1
|
Gupta N, Abd EL-Gawaad N, Mallasiy L. Hospital-borne hazardous air pollutants and air cleaning strategies amid the surge of SARS-CoV-2 new variants. Heliyon 2024; 10:e38874. [PMID: 39449698 PMCID: PMC11497388 DOI: 10.1016/j.heliyon.2024.e38874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Indoor air pollutants and airborne contamination removal have been challenging in healthcare facilities. The airborne transmission control and HVAC system may collapse in hospitals due to the highly infectious respiratory disease-associated patient surge, like COVID-19. Common air filtration systems and HVAC systems enhance the patients' comfort and support indoor hygiene, hitherto insufficient to control highly infectious airborne pathogens and hospital-borne pollutants such as radon, PM2.5, patient droplets, VOC, high CO2, and anesthetic gases. This review summarized important air cleaning interventions to enhance HVAC efficiency and indoor safety. We discussed efficient air cleaning and ventilation strategies including air filtration, air ionization, passive removal materials (PRM), and UVGI to minimize cross-contamination in hospital wards.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research & Development, River Engineering Private Limited, Ecotec-3, Greater Noida, India
| | - N.S. Abd EL-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, 62529, Saudi Arabia
| | - L.O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil Asir, 61913, Saudi Arabia
| |
Collapse
|
2
|
Staroń A, Chwastowski J, Kijania-Kontak M, Wiśniewski M, Staroń P. Bio-enriched composite materials derived from waste cooking oil for selective reduction of odour intensity. Sci Rep 2024; 14:16311. [PMID: 39009707 PMCID: PMC11251015 DOI: 10.1038/s41598-024-67302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
Currently, pathogenic microorganisms are becoming more active in public utility areas like parking lots and waste shelters due to the accumulation of organic waste. This uncontrolled waste leads to decay, altering its composition and presenting a microbiological risk to public health. Additionally, it emits unpleasant odors containing chemicals that irritate the mucous membranes, causing discomfort in the nose, throat, and eyes by stimulating the trigeminal nerve. These odors can have various negative effects on both quality of life and public health. The study investigated the physicochemical properties of oil composites enriched with natural additives and determined their effectiveness in reducing the intensity of nuisance odours. The research showed over 82% reduction in decaying meat odour and almost 65% reduction in ammonia odour. A higher impact of the given composites on reducing the odour from decaying meat than from ammonia was observed. This may be due to the biocidal properties of the additives used (turmeric, thymol, salicylic acid, hops and curly sorrel) and the higher intensity of ammonia odor compared to meat-derived odour. Despite the non-porous nature of the solids tested (with similar specific surface areas ranging from 0.66 to 0.88 m2/g), they were capable of sorbing NH3.
Collapse
Affiliation(s)
- Anita Staroń
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland.
| | - Jarosław Chwastowski
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| | - Magda Kijania-Kontak
- Department of Civil Engineering, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100, Toruń, Poland
| | - Paweł Staroń
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| |
Collapse
|
3
|
Bonsu DNO, Higgins D, Austin JJ. From clean spaces to crime scenes: Exploring trace DNA recovery from titania-coated self-cleaning substrates. Sci Justice 2023; 63:588-597. [PMID: 37718006 DOI: 10.1016/j.scijus.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/28/2023] [Accepted: 07/16/2023] [Indexed: 09/19/2023]
Abstract
Titanium dioxide (titania, TiO2) is frequently used as a coating for a variety of self-cleaning products, such as antifogging vehicle mirrors, ceramic tiles, and glass windows because of its distinct physiochemical features. When exposed to light TiO2 causes photocatalytic decomposition of organic contaminants, potentially compromising DNA integrity. The impact of TiO2-coated commercial glasses, Bioclean® and SaniTise™, on trace DNA persistence, recovery, and profiling was investigated. DNA in saliva and touch samples deposited on self-cleaning glass slides exposed to indoor fluorescent light for up to seven days was more degraded than control samples indicating some degree of fluorescent light-induced photocatalytic activity of the self-cleaning surfaces. When exposed to sunlight, DNA yields from saliva and touch samples deposited on the titania-coated substrates decreased rapidly, with a corresponding increase in DNA degradation. After three days no DNA samples applied to self-cleaning glass and exposed to natural sunlight yielded STR profiles. These results suggest that the photocatalytic activation of TiO2 is the likely mechanism of action underlying the extreme DNA degradation on the Bioclean® and SaniTise™ glasses. Consequently, rapid sample collection and use may be warranted in casework scenarios involving TiO2-coated materials.
