg's law of diffraction. Additionally, the CIS particles can be loaded upon extrusion or chemically by a postfunctionalization strategy with organic dyes implying pH-responsive features. This convenient protocol for preparing multi-responsive, reversibly stretch-tunable opal films is expected to enable a new material family for anti-counterfeiting applications based on external triggers.
Collapse
Affiliation(s)
- Tamara Winter
- Ernst-Berl-Institute of Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany.,Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany
| | - Anna Boehm
- Chair in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken, 66123, Germany
| | - Volker Presser
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany.,INM - Leibniz-Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken, 66123, Germany
| |
Collapse
|
8
|
Rosetta G, An T, Zhao Q, Baumberg JJ, Tomes JJ, Gunn MD, Finlayson CE. Chromaticity of structural color in polymer thin film photonic crystals. OPTICS EXPRESS 2020; 28:36219-36228. [PMID: 33379721 DOI: 10.1364/oe.410338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
A three-dimensional goniometric study of thin-film polymer photonic crystals investigates how the chromaticity of structural color is correlated to structural ordering. Characterization of chromaticity and the angular properties of structural color are presented in terms of CIE 1931 color spaces. We examine the viewing angle dependency of the Bragg scattering cone relative to sample symmetry planes, and our results demonstrate how increased ordering influences angular scattering width and anisotropy. Understanding how the properties of structural color can be quantified and manipulated has significant implications for the manufacture of functional photonic crystals in sensors, smart fabrics, coatings, and other optical device applications.
Collapse
|
9
|
Clough JM, Weder C, Schrettl S. Mechanochromism in Structurally Colored Polymeric Materials. Macromol Rapid Commun 2020; 42:e2000528. [PMID: 33210385 DOI: 10.1002/marc.202000528] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/02/2020] [Indexed: 01/03/2023]
Abstract
Mechanochromic effects in structurally colored materials are the result of deformation-induced changes to their ordered nanostructures. Polymeric materials which respond in this way to deformation offer an attractive combination of characteristics, including continuous strain sensing, high strain resolution, and a wide strain-sensing range. Such materials are potentially useful for a wide range of applications, which extend from pressure-sensing bandages to anti-counterfeiting devices. Focusing on the materials design aspects, recent developments in this field are summarized. The article starts with an overview of different approaches to achieve mechanochromic effects in structurally colored materials, before the physical principles governing the interaction of light with each of these materials types are summarized. Diverse methodologies to prepare these polymers are then discussed in detail, and where applicable, naturally occurring materials that inspired the design of artificial systems are discussed. The capabilities and limitations of structurally colored materials in reporting and visualizing mechanical deformation are examined from a general standpoint and also in more specific technological contexts. To conclude, current trends in the field are highlighted and possible future opportunities are identified.
Collapse
Affiliation(s)
- Jess M Clough
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| |
Collapse
|
10
|
Fu Y, Wang Y, Chen D, Yu Z, Zheng J, Zhou H. Three-Dimensional Photonic Crystal Bulks with Outstanding Mechanical Performance Assembled by Thermoforming-Etching Cross-linked Polymer Microspheres. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35311-35317. [PMID: 32635711 DOI: 10.1021/acsami.0c04723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traditional self-assembly methods for photonic crystals (PCs) limited by poor mechanical performance and microstructure defects make it hard to be directly applied to optical devices, whose performance strongly rely on mechanical performance and microstructure of PCs. Here, a thermoforming-etching strategy combining both traditional processing and nanofabrication is reported to develop cross-linked polystyrene microsphere-based PC bulks with outstanding mechanical performance. It illustrates scientific principles, where surface molecular chains of PS microspheres were activated and entangled with each other under thermoforming conditions (200 °C; 220 MPa), resulting in applicable mechanical strength (hardness and modulus reach 0.12 and 4.12 GPa, respectively). The optimum optical reflectivity of the PS microsphere-based (180 nm) PC bulk is 49.4% at 381 nm. Furthermore, these PC bulks have been successfully written in anti-counterfeiting and realized colorful pattern printing. The innovative method opens a new route for the rapid and simple fabrication of the nanoparticle structure which can be used as various functional devices and directly promotes the industrialization of bulk PC devices, such as optical and display devices, and so forth.
