1
|
Averheim A, Simões Dos Reis G, Grimm A, Bergna D, Heponiemi A, Lassi U, Thyrel M. Enhanced biobased carbon materials made from softwood bark via a steam explosion preprocessing step for reactive orange 16 dye adsorption. BIORESOURCE TECHNOLOGY 2024; 400:130698. [PMID: 38615967 DOI: 10.1016/j.biortech.2024.130698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The growing textile industry produces large volumes of hazardous wastewater containing dyes, which stresses the need for cheap, efficient adsorbing technologies. This study investigates a novel preprocessing method for producing activated carbons from abundantly available softwood bark. The preprocessing involved a continuous steam explosion preconditioning step, chemical activation with ZnCl2, pyrolysis at 600 and 800 °C, and washing. The activated carbons were subsequently characterized by SEM, XPS, Raman and FTIR prior to evaluation for their effectiveness in adsorbing reactive orange 16 and two synthetic dyehouse effluents. Results showed that the steam-exploded carbon, pyrolyzed at 600 °C, obtained the highest BET specific surface area (1308 m2/g), the best Langmuir maximum adsorption of reactive orange 16 (218 mg g-1) and synthetic dyehouse effluents (>70 % removal) of the tested carbons. Finally, steam explosion preconditioning could open up new and potentially more sustainable process routes for producing functionalized active carbons.
Collapse
Affiliation(s)
- Andreas Averheim
- Valmet AB, Fiber Technology Center, SE-851 94 Sundsvall, Sweden.
| | - Glaydson Simões Dos Reis
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden.
| | - Alejandro Grimm
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden.
| | - Davide Bergna
- University of Oulu, Research Unit of Sustainable Chemistry, FI-90570 Oulu, Finland
| | - Anne Heponiemi
- University of Oulu, Research Unit of Sustainable Chemistry, FI-90570 Oulu, Finland.
| | - Ulla Lassi
- University of Oulu, Research Unit of Sustainable Chemistry, FI-90570 Oulu, Finland.
| | - Mikael Thyrel
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden.
| |
Collapse
|
2
|
Iurchenkova A, Kobets A, Ahaliabadeh Z, Kosir J, Laakso E, Virtanen T, Siipola V, Lahtinen J, Kallio T. The effect of the pyrolysis temperature and biomass type on the biocarbons characteristics. CHEMSUSCHEM 2023:e202301005. [PMID: 38126627 DOI: 10.1002/cssc.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
The conversion of biomass and natural wastes into carbon-based materials for various applications such as catalysts and energy-related materials is a fascinating and sustainable approach emerged during recent years. Precursor nature and characteristics are complex, hence, their effect on the properties of resulting materials is still unclear. In this work, we have investigated the effect of different precursors and pyrolysis temperature on the properties of produced carbon materials and their potential application as negative electrode materials in Li-ion batteries. Three biomasses, lignocellulosic brewery spent grain from a local brewery, catechol-rich lignin and tannins, were selected for investigations. We show that such end-product carbon characteristic as functional and elemental composition, porosity, specific surface area, defectiveness level, and morphology strictly depend on the precursor composition, chemical structure, and pyrolysis temperature. The electrochemical characteristics of produced carbon materials correlate with the characteristics of the produced materials. A higher pyrolysis temperature is shown to be favourable for production of carbon material for the Li-ion battery application in terms of both specific capacity and long-term cycling stability.
