1
|
Karrer LG, Mathew EN, Nava-Chavez J, Bhatti A, Delong RK. Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA). Bioengineering (Basel) 2023; 10:bioengineering10050512. [PMID: 37237582 DOI: 10.3390/bioengineering10050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Conserved omicron RNA (COR) is a 40 base long 99.9% conserved sequence in SARS-CoV-2 Omicron variant, predicted to form a stable stem loop, the targeted cleavage of which can be an ideal next step in controlling the spread of variants. The Cas9 enzyme has been traditionally utilized for gene editing and DNA cleavage. Previously Cas9 has been shown to be capable of RNA editing under certain conditions. Here we investigated the ability of Cas9 to bind to single-stranded conserved omicron RNA (COR) and examined the effect of copper nanoparticles (Cu NPs) and/or polyinosinic-polycytidilic acid (poly I:C) on the RNA cleavage ability of Cas9. The interaction of the Cas9 enzyme and COR with Cu NPs was shown by dynamic light scattering (DLS) and zeta potential measurements and was confirmed by two-dimensional fluorescence difference spectroscopy (2-D FDS). The interaction with and enhanced cleavage of COR by Cas9 in the presence of Cu NPs and poly I:C was shown by agarose gel electrophoresis. These data suggest that Cas9-mediated RNA cleavage may be potentiated at the nanoscale level in the presence of nanoparticles and a secondary RNA component. Further explorations in vitro and in vivo may contribute to the development of a better cellular delivery platform for Cas9.
Collapse
Affiliation(s)
- Lindy G Karrer
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Elza Neelima Mathew
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Juliet Nava-Chavez
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Abeera Bhatti
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Robert K Delong
- Landmark Bio, Innovation Development Laboratory, Watertown, MA 02472, USA
| |
Collapse
|
2
|
Gutiérrez Rodelo C, Salinas RA, Armenta JaimeArmenta E, Armenta S, Galdámez-Martínez A, Castillo-Blum SE, Astudillo-de la Vega H, Nirmala Grace A, Aguilar-Salinas CA, Gutiérrez Rodelo J, Christie G, Alsanie WF, Santana G, Thakur VK, Dutt A. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coord Chem Rev 2022; 457:214402. [PMID: 35095109 PMCID: PMC8788306 DOI: 10.1016/j.ccr.2021.214402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges.
Collapse
Affiliation(s)
- Citlaly Gutiérrez Rodelo
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Rafael A Salinas
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Tlaxcala 72197, Mexico
| | - Erika Armenta JaimeArmenta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Silvia Armenta
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Andrés Galdámez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Silvia E Castillo-Blum
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Horacio Astudillo-de la Vega
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, VIT University, Vellore, Tamil Nadu 632 014, India
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas y Dirección de Nutrición. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Juliana Gutiérrez Rodelo
- Instituto Méxicano del Seguro Social, Hospital General de SubZona No. 4, C.P. 80370, Navolato, Sinaloa, México
| | - Graham Christie
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Guillermo Santana
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| |
Collapse
|
3
|
Assays to Estimate the Binding Affinity of Aptamers. Talanta 2022; 238:122971. [PMID: 34857318 DOI: 10.1016/j.talanta.2021.122971] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Aptamers have become coming-of-age molecular recognition elements in both diagnostic and therapeutic applications. Generated by SELEX, the 'quality control' of aptamers, which involves the validation of their binding affinity against their respective targets is pivotal to ascertain their potency prior to use in any downstream assays or applications. Several aptamers have been isolated thus far, however, the usage of inappropriate validation assays renders some of these aptamers dubitable in terms of their binding capabilities. Driven by this need, we provide an up-to-date critical review of the various strategies used to determine the aptamer-target binding affinity with the aim of providing researchers a better comprehension of the different analytical approaches in respect to the molecular properties of aptamers and their intended targets. The techniques reported have been classified as label-based techniques such as fluorescence intensity, fluorescence anisotropy, filter-binding assays, gel shift assays, ELISA; and label-free techniques such as UV-Vis spectroscopy, circular dichroism, isothermal titration calorimetry, native electrospray ionization-mass spectrometry, quartz crystal microbalance, surface plasmon resonance, NECEEM, backscattering interferometry, capillary electrophoresis, HPLC, and nanoparticle aggregation assays. Hybrid strategies combining the characteristics of both categories such as microscale thermophoresis have been also additionally emphasized. The fundamental principles, complexity, benefits, and challenges under each technique are elaborated in detail.