Collapse
Affiliation(s)
- Dan Nana Osei Bonsu
- Chemistry and Forensic Sciences, Griffith University, Nathan, Queensland, Australia; Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia; Forensic Science Queensland, 39 Kessels Rd, Coopers Plains, Queensland, Australia.
| | - Denice Higgins
- Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia; School of Dentistry, Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| | - Jeremy J Austin
- Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Sharifi E, Yousefiasl S, Trovato M, Sartorius R, Esmaeili Y, Goodarzi H, Ghomi M, Bigham A, Moghaddam FD, Heidarifard M, Pourmotabed S, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N, Wang X, Tay FR. Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:199. [PMID: 37344894 PMCID: PMC10283343 DOI: 10.1186/s12951-023-01938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Yasaman Esmaeili
- School of Advanced Technologies in Medicine, Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hamid Goodarzi
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Ashkan Bigham
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Maryam Heidarifard
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
5
|
Hajareh Haghighi F, Mercurio M, Cerra S, Salamone TA, Bianymotlagh R, Palocci C, Romano Spica V, Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J Mater Chem B 2023; 11:2334-2366. [PMID: 36847384 DOI: 10.1039/d2tb02576k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In recent years, titanium(IV) dioxide nanoparticles (TiO2NPs) have shown promising potential in various biological applications such as antimicrobials, drug delivery, photodynamic therapy, biosensors, and tissue engineering. For employing TiO2NPs in these fields, their nanosurface must be coated or conjugated with organic and/or inorganic agents. This modification can improve their stability, photochemical properties, biocompatibility, and even surface area for further conjugation with other molecules such as drugs, targeting molecules, polymers, etc. This review describes the organic-based modification of TiO2NPs and their potential applications in the mentioned biological fields. In the first part of this review, around 75 recent publications (2017-2022) are mentioned on the common TiO2NP modifiers including organosilanes, polymers, small molecules, and hydrogels, which improve the photochemical features of TiO2NPs. In the second part of this review, we presented 149 recent papers (2020-2022) about the use of modified TiO2NPs in biological applications, in which specific bioactive modifiers are introduced in this part with their advantages. In this review, the following information is presented: (1) the common organic modifiers for TiO2NPs, (2) biologically important modifiers and their benefits, and (3) recent publications on biological studies on the modified TiO2NPs with their achievements. This review shows the paramount significance of the organic-based modification of TiO2NPs to enhance their biological effectiveness, paving the way toward the development of advanced TiO2-based nanomaterials in nanomedicine.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Martina Mercurio
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | - Roya Bianymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
6
|
Shakeri A, Yousefi H, Jarad NA, Kullab S, Al-Mfarej D, Rottman M, Didar TF. Contamination and carryover free handling of complex fluids using lubricant-infused pipette tips. Sci Rep 2022; 12:14486. [PMID: 36008518 PMCID: PMC9411573 DOI: 10.1038/s41598-022-18756-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Cross-contamination of biological samples during handling and preparation, is a major issue in laboratory setups, leading to false-positives or false-negatives. Sample carryover residue in pipette tips contributes greatly to this issue. Most pipette tips on the market are manufactured with hydrophobic polymers that are able to repel high surface tension liquids, yet they lack in performance when low surface tension liquids and viscous fluids are involved. Moreover, hydrophobicity of pipette tips can result in hydrophobic adsorption of biomolecules, causing inaccuracies and loss in precision during pipetting. Here we propose the use of lubricant-infused surface (LIS) technology to achieve omniphobic properties in pipette tips. Using a versatile and simple design, the inner lumen of commercially available pipette tips was coated with a fluorosilane (FS) layer using chemical vapor deposition (CVD). The presence of FS groups on the tips is confirmed by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) tests. After lubrication of the tips through a fluorinated lubricant, the omniphobicity and repellent behaviour of the tips drastically enhanced which are revealed via static and hysteresis contact angle measurements. The repellency of the lubricant-infused pipette tips against physical adsorption is investigated through pipetting a food coloring dye as well as human blood samples and are compared to the untreated tips. The results show significantly less amount carryover residue when the lubricant-infused tips are utilized compared to commercially available ones. We also demonstrate the lubricant-infused tips reduce bacteria contamination of the inner lumen by 3 to 6-log (over 99%, depending on the tip size) after pipetting up and down the bacteria solution.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| | - Hanie Yousefi
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 3L8, Canada
| | - Samer Kullab
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Dalya Al-Mfarej
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Martin Rottman
- Department of Microbiology and Innovative Biomarkers Platform, GH Université Paris Saclay, Hôpital Raymond Poincaré (APHP), Garches, France
- Laboratory of Infection and Inflammation U1173, School of Medicine Simone Veil Versailles Saint-Quentin-en-Yvelines University, Montigny le Bx, France
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 3L8, Canada.
