1
|
Malinowska K, Tarhonska K, Foksiński M, Sicińska P, Jabłońska E, Reszka E, Zarakowska E, Gackowski D, Górecka K, Balcerczyk A, Bukowska B. Impact of Short-Term Exposure to Non-Functionalized Polystyrene Nanoparticles on DNA Methylation and Gene Expression in Human Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:12786. [PMID: 39684496 DOI: 10.3390/ijms252312786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral blood mononuclear cells (PBMCs) in vitro. This in vitro human-cell-based model is used to investigate the epigenetic effect of various environmental xenobiotics. PBMCs were exposed to PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 h period. The analysis encompassed epigenetic DNA modifications, including levels of 5-methyl-2'-deoxycytidine (5-mdC) and 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC), as well as the levels of 2'-deoxyuridine (dU) and 5-(hydroxymethyl)-2'-deoxyuridine (5-hmdU) by mass spectrometry methods, methylation in the promoter regions of selected tumor suppressor genes TP53 (P53), CDKN2A (P16), and CDKN1A (P21) and proto-oncogenes (CCND1, BCL2, BCL6), along with the expression profile of the indicated genes by real-time PCR assays. The results obtained revealed no significant changes in global DNA methylation/demethylation levels in PBMCs after short-term exposure to non-functionalized PS-NPs. Furthermore, there were no changes observed in the level of dU, a product of cytosine deamination. However, the level of 5-hmdU, a product of both 5-hmdC deamination and thymine oxidation, was increased at the highest concentrations of larger PS-NPs (72 nm). None of the PS-NPs caused a change in the methylation pattern of the promoter regions of the TP53, CDKN2A, CDKN1A, CCND1, BCL2 and BCL6 genes. However, gene profiling indicated that PS-NPs with a diameter of 29 nm and 44 nm altered the expression of the TP53 gene. The smallest PS-NPs with a diameter of 29 nm increased the expression of the TP53 gene at a concentration of 10 µg/mL, while PS-NPs with a diameter of 44 nm did so at a concentration of 100 µg/mL. An increase in the expression of the CDKN2A gene was also observed when PBMCs were exposed to PS-NPs with 29 nm in diameter at the highest concentration. The observed effect depended on both the concentration and the size of the PS-NPs.
Collapse
Affiliation(s)
- Kinga Malinowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Teresy Str. 8, 91-348 Lodz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Ewa Jabłońska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Teresy Str. 8, 91-348 Lodz, Poland
| | - Edyta Reszka
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Karolina Górecka
- The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
- Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Aneta Balcerczyk
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Türkoğlu A, Haliloğlu K, Demirel F, Aydin M, Çiçek S, Yiğider E, Demirel S, Piekutowska M, Szulc P, Niedbała G. Machine Learning Analysis of the Impact of Silver Nitrate and Silver Nanoparticles on Wheat ( Triticum aestivum L.): Callus Induction, Plant Regeneration, and DNA Methylation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4151. [PMID: 38140479 PMCID: PMC10747064 DOI: 10.3390/plants12244151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The objective of this study was to comprehend the efficiency of wheat regeneration, callus induction, and DNA methylation through the application of mathematical frameworks and artificial intelligence (AI)-based models. This research aimed to explore the impact of treatments with AgNO3 and Ag-NPs on various parameters. The study specifically concentrated on analyzing RAPD profiles and modeling regeneration parameters. The treatments and molecular findings served as input variables in the modeling process. It included the use of AgNO3 and Ag-NPs at different concentrations (0, 2, 4, 6, and 8 mg L-1). The in vitro and epigenetic characteristics were analyzed using several machine learning (ML) methods, including support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor classifier (KNN), and Gaussian processes classifier (GP) methods. This study's results revealed that the highest values for callus induction (CI%) and embryogenic callus induction (EC%) occurred at a concentration of 2 mg L-1 of Ag-NPs. Additionally, the regeneration efficiency (RE) parameter reached its peak at a concentration of 8 mg L-1 of AgNO3. Taking an epigenetic approach, AgNO3 at a concentration of 2 mg L-1 demonstrated the highest levels of genomic template stability (GTS), at 79.3%. There was a positive correlation seen between increased levels of AgNO3 and DNA hypermethylation. Conversely, elevated levels of Ag-NPs were associated with DNA hypomethylation. The models were used to estimate the relationships between the input elements, including treatments, concentration, GTS rates, and Msp I and Hpa II polymorphism, and the in vitro output parameters. The findings suggested that the XGBoost model exhibited superior performance scores for callus induction (CI), as evidenced by an R2 score of 51.5%, which explained the variances. Additionally, the RF model explained 71.9% of the total variance and showed superior efficacy in terms of EC%. Furthermore, the GP model, which provided the most robust statistics for RE, yielded an R2 value of 52.5%, signifying its ability to account for a substantial portion of the total variance present in the data. This study exemplifies the application of various machine learning models in the cultivation of mature wheat embryos under the influence of treatments and concentrations involving AgNO3 and Ag-NPs.