Collapse
Affiliation(s)
- Anna Iurchenkova
- Research Group of Electrochemical Energy Conversion and Storage, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box, 16100, FI-00076, Espoo, Finland
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, The Ångstrom laboratory, Uppsala University, BOX 35, 75103, Uppsala, Sweden
| | - Anna Kobets
- Research Group of Electrochemical Energy Conversion and Storage, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box, 16100, FI-00076, Espoo, Finland
| | - Zahra Ahaliabadeh
- Research Group of Electrochemical Energy Conversion and Storage, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box, 16100, FI-00076, Espoo, Finland
| | - Janez Kosir
- Research Group of Electrochemical Energy Conversion and Storage, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box, 16100, FI-00076, Espoo, Finland
| | - Ekaterina Laakso
- Research Group of Electrochemical Energy Conversion and Storage, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box, 16100, FI-00076, Espoo, Finland
- LUT University, Yliopistonkatu 34, 53850, Lappeenranta, Finland
| | - Tommi Virtanen
- Bioprocessing of Natural Materials, VTT Technical Research Center of Finland Ltd., P.O. Box 1000, Oulu, FI-, 02044 VTT
| | - Virpi Siipola
- Bioprocessing of Natural Materials, VTT Technical Research Center of Finland Ltd., P.O. Box 1000, Oulu, FI-, 02044 VTT
| | - Jouko Lahtinen
- Department of Applied Physics, School of Science, Aalto University, FI, 02150, Espoo, Finland
| | - Tanja Kallio
- Research Group of Electrochemical Energy Conversion and Storage, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box, 16100, FI-00076, Espoo, Finland
| |
Collapse
|
3
|
Anuchi S, Campbell KLS, Hallett JP. Effects of the Ionic Liquid Structure on Porosity of Lignin-Derived Carbon Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:15228-15241. [PMID: 37886039 PMCID: PMC10598883 DOI: 10.1021/acssuschemeng.3c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Converting lignin into advanced porous carbon materials, with desirable surface functionalities, can be challenging. While lignin-derived carbons produced by pyrolysis at >600 °C develop porosity, they also simultaneously lose nearly all their surface functional groups. By contrast, pyrolysis of lignin at lower temperatures (e.g., <400 °C) results in the formation of nonporous char that retains some surface functionalities. However, copyrolysis of lignin with some ionic liquids (ILs) at lower temperatures offers an opportunity to produce porous carbon materials with both large surface areas and an abundance of surface functional groups. This study investigates the effects of IL properties (solubility, thermal, and ionic size) on the specific surface areas of lignin-derived carbons produced by copyrolysis of lignin and ILs at 350-400 °C for 20 min. It was found that ILs that have bulky anions and small cation sizes can induce porosity in lignin-derived carbons with large surface areas. Among 16 ILs that were tested, [C2MIm][NTF2] demonstrated the best performance; the inclusion of it in the copyrolysis process resulted in lignin-derived carbons with ∼528 m2 g-1 and 0.48 cm3 g-1. Lignin-derived carbons produced using no IL, [C2MIm][NTF2], and [C4MIm][OTF] were further characterized for morphology, interfacial chemical, and elemental properties. The copyrolysis of lignin and [C2MIm][NTF2], and [C4MIm][OTF] resulted in doping of heteroatoms (N and S) on the porous carbon materials during pyrolysis reaction. The present findings contribute to a better understanding of the main property of ILs responsible for creating porosity in lignin carbon during pyrolysis.
Collapse
Affiliation(s)
- Samson
O. Anuchi
- Laboratory
of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 1AZ, U.K.
| | | | - Jason P. Hallett
- Laboratory
of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 1AZ, U.K.
| |
Collapse
|
4
|
Utami M, Wang S, Musawwa MM, Purbaningtias TE, Fitri M, Yuspita I, Abd-Elkader OH, Yadav KK, Munusamy-Ramanujam G, Bang D, Chang SW, Balasubramani R. Simultaneous photocatalytic removal of organic dye and heavy metal from textile wastewater over N-doped TiO 2 on reduced graphene oxide. CHEMOSPHERE 2023; 332:138882. [PMID: 37164194 DOI: 10.1016/j.chemosphere.2023.138882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Methylene blue (MB) and hexavalent chromium Cr(VI) are hazardous pollutants in textile waste and cannot be completely removed using conventional methods. So far, there have been no specific studies examining the synthesis and activity of N-TiO2/rGO as a photocatalyst for removing MB and Cr(VI) from textile wastewater. This work especially highlights the synthesis of N-TiO2/rGO as a photocatalyst which exhibits a wider range of light absorption and is highly effective for simultaneous removal of MB-Cr(VI) under visible light. Titanium tetrachloride (TiCl4) was used as the precursor for N-TiO2 synthesis using the sol-gel method. Graphite was oxidized using Hummer's method and reduced with hydrazine to produce rGO. N-TiO2/rGO was synthesized using a hydrothermal process and then analyzed using several characterization instruments. The X-ray diffraction pattern (XRD) showed that the anatase N-TiO2/rGO phase was detected at the diffraction peak of 2θ = 25.60°. Scanning electron microscopy and transmission electron microscopy (SEM-EDS and TEM) dispersive X-ray spectrometry images show that N-TiO2 particles adhere to the surface of rGO with uniform size and N and Ti elements are present in the N-TiO2/rGO combined investigated. Gas absorption analysis data (GSA) shows that N-TiO2/rGO had a surface area of 77.449 m2/g, a pore volume of 0.335 cc/g, and a pore size of 8.655 nm. The thermogravimetric differential thermal analysis (TG-DTA) curve showed the anatase phase at 500-780 °C with a weight loss of 0.85%. The N-TiO2/rGO composite showed a good photocatalyst application. The photocatalytic activity of N-TiO2/rGO for textile wastewater treatment under visible light showed higher effectiveness than ultraviolet light, with 97.92% for MB and 97.48% for Cr(VI). Combining N-TiO2 with rGO is proven to increase the light coverage in the visible light region. Removal of MB and Cr(VI) can be carried out simultaneously and results in a removal efficiency of 95.96%.