| |
Collapse
|
7
|
Shakeri A, Jarad NA, Khan S, F Didar T. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review. Anal Chim Acta 2022; 1209:339283. [PMID: 35569863 DOI: 10.1016/j.aca.2021.339283] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
As a result of their favorable physical and chemical characteristics, thermoplastics have garnered significant interest in the area of microfluidics. The moldable nature of these inexpensive polymers enables easy fabrication, while their durability and chemical stability allow for resistance to high shear stress conditions and functionalization, respectively. This review provides a comprehensive examination several commonly used thermoplastic polymers in the microfluidics space including poly(methyl methacrylate) (PMMA), cyclic olefin polymer (COP) and copolymer (COC), polycarbonates (PC), poly(ethylene terephthalate) (PET), polystyrene (PS), poly(ethylene glycol) (PEG), polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polyester. We describe various biofunctionalization strategies applied within thermoplastic microfluidic platforms and their resultant applications. Lastly, emerging technologies with a focus on applying recently developed microfluidic and biofunctionalization strategies into thermoplastic systems are discussed.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
8
|
Sienkiewicz A, Rokicka-Konieczna P, Wanag A, Kusiak-Nejman E, Morawski AW. Artificial Solar Light-Driven APTES/TiO2 Photocatalysts for Methylene Blue Removal from Water. Molecules 2022; 27:molecules27030947. [PMID: 35164212 PMCID: PMC8838937 DOI: 10.3390/molecules27030947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
A visible-light photocatalytic performance of 3-aminopropyltriethoxysilane (APTES)-modified TiO2 nanomaterials obtained by solvothermal modification under elevated pressure, followed by calcination in an argon atmosphere at 800–1000 °C, is presented for the first time. The presence of silicon and carbon in the APTES/TiO2 photocatalysts contributed to the effective delay of the anatase-to-rutile phase transformation and the growth of the crystallites size of both polymorphous forms of TiO2 during heating. Thus, the calcined APTES-modified TiO2 exhibited higher pore volume and specific surface area compared with the reference materials. The change of TiO2 surface charge from positive to negative after the heat treatment increased the adsorption of the methylene blue compound. Consequently, due to the blocking of active sites on the TiO2 surface, the adsorption process negatively affected the photocatalytic properties. All calcined photocatalysts obtained after modification via APTES showed a higher dye decomposition degree than the reference samples. For all 3 modifier concentrations tested, the best photoactivity was noted for nanomaterials calcined at 900 °C due to a higher specific surface area than materials calcined at 1000 °C, and a larger number of active sites available on the TiO2 surface compared with samples annealed at 800 °C. It was found that the optimum concentration for TiO2 modification, at which the highest dye decomposition degree was noted, was 500 mM.