Collapse
Affiliation(s)
- Aras Türkoğlu
- Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya 42310, Türkiye
| | - Kamil Haliloğlu
- Department of Field Crops, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye;
| | - Fatih Demirel
- Department of Agricultural Biotechnology, Faculty of Agriculture, Igdır University, Igdir 76000, Türkiye;
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Semra Çiçek
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Esma Yiğider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Serap Demirel
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yüzüncü Yıl University, Van 65080, Türkiye;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 27 Partyzantów St., 76-200 Słupsk, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| |
Collapse
|
3
|
Soltysova A, Begerova P, Jakic K, Kozics K, Sramkova M, Meese E, Smolkova B, Gabelova A. Genome-wide DNA methylome and transcriptome changes induced by inorganic nanoparticles in human kidney cells after chronic exposure. Cell Biol Toxicol 2023; 39:1939-1956. [PMID: 34973136 PMCID: PMC10547624 DOI: 10.1007/s10565-021-09680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
The unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells. Renal clearance is one of the most important routes of nanoparticle excretion; therefore, a detailed evaluation of nanoparticle-mediated nephrotoxicity is an important task. Integrated analysis of methylome and transcriptome changes induced by INPs (PEG-AuNPs, Fe3O4NPs, SiO2NPs, and TiO2NPs) revealed significantly deregulated genes with functional classification in immune response, DNA damage, and cancer-related pathways. Although most deregulated genes were unique to individual INPs, a relatively high proportion of them encoded the transcription factors. Interestingly, FOS hypermethylation inversely correlating with gene expression was associated with all INPs exposures. Our study emphasizes the need for a more comprehensive investigation of INPs' biological safety, especially after chronic exposure.
Collapse
Affiliation(s)
- Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 04, Bratislava, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Patricia Begerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Kristina Jakic
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sramkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
4
|
Valente A, Vieira L, Silva MJ, Ventura C. The Effect of Nanomaterials on DNA Methylation: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1880. [PMID: 37368308 DOI: 10.3390/nano13121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
DNA methylation is an epigenetic mechanism that involves the addition of a methyl group to a cytosine residue in CpG dinucleotides, which are particularly abundant in gene promoter regions. Several studies have highlighted the role that modifications of DNA methylation may have on the adverse health effects caused by exposure to environmental toxicants. One group of xenobiotics that is increasingly present in our daily lives are nanomaterials, whose unique physicochemical properties make them interesting for a large number of industrial and biomedical applications. Their widespread use has raised concerns about human exposure, and several toxicological studies have been performed, although the studies focusing on nanomaterials' effect on DNA methylation are still limited. The aim of this review is to investigate the possible impact of nanomaterials on DNA methylation. From the 70 studies found eligible for data analysis, the majority were in vitro, with about half using cell models related to the lungs. Among the in vivo studies, several animal models were used, but most were mice models. Only two studies were performed on human exposed populations. Global DNA methylation analyses was the most frequently applied approach. Although no trend towards hypo- or hyper-methylation could be observed, the importance of this epigenetic mechanism in the molecular response to nanomaterials is evident. Furthermore, methylation analysis of target genes and, particularly, the application of comprehensive DNA methylation analysis techniques, such as genome-wide sequencing, allowed identifying differentially methylated genes after nanomaterial exposure and affected molecular pathways, contributing to the understanding of their possible adverse health effects.