Collapse
Affiliation(s)
- Maisari Utami
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide SA, 5005, Australia
| | - Muhammad Miqdam Musawwa
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
| | - Tri Esti Purbaningtias
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
| | - Melinda Fitri
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
| | - Indah Yuspita
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
| | - Omar H Abd-Elkader
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Donggyu Bang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Ravindran Balasubramani
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea.
| |
Collapse
|
5
|
Jalalah M, Han H, Mahadani M, Nayak AK, Harraz FA. Novel interconnected hierarchical porous carbon derived from biomass for enhanced supercapacitor application. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Martin-Martinez FJ, Yeo J, Ryan JW, Forner-Cuenca A, Titirici MM. Editorial: Biobased nanomaterials: New trends and applications. Front Chem 2022; 10:1028321. [PMID: 36311436 PMCID: PMC9607948 DOI: 10.3389/fchem.2022.1028321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, College of Engineering, Cornell University, Ithaca, NY, United States
| | | | - Antoni Forner-Cuenca
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, Netherland
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Progress in preparation of plant biomass-derived biochar and application in pesticide residues field. Se Pu 2022; 40:499-508. [PMID: 35616195 PMCID: PMC9421570 DOI: 10.3724/sp.j.1123.2021.10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
随着农药的广泛使用,其已普遍存在于环境中,对人们的身体健康产生巨大影响。因此,环境中农药残留的去除和分析检测对保护人体安全健康至关重要。同时,农药在环境中残留浓度低,需要一种对目标物有较强选择性和富集作用,并对环境影响小的前处理吸附剂。植物源生物炭是由植物源生物质作为碳源衍生得到的材料,其比表面积大、孔容量高、表面官能团可调节,且环境相容性好,其原料植物源生物质的价格低廉、来源广泛并可再生,是一种廉价高效的吸附剂。该文主要综述了近10年来植物源生物炭用于环境中农药残留去除和分析检测前处理的应用进展。其中在农药残留去除方面的应用主要包括降低农药在土壤中的移动性,修复手性农药造成的污染,负载降解农药的细菌及作为化肥的缓释载体。在农药残留分析检测前处理方面,植物源生物炭可用作分散固相萃取、固相微萃取和磁性固相萃取的吸附剂来选择性吸附水果和蔬菜中的有机磷类和三唑类农药,以及水环境中的有机氯类农药。另外,还介绍了植物源生物炭的吸附机理,详细阐述了基于计算模拟如密度泛函理论、分子动力学模拟和巨正则蒙特卡洛模拟的吸附机理研究并讨论了其优势。最后,总结了植物源生物炭在农药去除和农药残留分析检测前处理方面应用的优势,指出了其在农药残留领域应用待解决的问题。
Collapse
|
8
|
Xu H, Lv XH, Wang HY, Ye JY, Yuan J, Wang YC, Zhou ZY, Sun SG. Impact of Pore Structure on Two-Electron Oxygen Reduction Reaction in Nitrogen-Doped Carbon Materials: Rotating Ring-Disk Electrode vs. Flow Cell. CHEMSUSCHEM 2022; 15:e202102587. [PMID: 35102711 DOI: 10.1002/cssc.202102587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The impact of pore structure on the two-electron oxygen reduction reaction (ORR) in nitrogen-doped carbon materials is currently under debate, and previous studies are mainly limited to the rotating ring-disk electrode (RRDE) rather than the practical flow cell (FC) system. In this study, assisted by a group of reliable pore models, the impact of two pore structure parameters, that is, Brunauer-Emmett-Teller surface area (SBET ) and micropore surface fraction (fmicro ), on ORR activity and selectivity are investigated in both RRDE and FC. The ORR mass activity correlates positively to the SBET in the RRDE and FC because a higher SBET can host more active sites. The H2 O2 selectivity is independent of fmicro in the RRDE but correlates negatively to fmicro in the FC. The inconsistency results from different states of the electrode in the RRDE and the FC. These insights will guide the design of carbon materials for H2 O2 synthesis.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xue-Hui Lv
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hao-Yu Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jin-Yu Ye
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Yu-Cheng Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhi-You Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
9
|
Bio-Stimulated Adsorption of Cr(VI) from Aqueous Solution by Groundnut Shell Activated Carbon@Al Embedded Material. Catalysts 2022. [DOI: 10.3390/catal12030290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a low-cost bioadsorbent aluminum metal blended with groundnut shell activated carbon material (Al-GNSC) was used for Cr(VI) adsorption from aqueous solutions. Al-GNSC was prepared and characterized using Fourier transform infrared spectrometer (FT-IR), scanning electron microscopic (SEM) and X-ray diffraction (XRD) to determine its surface morphology. Batch studies were performed and the optimum conditions for maximum Cr(VI) removal (of 94.2%) were found at pH 4.0, initial concentration 100 mg/L, adsorbent dosage 8 g/L of Cr(VI) solution, and time of contact 50 min. Moreover, the Langmuir isotherm model (maximum adsorption capacity of 13.458 mg/g) was the best fit and favored the mono-layered Cr(VI) adsorption. The kinetic studies reveal that the pseudo-second-order model was the best fit and favored chemisorption as the rate-limiting step. The desorption study revealed that Cr(VI) leached with sodium hydroxide solution acted as a regenerating agent. It is proved that Al-GNSC removes the Cr(VI) content in groundwater samples. The methodology developed using the Al-GNSC adsorbent as an alternative for the adsorption of Cr(VI) ions is remarkably successful in this study.