Collapse
|
9
|
Khan S, Burciu B, Filipe CDM, Li Y, Dellinger K, Didar TF. DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS NANO 2021; 15:13943-13969. [PMID: 34524790 DOI: 10.1021/acsnano.1c04327] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since their discovery almost three decades ago, DNAzymes have been used extensively in biosensing. Depending on the type of DNAzyme being used, these functional oligonucleotides can act as molecular recognition elements within biosensors, offering high specificity to their target analyte, or as reporters capable of transducing a detectable signal. Several parameters need to be considered when designing a DNAzyme-based biosensor. In particular, given that many of these biosensors immobilize DNAzymes onto a sensing surface, selecting an appropriate immobilization strategy is vital. Suboptimal immobilization can result in both DNAzyme detachment and poor accessibility toward the target, leading to low sensing accuracy and sensitivity. Various approaches have been employed for DNAzyme immobilization within biosensors, ranging from amine and thiol-based covalent attachment to non-covalent strategies involving biotin-streptavidin interactions, DNA hybridization, electrostatic interactions, and physical entrapment. While the properties of each strategy inform its applicability within a proposed sensor, the selection of an appropriate strategy is largely dependent on the desired application. This is especially true given the diverse use of DNAzyme-based biosensors for the detection of pathogens, metal ions, and clinical biomarkers. In an effort to make the development of such sensors easier to navigate, this paper provides a comprehensive review of existing immobilization strategies, with a focus on their respective advantages, drawbacks, and optimal conditions for use. Next, common applications of existing DNAzyme-based biosensors are discussed. Last, emerging and future trends in the development of DNAzyme-based biosensors are discussed, and gaps in existing research worthy of exploration are identified.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brenda Burciu
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
10
|
Shakeri A, Khan S, Didar TF. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. LAB ON A CHIP 2021; 21:3053-3075. [PMID: 34286800 DOI: 10.1039/d1lc00288k] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microfluidics is an emerging and multidisciplinary field that is of great interest to manufacturers in medicine, biotechnology, and chemistry, as it provides unique tools for the development of point-of-care diagnostics, organs-on-chip systems, and biosensors. Polymeric microfluidics, unlike glass and silicon, offer several advantages such as low-cost mass manufacturing and a wide range of beneficial material properties, which make them the material of choice for commercial applications and high-throughput systems. Among polymers used for the fabrication of microfluidic devices, polydimethylsiloxane (PDMS) still remains the most widely used material in academia due to its advantageous properties, such as excellent transparency and biocompatibility. However, commercialization of PDMS has been a challenge mostly due to the high cost of the current fabrication strategies. Moreover, specific surface modification and functionalization steps are required to tailor the surface chemistry of PDMS channels (e.g. biomolecule immobilization, surface hydrophobicity and antifouling properties) with respect to the desired application. While significant research has been reported in the field of PDMS microfluidics, functionalization of PDMS surfaces remains a critical step in the fabrication process that is difficult to navigate. This review first offers a thorough illustration of existing fabrication methods for PDMS-based microfluidic devices, providing several recent advancements in this field with the aim of reducing the cost and time for mass production of these devices. Next, various conventional and emerging approaches for engineering the surface chemistry of PDMS are discussed in detail. We provide a wide range of functionalization techniques rendering PDMS microchannels highly biocompatible for physical or covalent immobilization of various biological entities while preventing non-specific interactions.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
11
|
Cazan C, Enesca A, Andronic L. Synergic Effect of TiO 2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers (Basel) 2021; 13:polym13122017. [PMID: 34203085 PMCID: PMC8234789 DOI: 10.3390/polym13122017] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Nanocomposites with polymer matrix offer excellent opportunities to explore new functionalities beyond those of conventional materials. TiO2, as a reinforcement agent in polymeric nanocomposites, is a viable strategy that significantly enhanced their mechanical properties. The size of the filler plays an essential role in determining the mechanical properties of the nanocomposite. A defining feature of polymer nanocomposites is that the small size of the fillers leads to an increase in the interfacial area compared to traditional composites. The interfacial area generates a significant volume fraction of interfacial polymer, with properties different from the bulk polymer even at low loadings of the nanofiller. This review aims to provide specific guidelines on the correlations between the structures of TiO2 nanocomposites with polymeric matrix and their mechanical properties. The correlations will be established and explained based on interfaces realized between the polymer matrix and inorganic filler. The paper focuses on the influence of the composition parameters (type of polymeric matrix, TiO2 filler with surface modified/unmodified, additives) and technological parameters (processing methods, temperature, time, pressure) on the mechanical strength of TiO2 nanocomposites with the polymeric matrix.