Collapse
Affiliation(s)
- Ana Valente
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Luís Vieira
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
5
|
Brzóska K, Sochanowicz B, Szczygieł M, Drzał A, Śniegocka M, Michalczyk-Wetula D, Elas M, Kapka-Skrzypczak L, Kruszewski M. Silver Nanoparticles Induced Changes in DNA Methylation and Histone H3 Methylation in a Mouse Model of Breast Cancer. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114163. [PMID: 37297299 DOI: 10.3390/ma16114163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The importance of epigenetic changes as a measurable endpoint in nanotoxicological studies is getting more and more appreciated. In the present work, we analyzed the epigenetic effects induced by citrate- and PEG-coated 20 nm silver nanoparticles (AgNPs) in a model consisting of 4T1 breast cancer tumors in mice. Animals were administered with AgNPs intragastrically (1 mg/kg b.w. daily-total dose 14 mg/kg b.w.) or intravenously (administration twice with 1 mg/kg b.w.-total dose 2 mg/kg b.w.). We observed a significant decrease in 5-methylcytosine (5-mC) level in tumors from mice treated with citrate-coated AgNPs regardless of the route of administration. For PEG-coated AgNPs, a significant decrease in DNA methylation was observed only after intravenous administration. Moreover, treatment of 4T1 tumor-bearing mice with AgNPs decreased histone H3 methylation in tumor tissue. This effect was the most pronounced for PEG-coated AgNPs administered intravenously. No changes in histone H3 Lys9 acetylation were observed. The decrease in methylation of DNA and histone H3 was accompanied by changes in expression of genes encoding chromatin-modifying enzymes (Setd4, Setdb1, Smyd3, Suv39h1, Suv420h1, Whsc1, Kdm1a, Kdm5b, Esco2, Hat1, Myst3, Hdac5, Dnmt1, Ube2b, and Usp22) and genes related to carcinogenesis (Akt1, Brca1, Brca2, Mlh1, Myb, Ccnd1, and Src). The significance of the observed changes and the mechanisms responsible for their development are unclear, and more research in this area is warranted. Nevertheless, the present work points to the epigenetic effects as an important level of interaction between nanomaterials and biological systems, which should always be taken into consideration during analysis of the biological activity of nanomaterials and development of nanopharmaceuticals.
Collapse
Affiliation(s)
- Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Barbara Sochanowicz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Małgorzata Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Agnieszka Drzał
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Martyna Śniegocka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Dominika Michalczyk-Wetula
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
6
|
Yuan YG, Xing YT, Liu SZ, Li L, Reza AMMT, Cai HQ, Wang JL, Wu P, Zhong P, Kong IK. Identification of circular RNAs expression pattern in caprine fetal fibroblast cells exposed to a chronic non-cytotoxic dose of graphene oxide-silver nanoparticle nanocomposites. Front Bioeng Biotechnol 2023; 11:1090814. [PMID: 37020511 PMCID: PMC10069586 DOI: 10.3389/fbioe.2023.1090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
The widespread use of graphene oxide-silver nanoparticle nanocomposites (GO-AgNPs) in biomedical sciences is increasing the chances of human and animal exposure to its chronic non-toxic doses. Exposure to AgNPs-related nanomaterials may result in the negative effect on the dam, fetus and offspring. However, there are only little available information for profound understanding of the epigenetic alteration in the cells and animals caused by low-dose chronic exposure of GO-AgNPs. The present study investigated the effect of 0.5 μg/mL GO-AgNPs for 10 weeks on the differential expression of circular RNAs (circRNAs) in caprine fetal fibroblast cells (CFFCs), and this dose of GO-AgNPs did not affect cell viability and ROS level. We predicted the functions of those differentially expressed (DE) circRNAs in CFFCs by bioinformatics analysis. Furthermore, we validated the expression of ten DE circRNAs using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) to ensure the reliability of the sequencing data. Our results showed that the DE circRNAs may potentially regulate the GO-AgNPs-inducing epigenetic toxicity through a regulatory network consisted of circRNAs, miRNAs and messenger RNAs (mRNAs). Therefore, the epigenetics toxicity is essential to assess the biosafety level of GO-AgNPs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| | - Yi-Tian Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Song-Zi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ling Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Basic Sciences, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | - He-Qing Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jia-Lin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Pengfei Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ping Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| |
Collapse
|
7
|
Belitsky GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Mechanisms of the carcinogenicity of nanomaterials. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-8-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials become more widespread in the different areas of human life, forming the new technosphere philosophy, in particular, new approaches for development and usage of these materials in everyday life, manufacture, medicine etc.The physicochemical characteristics of nanomaterials differ significantly from the corresponding indicators of aggregate materials and at least some of them are highly reactive and / or highly catalytic. This suggests their aggressiveness towards biological systems, including involvement in carcinogenesis. The review considers the areas of use of modern nanomaterials, with special attention paid to the description of medicine production using nanotechnologies, an analysis of the mechanisms of action of a number of nanomaterials already recognized as carcinogenic, and also presents the available experimental and mechanistic data obtained from the study of the carcinogenic / procarcinogenic effects of various groups of nanomaterials currently not classified as carcinogenic to humans.Preparing the review, information bases of biomedical literature were analysed: Scopus (307), PubMed (461), Web of Science (268), eLibrary.ru (190) were used. To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, Sci-Hub and eLibrary.ru databases were used.