Collapse
Affiliation(s)
- Yue Fu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunming Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Zheng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huamin Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Yu J, Lee CH, Kan CW, Jin S. Fabrication of Structural-Coloured Carbon Fabrics by Thermal Assisted Gravity Sedimentation Method. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1133. [PMID: 32521724 PMCID: PMC7353355 DOI: 10.3390/nano10061133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
Structural-coloured poly(styrene-methyl methacrylate-acrylic acid) (Poly(St-MMA-AA)) deposited carbon fabrics (Poly(St-MMA-AA)/PCFs) with fascinating colours (salmon, chartreuse, springgreen, skyblue, mediumpurple) changing with the (Poly(St-MMA-AA) nanoparticle sizes can be facilely fabricated by the thermal-assisted gravity sedimentation method that facilitates the self-assembly of Poly(St-MMA-AA) colloidal nanoparticles to generate photonic crystals. The particle sizes of Poly(St-MMA-AA) copolymer with core/shell structure varying from 308.3 nm to 213.1 nm were controlled by adjusting the amount of emulsifier during emulsion polymerisation. The presence of the intrinsic chemical information of Poly(St-MMA-AA) copolymer has been ascertained by Raman and Fourier Transform Infrared (FT-IR) Spectroscopy analysis. Colour variation of the as-prepared structural-coloured carbon fabrics (Poly(St-MMA-AA)/PCFs) before and after dipping treatment were captured while using an optical microscope. The structural colours of Poly(St-MMA-AA)/PCFs were assessed by calculating the diffraction bandgap according to Bragg's and Snell's laws. The Poly(St-MMA-AA) photonic crystal films altered the electrical properties of carbon fabrics with the resistivity growing by five orders of magnitude. The differential electrical resistivity between Poly(St-MMA-AA)/PCFs and wet Poly(St-MMA-AA)/PCFs combined with the corresponding tunable colours can be potentially applied in several promising areas, such as smart displays, especially signal warning displays for traffic safety.
Collapse
Affiliation(s)
| | | | - Chi-Wai Kan
- Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China; (J.Y.); (C.H.L.); (S.J.)
| | | |
Collapse
|
12
|
Schlander AMB, Gallei M. Temperature-Induced Coloration and Interface Shell Cross-Linking for the Preparation of Polymer-Based Opal Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44764-44773. [PMID: 31674752 DOI: 10.1021/acsami.9b17606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The formation of colloidal crystals and their use as photonic materials are of high interest for various technologies in the field of sensing applications, as templates, absorber materials, catalysts, and membranes. In this study, core-shell particles consisting of a cross-linked poly(methyl methacrylate) core featuring a (polyacrylonitrile-co-styrene) shell are synthesized by starved-feed emulsion polymerization. The resulting particles are investigated with respect to size and monodispersity, as well as the core-to-shell ratio, by means of dynamic light scattering and transmission electron microscopy. Optimized particle sizes are 218 nm for the cores and 276 nm for the core-shell particles. For the formation of highly ordered and free-standing opal films, the particles are processed by the melt-shear organization technique. The resulting films show angle-dependent reflection colors, while reflected colors can be tailored by the design of the core-shell particles. As a focus of this work, polyacrylonitrile as part of the copolymer particle shell is advantageously used both for particle opal film stabilization and for tailoring the reflection colors of the opal films. It is shown that the cyclization reactions at the interface of the particles and within the matrix material significantly influence the optical properties of the opal films upon thermal treatment at 240 °C and for different heat holding times. For instance, the change of color can be simply set from red to blue upon defined thermal treatment conditions. Via this convenient protocol, brilliant reflection colors can thus be obtained based on the insights into the structure-property relationships of the underlying particle architectures and interface reactions. The scalable opal films will pave the way to functional colored materials as interesting candidates for a manifold of sensing applications and temperature-responsive polymeric materials.
Collapse
Affiliation(s)
- Annika M-B Schlander
- Ernst-Berl Institute of Technical and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| | - Markus Gallei
- Chair in Polymer Chemistry , Universität des Saarlandes , Campus Saarbrücken , 66123 Saarbrücken , Germany
| |
Collapse
|
13
|
Wu P, Shen X, Schäfer CG, Pan J, Guo J, Wang C. Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. NANOSCALE 2019; 11:20015-20023. [PMID: 31608344 DOI: 10.1039/c9nr05361a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Shape memory photonic crystals (SMPCs) combining the main characteristics of shape memory materials and photonic crystals have drawn increasing research interest. In sharp contrast to traditional responsive photonic crystals, the temporary shape of SMPCs can be "frozen" and photonic configurations can be modulated by temperature. However, the large-scale fabrication of SMPCs still remains a big challenge, making the practical application difficult. Herein novel scalable SMPC films with both mechanochromic and thermochromic properties are reported. Unlike traditional template-based methods resulting in only a small size, SMPC films are fabricated by a facile hot-pressing method and post-photocuring technology to give large-area freestanding polymer films. The films are mechanically robust and flexible, featuring an excellent structural color which can be changed upon stretching, similar to the color change process of chameleons in response to the environment. The blue-shift of the reflection peak up to 120 nm can be observed when the film is stretched. The films can be reversibly stretched and recovered in 25 cycles without obvious changes in reflection spectra. The temporary shape accompanied by tremendous color changes in the corresponding SMPC films after mechanical stress induced hot programming could be simply fixed by cooling the structure below the glass transition temperature of the polymer matrix. Incorporated programmed optical properties could afterwards be erased by temperature, and initial optical properties could be fully restored. Based on the fully reversible programmable shape as well as optical properties, the investigated SMPC films are expected to be promising candidates for various potential applications, such as smart monitoring, sensors, anti-counterfeiting, and displays.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Xiuqing Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Christian G Schäfer