Collapse
Affiliation(s)
- Cristina Cazan
- Renewable Energy Systems and Recycling Research Center, Transilvania University of Brasov, 500036 Brasov, Romania
- Correspondence:
| | - Alexandru Enesca
- Product Design, Mechatronics and Environment Department, Transilvania University of Brasov, 500036 Brasov, Romania; (A.E.); (L.A.)
| | - Luminita Andronic
- Product Design, Mechatronics and Environment Department, Transilvania University of Brasov, 500036 Brasov, Romania; (A.E.); (L.A.)
| |
Collapse
|
12
|
Self-Cleaning Coatings and Surfaces of Modern Building Materials for the Removal of Some Air Pollutants. MATERIALS 2021; 14:ma14092161. [PMID: 33922766 PMCID: PMC8123039 DOI: 10.3390/ma14092161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Air quality is one of the most important problems of the modern world, as it determines human health and changes occurring in other elements of nature, including climate change. For this reason, actions are taken to reduce the amount of harmful substances in the air. One such action is the use of building materials with special properties achieved by the application of self-cleaning coatings and photocatalytic additives. This article presents achievements in the field of additives and modifiers for building materials, whose task is to improve air quality. Concrete, cement, paints, and facade coatings modified based on the achievements of nanotechnology have been analyzed in terms of new properties and the possibility of their application in the area of modern environmental requirements. Both positive aspects and doubts were described in the scope of the effective reduction of the amount of gases such as VOC, NOx, dust and microorganisms.
Collapse
|
13
|
The Role of Adsorption in the Photocatalytic Decomposition of Dyes on APTES-Modified TiO2 Nanomaterials. Catalysts 2021. [DOI: 10.3390/catal11020172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This work investigated for the first time the role of adsorption in the photocatalytic degradation of methylene blue and Orange II dyes in the presence of 3-aminopropyltriethoxysilane (APTES)-modified TiO2 nanomaterials. It has been demonstrated that the decrease in adsorption has a detrimental effect on photocatalytic activity. APTES/TiO2 photocatalysts were successfully prepared by solvothermal modification of TiO2 in a pressure autoclave, followed by heat treatment in an inert gas atmosphere at the temperature range from 300 °C to 900 °C. It was observed that functionalization of TiO2 via APTES effectively suppressed the anatase-to-rutile phase transformation, as well as the growth of crystallites size during calcination, and reduction of specific surface area (APTES modification inhibits sintering of crystallites). The noted alterations in the adsorption properties, observed after the calcination, were generally related to changes in the surface characteristics, mainly surface charges expressed by the zeta potential. Positively charged surface enhances adsorption of anionic dye (Orange II), while negatively charged surface was better for adsorption of cationic dye (methylene blue). The adsorption process substantially affects the efficiency of the photocatalytic oxidation of both dyes. The methylene blue decomposition proceeded according to the pseudo-first and pseudo-second-order kinetic models, while the degradation of Orange II followed the zero, pseudo-first, and pseudo-second order kinetic models.
Collapse
|
14
|
Imani SM, Ladouceur L, Marshall T, Maclachlan R, Soleymani L, Didar TF. Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS NANO 2020; 14:12341-12369. [PMID: 33034443 PMCID: PMC7553040 DOI: 10.1021/acsnano.0c05937] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/01/2020] [Indexed: 05/05/2023]
Abstract
The global COVID-19 pandemic has attracted considerable attention toward innovative methods and technologies for suppressing the spread of viruses. Transmission via contaminated surfaces has been recognized as an important route for spreading SARS-CoV-2. Although significant efforts have been made to develop antibacterial surface coatings, the literature remains scarce for a systematic study on broad-range antiviral coatings. Here, we aim to provide a comprehensive overview of the antiviral materials and coatings that could be implemented for suppressing the spread of SARS-CoV-2 via contaminated surfaces. We discuss the mechanism of operation and effectivity of several types of inorganic and organic materials, in the bulk and nanomaterial form, and assess the possibility of implementing these as antiviral coatings. Toxicity and environmental concerns are also discussed for the presented approaches. Finally, we present future perspectives with regards to emerging antimicrobial technologies such as omniphobic surfaces and assess their potential in suppressing surface-mediated virus transfer. Although some of these emerging technologies have not yet been tested directly as antiviral coatings, they hold great potential for designing the next generation of antiviral surfaces.