Collapse
|
10
|
Francik S, Knapik P, Łapczyńska-Kordon B, Francik R, Ślipek Z. Values of Selected Strength Parameters of Miscanthus × Giganteus Stalk Depending on Water Content and Internode Number. MATERIALS 2022; 15:ma15041480. [PMID: 35208019 PMCID: PMC8876718 DOI: 10.3390/ma15041480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
So far, there are no results for research on the biomechanical parameters of giant miscanthus stalks taking into account both the influence of moisture content and the internode, from which the samples were taken. Therefore, the aim of the research was to comprehensively investigate the influence of the internode number (NrNod) and water content (MC) on the values of selected biomechanical parameters (modulus of elasticity and maximum stress) determined using various stress tests (three-point bending and compression along the fibers). The research was carried out for dry stalks of different humidities and for different internodes. The results obtained in this study proved that the independent variables of the water content and the internode number cause a statistically significant influence on the values of the examined biomechanical parameters of the miscanthus stem: the modulus of elasticity in compression, the maximum stress in compression, the modulus of elasticity in bending and the maximum stress in bending. The values of the modulus of elasticity (MOE) increase when increasing the NrNod. For individual internodes, MOE values are higher with a higher MC. The values of the maximum stress (σ) also increase when increasing the internode number. For individual internodes, the σ values are lower with a higher MC.
Collapse
Affiliation(s)
- Sławomir Francik
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (P.K.); (B.Ł.-K.); (Z.Ś.)
- Correspondence: ; Tel.: +48-12-662-46-41
| | - Paweł Knapik
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (P.K.); (B.Ł.-K.); (Z.Ś.)
| | - Bogusława Łapczyńska-Kordon
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (P.K.); (B.Ł.-K.); (Z.Ś.)
| | - Renata Francik
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, 30-688 Krakow, Poland;
- State Higher Vocational School, Institute of Health, Staszica 1, 33-300 Nowy Sącz, Poland
| | - Zbigniew Ślipek
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (P.K.); (B.Ł.-K.); (Z.Ś.)
- State Higher Vocational School, Technical Institute, Staszica 1, 33-300 Nowy Sącz, Poland
| |
Collapse
|
11
|
Carbon Composites—Graphene-Oxide-Catalyzed Sugar Graphitization. Mol Vis 2022. [DOI: 10.3390/c8010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Utilization of biopolymers to form graphitic carbons is challenged by their high oxygen content and resulting curved and defective carbon lamellae upon high-temperature heat-treatment. Two composites, one with graphene-oxide (GO) and the other with reduced graphene-oxide (rGO) as fillers, respectively, in a matrix of sugar, each for the same added 2.5 wt.%, exhibited different degrees of graphitization compared to pure sugar on its own. Reactive oxygen groups on GO contribute to reactive templating and crystallite formation. Under high-temperature heat-treatment, sugar, a well-known non-graphitizing precursor, is converted to graphitic carbon in the presence of GO. Possessing fewer oxygen groups, rGO forms two phases in the sugar matrix—a non-graphitic phase and a graphitic phase. The latter is attributed to the remaining oxygen on the rGO.