Collapse
Affiliation(s)
- G. A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
8
|
A review on the epigenetics modifications to nanomaterials in humans and animals: novel epigenetic regulator. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In the nanotechnology era, nanotechnology applications have been intensifying their prospects to embrace all the vigorous sectors persuading human health and animal. The safety and concerns regarding the widespread use of engineered nanomaterials (NMA) and their potential effect on human health still require further clarification. Literature elucidated that NMA exhibited significant adverse effects on various molecular and cellular alterations. Epigenetics is a complex process resulting in the interactions between an organism’s environment and genome. The epigenetic modifications, including histone modification and DNA methylation, chromatin structure and DNA accessibility alteration, regulate gene expression patterns. Disturbances of epigenetic markers induced by NMA might promote the sensitivity of humans and animals to several diseases. Also, this paper focus on the epigenetic regulators of some dietary nutrients that have been confirmed to stimulate the epigenome and, more exactly, DNA histone modifications and non-histone proteins modulation by acetylation, and phosphorylation inhibition, which counteracts oxidative stress generations. The present review epitomizes the recent evidence of the potential effects of NMA on histone modifications, in addition to in vivo and in vitro cytosine DNA methylation and its toxicity. Furthermore, the part of epigenetic fluctuations as possible translational biomarkers for uncovering untoward properties of NMA is deliberated.
Collapse
|
9
|
Sun Q, Li T, Yu Y, Li Y, Sun Z, Duan J. The critical role of epigenetic mechanisms involved in nanotoxicology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1789. [PMID: 35289073 DOI: 10.1002/wnan.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Over the past decades, nanomaterials (NMs) have been widely applied in the cosmetic, food, engineering, and medical fields. Along with the prevalence of NMs, the toxicological characteristics exhibited by these materials on health and the environment have gradually attracted attentions. A growing number of evidences have indicated that epigenetics holds an essential role in the onset and development of various diseases. NMs could cause epigenetic alterations such as DNA methylation, noncoding RNA (ncRNA) expression, and histone modifications. NMs might alternate either global DNA methylation or the methylation of specific genes to affect the biological function. Abnormal upregulation or downregulation of ncRNAs might also be a potential mechanism for the toxic effects caused by NMs. In parallel, the phosphorylation, acetylation, and methylation of histones also take an important part in the process of NMs-induced toxicity. As the adverse effects of NMs continue to be explored, mechanisms such as chromosomal remodeling, genomic imprinting, and m6 A modification are also gradually coming into the limelight. Since the epigenetic alterations often occur in the early development of diseases, thus the relevant studies not only provide insight into the pathogenesis of diseases, but also screen for the prospective biomarkers for early diagnosis and prevention. This review summarizes the epigenetic alterations elicited by NMs, hoping to provide a clue for nanotoxicity studies and security evaluation of NMs. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Rezk N, Abdelsattar AS, Makky S, Hussein AH, Kamel AG, El-Shibiny A. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Express 2022; 12:108. [PMID: 35987838 PMCID: PMC9392670 DOI: 10.1186/s13568-022-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial alternatives such as nanoparticles are critically required to tackle bacterial infections, especially with the emerging threat of antibiotic resistance. Therefore, this study aimed to biosynthesize Au-Ag nanoparticles using propolis as a natural reducing agent and investigate their antibacterial activity against antibiotic-resistant Staphylococcus sciuri (S. sciuri), Pseudomonas aeruginosa (P. aeruginosa), and Salmonella enterica Typhimurium (S. enterica), besides demonstrating their anticancer activity in cancer cell lines. The biosynthesized Au@AgNPs were characterized using UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transformation Infrared (FTIR), and Scanning Electron Microscopy (SEM). Moreover, the detection of antibacterial activity was assessed through disc diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), time-killing curve, and detection of cell membrane integrity via SEM. As a result, the UV-Vis spectrum revealed the formation of Au@AgNPs in a single peak between 533 and 555 nm. Furthermore, FTIR analysis