Collapse
Affiliation(s)
- Sara M. Imani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Liane Ladouceur
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Terrel Marshall
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Roderick Maclachlan
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Tohid F. Didar
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Mechanical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Michael G. DeGroote Institute of
Infectious Disease Research, McMaster
University, Hamilton, ON L8N 3Z5,
Canada
| |
Collapse
|
15
|
On the Role of γ-Fe2O3 Nanoparticles and Reduced Graphene Oxide Nanosheets in Enhancing Self-Cleaning Properties of Composite TiO2 for Cultural Heritage Protection. COATINGS 2020. [DOI: 10.3390/coatings10100933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The durability of novel metallic artifacts and buildings is an open issue, and the role of smart protecting coatings in extending these artifacts’ lifetimes is crucial. In this paper, the role of γ-Fe2O3 nanoparticles and reduced graphene oxide (rGO) nanosheets on enhancing the self-cleaning properties of composite TiO2 films and reducing metal alterations due to contact with acid rain and pollutants is investigated. The photocatalytic assessment of the TiO2 based films indicates that there are optimum contents for γ-Fe2O3 and rGO, which confer the film lower bandgap and tune the TiO2 anatase/rutile ratio. By adding a proper content of γ-Fe2O3, wettability is reduced both in dark and under illumination, which could be related to higher roughness. γ-Fe2O3 overloading causes increasing crack density and eventually a fully cracked structure. Adding an appropriate amount of rGO causes a sharp increase in roughness, due to the stacking of rGO nanosheets, while simultaneously avoiding cracking. At higher contents of rGO, wettability further decreases due to higher amounts of hydroxyl groups bound onto rGO; also in this case, overloading causes film cracking. Evaluation of self-cleaning performance and discoloration resistance under soiling and acid rain simulated tests demonstrates that proper loadings of γ-Fe2O3 and rGO present higher efficiency thanks to higher superhydrophilic tendency and higher photocatalytic activities, as well as an efficient barrier effect.
Collapse
|
16
|
Badv M, Bayat F, Weitz JI, Didar TF. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020; 258:120291. [PMID: 32798745 DOI: 10.1016/j.biomaterials.2020.120291] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Device-associated clot formation and poor tissue integration are ongoing problems with permanent and temporary implantable medical devices. These complications lead to increased rates of mortality and morbidity and impose a burden on healthcare systems. In this review, we outline the current approaches for developing single and multi-functional surface coating techniques that aim to circumvent the limitations associated with existing blood-contacting medical devices. We focus on surface coatings that possess dual hemocompatibility and biofunctionality features and discuss their advantages and shortcomings to providing a biocompatible and biodynamic interface between the medical implant and blood. Lastly, we outline the newly developed surface modification techniques that use lubricant-infused coatings and discuss their unique potential and limitations in mitigating medical device-associated complications.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Thrombosis & Atherosclerosis Research Institute (TaARI), Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
17
|
Stetsenko M, Margitych T, Kryvyi S, Maksimenko L, Hassan A, Filonenko S, Li Β, Qu J, Scheer E, Snegir S. Gold Nanoparticle Self-Aggregation on Surface with 1,6-Hexanedithiol Functionalization. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E512. [PMID: 32168942 PMCID: PMC7153467 DOI: 10.3390/nano10030512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/02/2022]
Abstract
Here we study the morphology and the optical properties of assemblies made of small (17 nm) gold nanoparticles (AuNPs) directly on silicon wafers coated with (3-aminopropyl)trimethoxysilane (APTES). We employed aliphatic 1,6-hexanedithiol (HDT) molecules to cross-link AuNPs during a two-stage precipitation procedure. The first immersion of the wafer in AuNP colloidal solution led mainly to the attachment of single particles with few inclusions of dimers and small aggregates. After the functionalization of precipitated NPs with HDT and after the second immersion in the colloidal solution of AuNP, we detected a sharp rise in the number of aggregates compared to single AuNPs and their dimers. The lateral size of the aggregates was about 100 nm, while some of them were larger than 1μm. We propose that the uncompensated dipole moment of the small aggregates appeared after the first precipitation and acts further as the driving force accelerating their further growth on the surface during the second precipitation. By having such inhomogeneous surface coating, the X-ray reciprocal space maps and modulation polarimetry showed well-distinguished signals from the single AuNPs and their dimers. From these observations, we concluded that the contribution from aggregated AuNPs does not hamper the detection and investigation of plasmonic effects for AuNP dimers. Meantime, using unpolarized and polarized light spectroscopy, the difference in the optical signals between the dimers, being formed because of self-aggregation and the one being cross-linked by means of HDT, was not detected.