Collapse
|
12
|
Novel Correlations between Spectroscopic and Morphological Properties of Activated Carbons from Waste Coffee Grounds. Processes (Basel) 2021. [DOI: 10.3390/pr9091637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Massive quantities of spent coffee grounds (SCGs) are generated by users around the world. Different processes have been proposed for SCG valorization, including pyrolytic processes to achieve carbonaceous materials. Here, we report the preparation of activated carbons through pyrolytic processes carried out under different experimental conditions and in the presence of various porosity activators. Textural and chemical characterization of the obtained carbons have been achieved through Brunauer–Emmett–Teller (BET), ESEM, 13C solid state NMR, XPS, XRD, thermogravimetric and spectroscopic determinations. The aim of the paper is to relate these data to the preparation method, evaluating the correlation between the spectroscopic data and the physical and textural properties, also in comparison with the corresponding data obtained for three commercial activated carbons used in industrial adsorption processes. Some correlations have been observed between the Raman and XPS data.
Collapse
|
13
|
Arjunan A, Subbiah M, Sekar M, VS. AP, Balasubramanian V, Sundara R. Biomass derived hierarchically porous carbon inherent structure as an effective metal free cathode for Li‐O
2
/air battery. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202000037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ariharan Arjunan
- National Centre for Catalysis Research (NCCR), Department of Chemistry Indian Institute of Technology Madras Chennai Tamilnadu 600036 India
- Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics Indian Institute of Technology Madras Chennai Tamilnadu 600036 India
| | - Maheswari Subbiah
- Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics Indian Institute of Technology Madras Chennai Tamilnadu 600036 India
| | - Mahendran Sekar
- National Centre for Catalysis Research (NCCR), Department of Chemistry Indian Institute of Technology Madras Chennai Tamilnadu 600036 India
| | - Ajay Piriya VS.
- Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics Indian Institute of Technology Madras Chennai Tamilnadu 600036 India
| | - Viswanathan Balasubramanian
- National Centre for Catalysis Research (NCCR), Department of Chemistry Indian Institute of Technology Madras Chennai Tamilnadu 600036 India
| | - Ramaprabhu Sundara
- Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics Indian Institute of Technology Madras Chennai Tamilnadu 600036 India
| |
Collapse
|
14
|
Wurzer C, Mašek O. Feedstock doping using iron rich waste increases the pyrolysis gas yield and adsorption performance of magnetic biochar for emerging contaminants. BIORESOURCE TECHNOLOGY 2021; 321:124473. [PMID: 33302011 DOI: 10.1016/j.biortech.2020.124473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Magnetic carbons can significantly lower the costs of wastewater treatment due to easy separation of the adsorbent. However, current production techniques often involve the use of chlorinated or sulfonated Fe precursors with an inherent potential for secondary pollution. In this study, ochre, an iron-rich waste stream was investigated as a sustainable Fe source to produce magnetic activated biochar from two agricultural feedstocks, softwood and wheat straw. Fe doping resulted in significant shifts in pyrolysis yield distribution with increased gas yields (+50%) and gas energy content (+40%) lowering the energy costs for production. Physical activation transformed ochre to magnetite/maghemite resulting in activated magnetic biochars and led to a 4-fold increase in the adsorption capacities for two common micropollutants - caffeine and fluconazole. The results show that Fe doping not only benefits the adsorbent properties but also the production process, leading the way to sustainable carbon adsorbents.
Collapse
Affiliation(s)
- Christian Wurzer
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, United Kingdom.
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, United Kingdom
| |
Collapse
|
15
|
Mesoporous Carbons from Polysaccharides and Their Use in Li-O 2 Batteries. NANOMATERIALS 2020; 10:nano10102036. [PMID: 33076455 PMCID: PMC7602621 DOI: 10.3390/nano10102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
Previous studies have demonstrated that the mesoporosity of carbon material obtained by the Starbon® process from starch-formed by amylose and amylopectin can be tuned by controlling this ratio (the higher the amylose, the higher the mesoporosity). This study shows that starch type can also be an important parameter to control this mesoporosity. Carbons with controlled mesoporosity (Vmeso from 0.1–0.7 cm3/g) have been produced by the pre-mixing of different starches using an ionic liquid (IL) followed by a modified Starbon® process. The results show that the use of starch from corn and maize (commercially available Hylon VII with maize, respectively) is the better combination to increase the mesopore volume. Moreover, “low-cost” mesoporous carbons have been obtained by the direct carbonization of the pre-treated starch mixtures with the IL. In all cases, the IL can be recovered and reused, as demonstrated by its recycling up to three times. Furthermore, and as a comparison, chitosan has been also used as a precursor to obtain N-doped mesoporous carbons (5.5 wt% N) with moderate mesoporosity (Vmeso = 0.43 cm3/g). The different mesoporous carbons have been tested as cathode components in Li-O2 batteries and it is shown that a higher carbon mesoporosity, produced from starch precursor, or the N-doping, produced from chitosan precursor, increase the final battery cell performance (specific capacity and cycling).