confirmed nanoparticles' green synthesis due to the presence of carbon functional groups. The formulated Au@AgNPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. The MIC and the MBC of P. aeruginosa and S. sciuri were 31.25 µg/mL. However, nanoparticles were more effective on S. enterica with MIC of 7.5 µg/mL and MBC of 15.6 µg/mL. Furthermore, the time-killing curve of the three model bacteria with the treatment was effective at 50 µg/mL. Besides, SEM of the tested bacteria indicated unintegrated bacterial cell membranes and damage caused by Au@AgNPs. Regarding the anticancer activity, the results indicated that the biosynthesized Au@AgNPs have a cytotoxic effect on HEPG2 cell lines. In conclusion, this research revealed that the green synthesized Au@AgNPs could be effective antibacterial agents against S. sciuri, P. aeruginosa, and S. enterica and anticancer agents against HEPG2.
Collapse
Affiliation(s)
- Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
11
|
Rhodes ADY, Duran-Mota JA, Oliva N. Current progress in bionanomaterials to modulate the epigenome. Biomater Sci 2022; 10:5081-5091. [PMID: 35880652 DOI: 10.1039/d2bm01027e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in genomics during the 1990s have made it possible to study and identify genetic and epigenetic responses of cells and tissues to various drugs and environmental factors. This has accelerated the number of targets available to treat a range of diseases from cancer to wound healing disorders. Equally interesting is the understanding of how bio- and nanomaterials alter gene expression through epigenetic mechanisms, and whether they have the potential to elicit a positive therapeutic response without requiring additional biomolecule delivery. In fact, from a cell's perspective, a biomaterial is nothing more than an environmental factor, and so it has the power to epigenetically modulate gene expression of cells in contact with it. Understanding these epigenetic interactions between biomaterials and cells will open new avenues in the development of technologies that can not only provide biological signals (i.e. drugs, growth factors) necessary for therapy and regeneration, but also intimately interact with cells to promote the expression of genes of interest. This review article aims to summarise the current state-of-the-art and progress on the development of bio- and nanomaterials to modulate the epigenome.
Collapse
Affiliation(s)
- Anna D Y Rhodes
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| | - Jose Antonio Duran-Mota
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK. .,Materials Engineering Group (GEMAT), IQS Barcelona, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
12
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
13
|
Mohamed AF, Nasr M, Amer ME, Abuamara TMM, Abd-Elhay WM, Kaabo HF, Matar EER, El Moselhy LE, Gomah TA, Deban MAEF, Shebl RI. Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study. Infect Agent Cancer 2022; 17:4. [PMID: 35120563 PMCID: PMC8817517 DOI: 10.1186/s13027-022-00416-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to antibiotics and anticancer therapy is a serious global health threat particularly in immunosuppressed cancer patients. Current study aimed to estimate the antibacterial and anticancer potentials of short-term exposure to extremely low frequency electromagnetic field (ELF-EMF) and silver nanoparticles (AgNPs) either in sole or combined form. METHODS Antibacterial activity was evaluated via determination of the bacterial viable count reduction percentage following exposure, whereas their ability to induce apoptosis in breast cancer (MCF-7) cell line was detected using annexin V-fluorescein isothiocyanate and cell cycle analysis. Also, oxidative stress potential and molecular profile were investigated. RESULTS ELF-EMF and AgNPs significantly (p < 0.01) reduced K. pneumonia viable count of compared to that of S. aureus in a time dependent manner till reaching 100% inhibition when ELF-EMF was applied in combination to 10 µM/ml AgNPs for 2 h. Apoptosis induction was obvious following exposure to either ELF-EMF or AgNPs, however their apoptotic potential was intensified when applied in combination recording significantly (p < 0.001) induced apoptosis as indicated by elevated level of MCF-7 cells in the Pre G1 phase compared to control. S phase arrest and accumulation of cells in G2/M phase was observed following exposure to AgNPs and EMF, respectively. Up-regulation in the expression level of p53, iNOS and NF-kB genes as well as down-regulation of Bcl-2 and miRNA-125b genes were detected post treatment. CONCLUSIONS The antibacterial and anticancer potentials of these agents might be related to their ability to induce oxidative stress, suggesting their potentials as novel candidates for controlling infections and triggering cancer cells towards self-destruction.