Collapse
Affiliation(s)
- Maksym Stetsenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (S.K.); (L.M.)
| | - Tetiana Margitych
- Kyiv Institute for Nuclear Research, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Serhii Kryvyi
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (S.K.); (L.M.)
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Lidia Maksimenko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (S.K.); (L.M.)
| | - Ali Hassan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Svitlana Filonenko
- Pisarzhevski Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prospect Nauky, 03028 Kiev, Ukraine;
| | - Βaikui Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Elke Scheer
- University of Konstanz, Department of Physics, Universitätsstraße 10, 78464 Konstanz, Germany;
| | - Sergii Snegir
- University of Konstanz, Department of Physics, Universitätsstraße 10, 78464 Konstanz, Germany;
| |
Collapse
|
18
|
Badv M, Alonso-Cantu C, Shakeri A, Hosseinidoust Z, Weitz JI, Didar TF. Biofunctional Lubricant-Infused Vascular Grafts Functionalized with Silanized Bio-Inks Suppress Thrombin Generation and Promote Endothelialization. ACS Biomater Sci Eng 2019; 5:6485-6496. [DOI: 10.1021/acsbiomaterials.9b01062] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Jeffrey I. Weitz
- Thrombosis & Atherosclerosis Research Institute (TaARI), 237 Barton Street East, Hamilton, Ontario L8L 2X2, Canada
| | | |
Collapse
|
19
|
Shakeri A, Imani SM, Chen E, Yousefi H, Shabbir R, Didar TF. Plasma-induced covalent immobilization and patterning of bioactive species in microfluidic devices. LAB ON A CHIP 2019; 19:3104-3115. [PMID: 31429455 DOI: 10.1039/c9lc00364a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here, we present a straightforward technique to create bio-functional microfluidic channels using CO2 plasma to induce both carboxylic and hydroxyl groups onto the channel surface. Consequently, not only does the surface allow for irreversible covalent bonding to an oxygen plasma treated PDMS for microfluidic device fabrication, but it also provides functionality for biomolecular immobilization. Furthermore, we demonstrate integration of this technique with microcontact printing to covalently micropattern functional biomolecules inside microfluidic channels. The bio-functionality and efficacy of the microcontact printed antibodies is demonstrated for both bioassays as well as patterning and culturing different cell lines. Results show that the introduced method can be an excellent candidate for cell culture studies in microfluidics. With the new printing method, full cell confluency (∼400 cells per mm2) was achieved after incubation for only 1 day, which is significantly greater than other conventional cell culture techniques inside microfluidic devices. As a proof of concept, we demonstrated the endothelial cells functionality by stimulating von Willebrand Factor secretion under shear stress. This is done via perfusion of histamine through the channel and performing immunofluorescence labeling to observe the inflammatory response of the cells. The developed method eliminates the need for wet chemistry and significantly simplifies producing bio-functional chips which can be used for biosensing, organs-on-chips and tissue engineering applications.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Osborne M, Aryasomayajula A, Shakeri A, Selvaganapathy PR, Didar TF. Suppression of Biofouling on a Permeable Membrane for Dissolved Oxygen Sensing Using a Lubricant-Infused Coating. ACS Sens 2019; 4:687-693. [PMID: 30793884 DOI: 10.1021/acssensors.8b01541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Specific ranges of dissolved oxygen (DO) concentrations must be maintained in a waterbody for it to be hospitable for aquatic animals. DO sensor designs can employ selectively permeable membranes to isolate DO from untargeted compounds or organisms in waterbodies. Hence, the DO concentration can be monitored and the health of the water can be evaluated over time. However, the presence of bacteria in natural waterbodies can lead to the formation of biofilms that can block pores and prevent analyte from permeating the membrane, resulting in inaccurate readings. In this work, we demonstrate the implementation of a fluorosilane-based omniphobic lubricant-infused (OLI) coating on a selectively permeable membrane and investigate the rate of biofilm formation for a commercially available DO sensor. Coated and unmodified membranes were incubated in an environment undergoing accelerated bacterial growth, and the change in sensitivity was evaluated after 40, 100, 250, and 500 h. Our findings show that the OLI membranes attenuate biofouling by 70% and maintain sensitivity after 3 weeks of incubation, further demonstrating that oxygen transfer through the OLI coating is achievable. Meanwhile, unmodified membranes exhibit significant biofouling that results in a 3.35 higher rate of decay in oxygen measurement sensitivity and an over 70% decrease in static contact angle. These results show that the OLI coating can be applied on commercially available membranes to prevent biofouling. Therefore, OLI coatings are a suitable candidate to suppress biofilm formation in the widespread use of selectively permeable membranes for environmental, medical, and fluid separation applications.