Collapse
|
16
|
Sridhar V, Park H. Transforming Waste Poly(Ethylene Terephthalate) into Nitrogen Doped Carbon Nanotubes and Its Utility in Oxygen Reduction Reaction and Bisphenol-A Removal from Contaminated Water. MATERIALS 2020; 13:ma13184144. [PMID: 32957727 PMCID: PMC7560256 DOI: 10.3390/ma13184144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
Till date, waste plastics are either down-cycled to cheap products like fibers or burnt in incinerators to generate heat. In this manuscript, we report a simple and effective technique for microwave induced transformation of waste polyethylene terephthalate (wPET) to carbon nano-tubes (CNT). Iron nano-particles dispersed on graphene substrate acted as catalyst for CNT growth whereas urea served the dual role of de-polymerisation of wPET and also as nitrogen doping agent. Application of our newly synthesized 3-D meso-porous graphene-nitrogen doped carbon nanotube- iron electrode (Fe@NCNT-rGO) as electro-catalyst for oxygen reduction reaction (ORR) shows a positive half-wave potential (E1/2) of 0.75 V vs. RHE (reversible hydrogen electrode), nearly ideal four-electron pathway and excellent methanol tolerance when compared to commercial 20% Pt/C. The utility of Fe@NCNT-rGO for removal of bisphenol A from contaminated waters is also reported.
Collapse
Affiliation(s)
- Vadahanambi Sridhar
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
| | - Hyun Park
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-(515)-102-730
| |
Collapse
|
17
|
Godino-Ojer M, Blazquez-García R, Matos I, Bernardo M, Fonseca I, Pérez Mayoral E. Porous carbons-derived from vegetal biomass in the synthesis of quinoxalines. Mechanistic insights. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Wang T, Liu H, Duan C, Xu R, Zhang Z, She D, Zheng J. The Eco-Friendly Biochar and Valuable Bio-Oil from Caragana korshinskii: Pyrolysis Preparation, Characterization, and Adsorption Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3391. [PMID: 32751862 PMCID: PMC7435931 DOI: 10.3390/ma13153391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
Carbonization of biomass can prepare carbon materials with excellent properties. In order to explore the comprehensive utilization and recycling of Caragana korshinskii biomass, 15 kinds of Caragana korshinskii biochar (CB) were prepared by controlling the oxygen-limited pyrolysis process. Moreover, we pay attention to the dynamic changes of microstructure of CB and the by-products. The physicochemical properties of CB were characterized by Scanning Electron Microscope (SEM), BET-specific surface area (BET-SSA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), and Gas chromatography-mass spectrometry (GC-MS). The optimal preparation technology was evaluated by batch adsorption application experiment of NO3-, and the pyrolysis mechanism was explored. The results showed that the pyrolysis temperature is the most important factor in the properties of CB. With the increase of temperature, the content of C, pH, mesoporous structure, BET-SSA of CB increased, the cation exchange capacity (CEC) decreased and then increased, but the yield and the content of O and N decreased. The CEC, pH, and BET-SSA of CB under each pyrolysis process were 16.64-81.4 cmol·kg-1, 6.65-8.99, and 13.52-133.49 m2·g-1, respectively. CB contains abundant functional groups and mesoporous structure. As the pyrolysis temperature and time increases, the bond valence structure of C 1s, Ca 2p, and O 1s is more stable, and the phase structure of CaCO3 is more obvious, where the aromaticity increases, and the polarity decreases. The CB prepared at 650 °C for 3 h presented the best adsorption performance, and the maximum theoretical adsorption capacity for NO3- reached 120.65 mg·g-1. The Langmuir model and pseudo-second-order model can well describe the isothermal and kinetics adsorption process of NO3-, respectively. Compared with other cellulose and lignin-based biomass materials, CB showed efficient adsorption performance of NO3- without complicated modification condition. The by-products contain bio-soil and tail gas, which are potential source of liquid fuel and chemical raw materials. Especially, the bio-oil of CB contains α-d-glucopyranose, which can be used in medical tests and medicines.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hongtao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Cuihua Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Rui Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhiqin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| |