Collapse
Affiliation(s)
- Aly Fahmy Mohamed
- International Center for Training and Advanced Researches (ICTAR-Egypt), Cairo, Egypt
| | - Mohamed Nasr
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E Amer
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Tamer M M Abuamara
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wagih M Abd-Elhay
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hassan Fathy Kaabo
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Emad Eldin R Matar
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Laila E El Moselhy
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | | | | | - Rania Ibrahim Shebl
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Zone, Banks Complex, 6th October City, Cairo, Egypt.
| |
Collapse
|
14
|
Nanoparticle-Based Modification of the DNA Methylome: A Therapeutic Tool for Atherosclerosis? CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular epigenomics is a relatively young field of research, yet it is providing novel insights into gene regulation in the atherosclerotic arterial wall. That information is already pointing to new avenues for atherosclerosis (AS) prevention and therapy. In parallel, advances in nanoparticle (NP) technology allow effective targeting of drugs and bioactive molecules to the vascular wall. The partnership of NP technology and epigenetics in AS is just beginning and promises to produce novel exciting candidate treatments. Here, we briefly discuss the most relevant recent advances in the two fields. We focus on AS and DNA methylation, as the DNA methylome of that condition is better understood in comparison with the rest of the cardiovascular disease field. In particular, we review the most recent advances in NP-based delivery systems and their use for DNA methylome modification in inflammation. We also address the promises of DNA methyltransferase inhibitors for prevention and therapy. Furthermore, we emphasize the unique challenges in designing therapies that target the cardiovascular epigenome. Lastly, we touch the issue of human exposure to industrial NPs and its impact on the epigenome as a reminder of the undesired effects that any NP-based therapy must avoid to be apt for secondary prevention of AS.
Collapse
|
15
|
Ventura C, Torres V, Vieira L, Gomes B, Rodrigues AS, Rueff J, Penque D, Silva MJ. New “Omics” Approaches as Tools to Explore Mechanistic Nanotoxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:179-194. [DOI: 10.1007/978-3-030-88071-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Epigenetic Mechanisms in Understanding Nanomaterial-Induced Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:195-223. [DOI: 10.1007/978-3-030-88071-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Malakootian M, Nasiri A, Osornio-Vargas AR, Faraji M. Effect of titanium dioxide nanoparticles on DNA methylation of human peripheral blood mononuclear cells. Toxicol Res (Camb) 2021; 10:1045-1051. [PMID: 34733489 DOI: 10.1093/toxres/tfab085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of the current study was to investigate the effect of well-characterized TiO2 nanoparticles on DNA methylation of peripheral blood mononuclear cells (PBMCs) in vitro. Maximum non-toxic concentration of nanoparticles for PBMCs was determined by MTT assay. The effect of TiO2 nanoparticles at concentrations of 25-100 μg/ml on DNA methylation of PBMCs was investigated by measuring the %5-mC alterations through an ELISA assay. The physicochemical analysis showed that the TiO2 nanoparticles were crystalline, pure and in the anatase phase. Peaks related to Ti-O tensile vibrations were observed in the range of 1510 cm-1. The size of nanoparticles was in the range of 39-74 nm with an average hydrodynamic diameter of 43.82 nm. According to the results of the MTT test, 100 μg/ml was found to be maximum non-toxic concentration. The %5-mC in treated PBMCs revealed that TiO2 nanoparticles could lead to DNA hypomethylation in PBMCs. The %5-mC difference compared with the negative control was found to be 2.07 ± 1.02% (P = 0.03). The difference of %5-mC between the 25 and 100 μg/ml concentration of nanoparticles was statistically significant (P = 0.02). The results of the current study show that the TiO2 nanoparticles cause DNA hypomethylation in PBMCs in a dose-response manner. Therefore, it is recommended to evaluate the effects of cytotoxicity and epigenotoxicity of commonly used nanoparticles before their use.