Collapse
Affiliation(s)
- Matthew Osborne
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, ETB 406, Hamilton, Ontario, Canada L8S 4K1
| | - Aditya Aryasomayajula
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, JHE 310, Hamilton, Ontario, Canada L8S 4L7
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, JHE 310, Hamilton, Ontario, Canada L8S 4L7
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, ETB 406, Hamilton, Ontario, Canada L8S 4K1
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, JHE 310, Hamilton, Ontario, Canada L8S 4L7
| | - Tohid F. Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, ETB 406, Hamilton, Ontario, Canada L8S 4K1
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, JHE 310, Hamilton, Ontario, Canada L8S 4L7
- Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, MDCL 2235, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
21
|
Badv M, Imani SM, Weitz JI, Didar TF. Lubricant-Infused Surfaces with Built-In Functional Biomolecules Exhibit Simultaneous Repellency and Tunable Cell Adhesion. ACS NANO 2018; 12:10890-10902. [PMID: 30352507 DOI: 10.1021/acsnano.8b03938] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lubricant-infused omniphobic surfaces have exhibited outstanding effectiveness in inhibiting nonspecific adhesion and attenuating superimposed clot formation compared with other coated surfaces. However, such surfaces blindly thwart adhesion, which is troublesome for applications that rely on targeted adhesion. Here we introduce a new class of lubricant-infused surfaces that offer tunable bioactivity together with omniphobic properties by integrating biofunctional domains into the lubricant-infused layer. These novel surfaces promote targeted binding of desired species while simultaneously preventing nonspecific adhesion. To develop these surfaces, mixed self-assembled monolayers (SAMs) of aminosilanes and fluorosilanes were generated. Aminosilanes were utilized as coupling molecules for immobilizing capture ligands, and nonspecific adhesion of cells and proteins was prevented by infiltrating the fluorosilane molecules with a thin layer of a biocompatible fluorocarbon-based lubricant, thus generating biofunctional lubricant-infused surfaces. This method yields surfaces that (a) exhibit highly tunable binding of anti-CD34 and anti-CD144 antibodies and adhesion of endothelial cells, while repelling nonspecific adhesion of undesirable proteins and cells not only in buffer but also in human plasma or human whole blood, and (b) attenuate blood clot formation. Therefore, this straightforward and simple method creates biofunctional, nonsticky surfaces that can be used to optimize the performance of devices such as biomedical implants, extracorporeal circuits, and biosensors.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| | - Sara M Imani
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Thrombosis & Atherosclerosis Research Institute (TaARI) , Hamilton , Ontario L8S 4L7 , Canada
| | - Tohid F Didar
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Department of Mechanical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Institute for Infectious Disease Research (IIDR) , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| |
Collapse
|
22
|
Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance. COATINGS 2018. [DOI: 10.3390/coatings8110391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study reports the significant mechanistic difference between binary-oxide antibacterial films with the same composition but different microstructures. Binary TiO2-FeOx films were found to present a faster bacterial inactivation kinetics under visible light irradiation than each single oxide acting independently. The interaction between the film active surface species and the bacteria within the disinfection period was followed by X-ray photoelectron spectroscopy (XPS) and provided the evidence for a redox catalysis taking place during the bacterial inactivation time. The optical and surface properties of the films were evaluated by appropriate surface analytical methods. A differential mechanism is suggested for each specific microstructure inducing bacterial inactivation. The surface FeOx plasmon resonance transferred electrons into the conduction band of TiO2 because of the Schottky barrier after Fermi level equilibration of the two components. An electric field at the interface between TiO2 and FeOx, favors the separation of the photo-generated charges leading to a faster bacterial inactivation by TiO2–FeOx compared to the bacterial inactivation kinetics by each of the single oxides.
Collapse
|