Collapse
|
19
|
Bio-Based Carbon Materials from Potato Waste as Electrode Materials in Supercapacitors. ENERGIES 2020. [DOI: 10.3390/en13092406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigates the production of biobased carbon materials from potato waste and its application in energy storage systems such as supercapacitors. Three different categories of carbons were produced: hydrochar (HC) from hydrothermal carbonization (HTC) at three different temperatures (200 °C, 220 °C, 240 °C) and two different duration times (two hours and five hours), pyrolyzed hydrochar (PHC) obtained via pyrolysis of the HTC chars at 600 °C and 900 °C for two hours and pyrochar from the pyrolysis of biomass at 600 °C and 900 °C for two hours. The carbon samples were analysed regarding their physico-chemical properties such as elemental composition, specific surface area, bulk density and surface functionalities as well as their electrochemical characteristics such as electric conductivity and specific capacity via cyclic voltammetry. N- and O-enriched carbon materials with promising specific surface areas of up to 330 m2 g−1 containing high shares of microporosity were produced. Electric conductivities of up to 203 S m−1 and specific capacities of up to 134 F g−1 were obtained. The presence of high contents of oxygen (4.9–13.5 wt.%) and nitrogen (3.4–4.0 wt.%) of PHCs is assumed to lead to considerable pseudocapacitive effects and favor the high specific capacities measured. These results lead to the conclusion that the potential of agricultural biomass can be exploited by using hydrothermal and thermochemical conversion technologies to create N- and O-rich carbon materials with tailored properties for the application in supercapacitors.
Collapse
|
20
|
Bernardo M, Correa CR, Ringelspacher Y, Becker GC, Lapa N, Fonseca I, Esteves IAAC, Kruse A. Porous carbons derived from hydrothermally treated biogas digestate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 105:170-179. [PMID: 32070820 DOI: 10.1016/j.wasman.2020.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Porous carbons from digestate-derived hydrochar were produced, characterized and their performance to reclaim phosphate from water was evaluated as a preliminary approach to demonstrate their practical application. In a first step, the digestate was converted into hydrochars through hydrothermal carbonization by using two different pH conditions: 8.3 (native conditions) and 3.0 (addition of H2SO4). The resulting hydrochars did not present significant differences. Consecutively, the hydrochars were activated with KOH to produce activated carbons with enhanced textural properties. The resulting porous carbons presented marked differences: the AC native presented a lower ash content (20.3 wt%) and a higher surface area (SBET = 1106 m2/g) when compared with the AC-H2SO4 (ash content = 43.7 wt% SBET = 503 m2/g). Phosphorus, as phosphate, is a resource present in significative amount in wastewater, causing serious problems of eutrophication. Therefore, the performance of the porous carbons samples to recover phosphate - P(PO43-) - from water was evaluated through exploitation assays that included kinetic studies. The lumped model presented a good fitting to the kinetic data and the obtained uptake capacities were the same for both carbons, 12 mg P(PO43-)/g carbon. Despite the poorer textural properties of AC-H2SO4, this carbon was richer in Ca, Al, Fe, K, and Mg cations which promoted the formation of mineral complexes with phosphate anions. The results obtained in this work are promising for the future development of P(PO43-) enriched carbons that can be used thereafter as biofertilizers in soil amendment applications.
Collapse
Affiliation(s)
- Maria Bernardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Catalina Rodriguez Correa
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstrasse 9, 70599 Stuttgart, Germany
| | - Yvonne Ringelspacher
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstrasse 9, 70599 Stuttgart, Germany
| | - Gero C Becker
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstrasse 9, 70599 Stuttgart, Germany
| | - Nuno Lapa
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Fonseca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel A A C Esteves
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Andrea Kruse
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies of Biobased Resources, Garbenstrasse 9, 70599 Stuttgart, Germany.