Collapse
Affiliation(s)
- Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alvaro R Osornio-Vargas
- Department of Pediatrics, University of Alberta, 3-591 Edmonton Clinic Health Academy, Edmonton T6G 1C9, Canada
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Moreira L, Costa C, Pires J, Teixeira JP, Fraga S. How can exposure to engineered nanomaterials influence our epigenetic code? A review of the mechanisms and molecular targets. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108385. [PMID: 34893164 DOI: 10.1016/j.mrrev.2021.108385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Evidence suggests that engineered nanomaterials (ENM) can induce epigenetic modifications. In this review, we provide an overview of the epigenetic modulation of gene expression induced by ENM used in a variety of applications: titanium dioxide (TiO2), silver (Ag), gold (Au), silica (SiO2) nanoparticles and carbon-based nanomaterials (CNM). Exposure to these ENM can trigger alterations in cell patterns of DNA methylation, post-transcriptional histone modifications and expression of non-coding RNA. Such effects are dependent on ENM dose and physicochemical properties including size, shape and surface chemistry, as well as on the cell/organism sensitivity. The genes affected are mostly involved in the regulation of the epigenetic machinery itself, as well as in apoptosis, cell cycle, DNA repair and inflammation related pathways, whose long-term alterations might lead to the onset or progression of certain pathologies. In addition, some DNA methylation patterns may be retained as a form of epigenetic memory. Prenatal exposure to ENM may impair the normal development of the offspring by transplacental effects and/or putative transmission of epimutations in imprinting genes. Thus, understanding the impact of ENM on the epigenome is of paramount importance and epigenetic evaluation must be considered when assessing the risk of ENM to human health.
Collapse
Affiliation(s)
- Luciana Moreira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Joana Pires
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto, Portugal.
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
19
|
Brzoska K, Szczygiel M, Drzał A, Sniegocka M, Michalczyk-Wetula D, Biela E, Elas M, Kapka-Skrzypczak L, Lewandowska-Siwkiewicz H, Urbańska K, Kruszewski M. Transient Vasodilation in Mouse 4T1 Tumors after Intragastric and Intravenous Administration of Gold Nanoparticles. Int J Mol Sci 2021; 22:ijms22052361. [PMID: 33653008 PMCID: PMC7956783 DOI: 10.3390/ijms22052361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Gold nanoparticles (AuNPs) are foreseen as a promising tool in nanomedicine, both as drug carriers and radiosensitizers. They have been also proposed as a potential anticancer drug due to the anti-angiogenic effect in tumor tissue. In this work we investigated the effect of citrate-coated AuNPs of nominal diameter 20 nm on the growth and metastatic potential of 4T1 cells originated from a mouse mammary gland tumor inoculated into the mammary fat pad of Balb/ccmdb mice. To evaluate whether AuNPs can prevent the tumor growth, one group of inoculated mice was intragastrically (i.g.) administered with 1 mg/kg of AuNPs daily from day 1 to day 14 after cancer cell implantation. To evaluate whether AuNPs can attenuate the tumor growth, the second group was intravenously (i.v.) administered with 1 or 5 mg/kg of AuNPs, twice on day 5 and day 14 after inoculation. We did not observe any anticancer activity of i.v. nor i.g. administered AuNPs, as they did not affect neither the primary tumor growth rate nor the number of lung metastases. Unexpectedly, both AuNP treatment regimens caused a marked vasodilating effect in the tumor tissue. As no change of potential angiogenic genes (Fgf2, Vegfa) nor inducible nitric oxygenase (Nos2) was observed, we proposed that the vasodilation was caused by AuNP-dependent decomposition of nitrosothiols and direct release of nitric oxide in the tumor tissue.