Collapse
|
4
|
DeLong RK, Swanson R, Niederwerder MC, Khanal P, Aryal S, Marasini R, Jaberi-Douraki M, Shakeri H, Mazloom R, Schneider S, Ensley S, Clarke LL, Woode RA, Young S, Rayamajhi S, Miesner T, Higginbotham ML, Lin Z, Shrestha T, Ghosh K, Glaspell G, Mathew EN. Zn-based physiometacomposite nanoparticles: distribution, tolerance, imaging, and antiviral and anticancer activity. Nanomedicine (Lond) 2021; 16:1857-1872. [PMID: 34282923 DOI: 10.2217/nnm-2021-0179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the distribution, tolerance, and anticancer and antiviral activity of Zn-based physiometacomposites (PMCs). Manganese, iron, nickel and cobalt-doped ZnO, ZnS or ZnSe were synthesized. Cell uptake, distribution into 3D culture and mice, and biochemical and chemotherapeutic activity were studied by fluorescence/bioluminescence, confocal microscopy, flow cytometry, viability, antitumor and virus titer assays. Luminescence and inductively coupled plasma mass spectrometry analysis showed that nanoparticle distribution was liver >spleen >kidney >lung >brain, without tissue or blood pathology. Photophysical characterization as ex vivo tissue probes and LL37 peptide, antisense oligomer or aptamer delivery targeting RAS/Ras binding domain (RBD) was investigated. Treatment at 25 μg/ml for 48 h showed ≥98-99% cell viability, 3D organoid uptake, 3-log inhibition of β-Galactosidase and porcine reproductive respiratory virus infection. Data support the preclinical development of PMCs for imaging and delivery targeting cancer and infectious disease.
Collapse
Affiliation(s)
- Robert K DeLong
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Nanotechnology Innovation Center, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ryan Swanson
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Nanotechnology Innovation Center, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Pratiksha Khanal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Santosh Aryal
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA.,Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Ramesh Marasini
- Nanotechnology Innovation Center, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Majid Jaberi-Douraki
- 1DATA Consortium, & Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA
| | - Heman Shakeri
- 1DATA Consortium, & Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA
| | - Reza Mazloom
- 1DATA Consortium, & Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA
| | - Sarah Schneider
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Steve Ensley
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rowena A Woode
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sarah Young
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Sagar Rayamajhi
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Tracy Miesner
- Comparative Medicine Group, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Mary L Higginbotham
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Zhoumeng Lin
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Institute for Computational Comparative Medicine, Kansas State University Manhattan, KS 66061, USA
| | - Tej Shrestha
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Nanotechnology Innovation Center, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Kartik Ghosh
- Department of Physics, Astronomy & Materials Science, Missouri State University, Springfield, MO 65897, USA
| | - Garry Glaspell
- US Army Corps of Engineers Engineer Research & Development Center, Alexandria, VA 22315, USA
| | - Elza N Mathew
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Comparative Molecular Immunological Activity of Physiological Metal Oxide Nanoparticle and its Anticancer Peptide and RNA Complexes. NANOMATERIALS 2019; 9:nano9121670. [PMID: 31771091 PMCID: PMC6955775 DOI: 10.3390/nano9121670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Currently, there is a great interest in nanoparticle-based vaccine delivery. Recent studies suggest that nanoparticles when introduced into the biological milieu are not simply passive carriers but may also contribute immunological activity themselves or of their own accord. For example there is considerable interest in the biomedical applications of one of the physiologically-based inorganic metal oxide nanoparticle, zinc oxide (ZnO). Indeed zinc oxide (ZnO) NP are now recognized as a nanoscale chemotherapeutic or anticancer nanoparticle (ANP) and several recent reports suggest ZnO NP and/or its complexes with drug and RNA induce a potent antitumor response in immuno-competent mouse models. A variety of cell culture studies have shown that ZnO NP can induce cytokines such as IFN-γ, TNF-α, IL-2, and IL-12 which are known to regulate the tumor microenvironment. Much less work has been done on magnesium oxide (MgO), cobalt oxide (Co3O4), or nickel oxide (NiO); however, despite the fact that these physiologically-based metal oxide NP are reported to functionally load and assemble RNA and protein onto their surface and may thus also be of potential interest as nanovaccine platform. Here we initially compared in vitro immunogenicity of ZnO and Co3O4 NP and their effects on cancer-associated or tolerogenic cytokines. Based on these data we moved ZnO NP forward to testing in the ex vivo splenocyte assay relative to MgO and NiO NP and these data showed significant difference for flow cytometry sorted population for ZnO-NP, relative to NiO and MgO. These data suggesting both molecular and cellular immunogenic activity, a double-stranded anticancer RNA (ACR), polyinosinic:poly cytidylic acid (poly I:C) known to bind ZnO NP; when ZnO-poly I:C was injected into B16F10-BALB/C tumor significantly induced, IL-2 and IL-12 as shown by Cohen’s d test. LL37 is an anticancer peptide (ACP) currently in clinical trials as an intratumoral immuno-therapeutic agent against metastatic melanoma. LL37 is known to bind poly I:C where it is thought to compete for receptor binding on the surface of some immune cells, metastatic melanoma and lung cells. Molecular dynamic simulations revealed association of LL37 onto ZnO NP confirmed by gel shift assay. Thus using the well-characterized model human lung cancer model cell line (BEAS-2B), poly I:C RNA, LL37 peptide, or LL37-poly I:C complexes were loaded onto ZnO NP and delivered to BEAS-2B lung cells, and the effect on the main cancer regulating cytokine, IL-6 determined by ELISA. Surprisingly ZnO-LL37, but not ZnO-poly I:C or the more novel tricomplex (ZnO-LL37-poly I:C) significantly suppressed IL-6 by >98–99%. These data support the further evaluation of physiological metal oxide compositions, so-called physiometacomposite (PMC) materials and their formulation with anticancer peptide (ACP) and/or anticancer RNA (ACR) as a potential new class of immuno-therapeutic against melanoma and potentially lung carcinoma or other cancers.
Collapse
|