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Jian Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
14
|
Yu S, Cao X, Niu W, Wu S, Ma W, Zhang S. Large-Area and Water Rewriteable Photonic Crystal Films Obtained by the Thermal Assisted Air-Liquid Interface Self Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22777-22785. [PMID: 31194499 DOI: 10.1021/acsami.9b06470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Compared with traditional paper, water rewritable photonic crystal (PC) paper is an environmentally friendly and low resource-consuming material for information storage. Although, recently reported PC papers have high-quality structure color showing promising prospect, the paper size, that is within several centimeters, still limits turning it from potential to reality. Here, we present a new water rewritable PC film as large as the A4 size (210 × 300 mm2) with a high-quality structure color. The material is prepared by thermal assisted self-assembly on the air-liquid interface. To fix such a large-area self-assembled PC film, we partially deform and coalesce the self-assembled nanoparticles, which have low glass transition temperature. This process causes the film to be transparent and structural colorless but still keeps the inner 3D-ordered structure. Then, utilizing the hydrophilic nature of the assembled block, the film can be switched to a structural color state by touching water. Diverse brilliant structural colors appear with different assembled particle (poly(butyl methacrylate- co-methylmethacrylate- co-butyl acrylate- co-diacetone acrylamide) named as PBMBD) sizes. The transparency-structural color transition can be performed multiple times reversibly in all or specific regions of the film. It provides a new solution for future applications of rewriteable PC paper.
Collapse
Affiliation(s)
- Shuzhen Yu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Xu Cao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| |
Collapse
|
15
|
Fluoropolymer-Containing Opals and Inverse Opals by Melt-Shear Organization. Molecules 2019; 24:molecules24020333. [PMID: 30658515 PMCID: PMC6359200 DOI: 10.3390/molecules24020333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The preparation of highly ordered colloidal architectures has attracted significant attention and is a rapidly growing field for various applications, e.g., sensors, absorbers, and membranes. A promising technique for the preparation of elastomeric inverse opal films relies on tailored core/shell particle architectures and application of the so-called melt-shear organization technique. Within the present work, a convenient route for the preparation of core/shell particles featuring highly fluorinated shell materials as building blocks is described. As particle core materials, both organic or inorganic (SiO2) particles can be used as a template, followed by a semi-continuous stepwise emulsion polymerization for the synthesis of the soft fluoropolymer shell material. The use of functional monomers as shell-material offers the possibility to create opal and inverse opal films with striking optical properties according to Bragg’s law of diffraction. Due to the presence of fluorinated moieties, the chemical resistance of the final opals and inverse opals is increased. The herein developed fluorine-containing particle-based films feature a low surface energy for the matrix material leading to good hydrophobic properties. Moreover, the low refractive index of the fluoropolymer shell compared to the core (or voids) led to excellent optical properties based on structural colors. The herein described fluoropolymer opals and inverse opals are expected to pave the way toward novel functional materials for application in fields of coatings and optical sensors.
Collapse
|
16
|
Tailoring Acrylated Soybean Oil-Containing Terpolymers through Emulsion Polymerization. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2040046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work focuses on the synthesis of terpolymers using methyl methacrylate (MMA) and vinyl pivalate (VPi), along with the incorporation of methacrylate acid (MA) and acrylated fatty acids (AFA) derived from commercial soybean oil. Emulsion polymerizations were carried out using different monomeric species, along with different initiator concentrations ranging from 0.5 g∙L−1 to 2.2 g∙L−1. The thermal properties of the terpolymers were improved when acrylated fatty acid was incorporated into the polymer chains, expressing glass transition temperatures (Tg) ranging from 70 °C to 90 °C and degradation temperatures in the interval between 350 °C and 450 °C for acrylated fatty acid concentrations ranging from 5 wt% to 10 wt%. Furthermore, a change was noted in the molar mass distributions as a result of acrylated fatty oil present in the polymers. The materials with 5 and 10 wt% of acrylated fatty oil presented mass-average molar masses of 225 kg∙mol−1 and 181 kg∙mol−1, respectively. As the results in this work suggest, the molar masses of the formed polymers are significantly altered by the presence of modified fatty acids.
Collapse
|
17
|
Winter T, Su X, Hatton TA, Gallei M. Ferrocene-Containing Inverse Opals by Melt-Shear Organization of Core/Shell Particles. Macromol Rapid Commun 2018; 39:e1800428. [DOI: 10.1002/marc.201800428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Tamara Winter
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Xiao Su
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - T. Alan Hatton
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
18
|
Gallei M. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700648] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/08/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| |
Collapse
|