| |
Collapse
|
21
|
Barreiro DL, Moldes ZM, Yeo J, Shen S, Hawker MJ, Martin-Martinez FJ, Kaplan DL, Buehler MJ. Conductive Silk-Based Composites Using Biobased Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904720. [PMID: 31532880 PMCID: PMC6824953 DOI: 10.1002/adma.201904720] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Indexed: 05/14/2023]
Abstract
There is great interest in developing conductive biomaterials for the manufacturing of sensors or flexible electronics with applications in healthcare, tracking human motion, or in situ strain measurements. These biomaterials aim to overcome the mismatch in mechanical properties at the interface between typical rigid semiconductor sensors and soft, often uneven biological surfaces or tissues for in vivo and ex vivo applications. Here, the use of biobased carbons to fabricate conductive, highly stretchable, flexible, and biocompatible silk-based composite biomaterials is demonstrated. Biobased carbons are synthesized via hydrothermal processing, an aqueous thermochemical method that converts biomass into a carbonaceous material that can be applied upon activation as conductive filler in composite biomaterials. Experimental synthesis and full-atomistic molecular dynamics modeling are combined to synthesize and characterize these conductive composite biomaterials, made entirely from renewable sources and with promising applications in fields like biomedicine, energy, and electronics.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA 02139, USA
| | - Zaira Martín Moldes
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Institute of High Performance Computing, A*STAR, Singapore, 138632
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY 14850, USA
| | - Sabrina Shen
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA 02139, USA
| | - Morgan J. Hawker
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Francisco J. Martin-Martinez
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Zhao B, Ding Y, Wen Z. From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12209-019-00209-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Kim HJ, Bae GH, Lee SM, Ahn JH, Kim JK. Properties of lithium iron phosphate prepared by biomass-derived carbon coating for flexible lithium ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Huang J, Liu S, Peng Z, Shao Z, Zhang Y, Dong H, Zheng M, Xiao Y, Liu Y. Rich N/O/S co-doped porous carbon with a high surface area from silkworm cocoons for superior supercapacitors. NEW J CHEM 2019. [DOI: 10.1039/c9nj04195h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effects of high surface area and abundant heteroatoms make porous carbons superior electrode materials.
Collapse
Affiliation(s)
- Jianyu Huang
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Simin Liu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Zifang Peng
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Zhuoxian Shao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Yuanyuan Zhang
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Hanwu Dong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Mingtao Zheng
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Yong Xiao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Yingliang Liu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| |
Collapse
|
25
|
Preparation of Microporous Carbon from Sargassum horneri by Hydrothermal Carbonization and KOH Activation for CO2 Capture. J CHEM-NY 2018. [DOI: 10.1155/2018/4319149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-performance microporous activated carbon (AHC) for CO2 capture was prepared from an emerging marine pollutant, Sargassum horneri, via hydrothermal carbonization (HTC) and KOH activation. The as-synthesized carbon material was characterized by N2 sorption-desorption measurement, TGA, SEM, XRD, FTIR, and elemental analysis. Impressively, the activated carbon exhibited high specific surface area (1221 m2/g), narrow distributed micropores (∼0.50 nm), and a relatively high nitrogen content (3.56 wt.%), which endowed this carbon material high CO2 uptake of 101.7 mg/g at 30°C and 1 bar. Moreover, the carbon material showed highly stable CO2 adsorption capacity and easy regeneration over four adsorption-desorption cycles. Two kinetic models were employed in this work and found that the pseudo-first-order kinetic model (R2 = 0.99) provided the best description. In addition, the high CO2 uptake is mainly attributed to the presence of abundant narrow microporous. The macroporous structure of hydrochar (HC) played an important role in the production of microporous carbon with high adsorption properties. This work provides an efficient strategy for preparing microporous activated carbon from Sargassum horneri, and AHC is a promising candidate acting as an efficient CO2 adsorbent for further industrial application.
Collapse
|
26
|
Nogueira J, António M, Mikhalev SM, Fateixa S, Trindade T, Daniel-da-Silva AL. Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1004. [PMID: 30518056 PMCID: PMC6316754 DOI: 10.3390/nano8121004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022]
Abstract
Porous carbon materials derived from biopolymers are attractive sorbents for the removal of emerging pollutants from water, due to their high specific surface area, high porosity, tunable surface chemistry, and reasonable cost. However, carrageenan biopolymers were scarcely investigated as a carbon source to prepare porous carbon materials. Herein, hydrochars (HCs) and porous activated carbons (ACs) derived from natural occurring polysaccharides with variable sulfate content (κ-, ι- and λ-carrageenan) were prepared and investigated in the uptake of ciprofloxacin, which is an antibiotic detected in water sources and that poses serious hazards to public health. The materials were prepared using hydrothermal carbonization and subsequent chemical activation with KOH to increase the available surface area. The activated carbons were markedly microporous, presenting high specific surface area, up to 2800 m²/g. Activated carbons derived from κ- and λ-carrageenan showed high adsorption capacity (422 and 459 mg/g, respectively) for ciprofloxacin and fast adsorption kinetics, reaching the sorption equilibrium in approximately 5 min. These features place the ACs investigated here among the best systems reported in the literature for the removal of ciprofloxacin from water.
Collapse
Affiliation(s)
- João Nogueira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria António
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sergey M Mikhalev
- Centre for Mechanical Technology and Automation ⁻ Nanotechnology Research Group (TEMA-NRD), Mechanical Engineering Department, Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sara Fateixa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|