Collapse
Affiliation(s)
- Kamil Brzoska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (K.B.); (H.L.-S.)
| | - Małgorzata Szczygiel
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Agnieszka Drzał
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Martyna Sniegocka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Dominika Michalczyk-Wetula
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Eva Biela
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Hanna Lewandowska-Siwkiewicz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (K.B.); (H.L.-S.)
| | - Krystyna Urbańska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (K.B.); (H.L.-S.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-22-5051118
| |
Collapse
|
20
|
Ballesteros S, Barguilla I, Marcos R, Hernández A. Nanoceria, alone or in combination with cigarette-smoke condensate, induce transforming and epigenetic cancer-like features in vitro. Nanomedicine (Lond) 2021; 16:293-305. [PMID: 33501851 DOI: 10.2217/nnm-2020-0367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To detect cell transformation effects of nanoceria after long-term exposure (up to 6 weeks) and to determine their potential interactions with cigarette smoke condensate, as a model of environmental carcinogenic pollutant. Materials & methods: Human bronchial epithelial BEAS-2 cells were used to determine transformation effects (invasion and tumorspheres induction), as well as changes in the expression of a battery of miRNAs related to the carcinogenesis process. Results: Nanoceria- and co-exposed cells exhibit cell transforming potential, with significantly increased invasion and tumorsphere formation abilities. Likewise, these exposures produced a high impact on the battery of miRNAs used. Conclusion: Nanoceria exposure induces cell-transformation and shows a positive interaction with the cell-transforming effects of cigarette smoke condensate. Besides, cerium dioxide nanoparticles and the co-exposure produced potential toxicity at the transcriptome level, which is related to tumorigenesis.
Collapse
Affiliation(s)
- Sandra Ballesteros
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain
| | - Irene Barguilla
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain
| | - Ricard Marcos
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Alba Hernández
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
21
|
Green Synthesis of Magnetic Nanoparticles Using Satureja hortensis Essential Oil toward Superior Antibacterial/Fungal and Anticancer Performance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8822645. [PMID: 33542927 PMCID: PMC7840253 DOI: 10.1155/2021/8822645] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
The biological synthesis of nanoparticles, due to their environmental and biomedical properties, has been of particular interest to scientists and physicians. Here, iron nanoparticles (FeNPs) were synthesized using Satureja hortensis essential oil. Then, the chemical, functional, and morphological properties of these nanoparticles were characterized by typical experiments such as Uv-Vis, FTIR, XRD, FE-SEM, PSA, zeta potential, EDX, and EDX mapping. The results indicated Fe nanoparticles' formation with a cubic morphological structure and a particle size in the range of 9.3-27 nm. The antimicrobial effects of these nanoparticles were further evaluated using disc diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungal concentration (MFC) against two gram-positive bacterial strains (Staphylococcus aureus and Corynebacterium glutamicum), two gram-negative bacterial strains (Pseudomonas aeruginosa and Escherichia coli), and one fungus species Candida albicans. The results showed that green-synthesized Fe nanoparticles possessed higher antimicrobial properties than Satureja hortensis essential oil against selected pathogenic microorganisms, especially Gram-negative bacteria. Finally, the anticancer effect of these Fe nanoparticles was investigated on human cancer cells, K-562, and MCF-7, by the MTT assay. The results showed the anticancer effect of these nanoparticles against selected cell lines.
Collapse
|
22
|
Pogribna M, Hammons G. Epigenetic Effects of Nanomaterials and Nanoparticles. J Nanobiotechnology 2021; 19:2. [PMID: 33407537 PMCID: PMC7789336 DOI: 10.1186/s12951-020-00740-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The rise of nanotechnology and widespread use of engineered nanomaterials in everyday human life has led to concerns regarding their potential effect on human health. Adverse effects of nanomaterials and nanoparticles on various molecular and cellular alterations have been well-studied. In contrast, the role of epigenetic alterations in their toxicity remains relatively unexplored. This review summarizes current evidence of alterations in cytosine DNA methylation and histone modifications in response to nanomaterials and nanoparticles exposures in vivo and in vitro. This review also highlights existing knowledge gaps regarding the role of epigenetic alterations in nanomaterials and nanoparticles toxicity. Additionally, the role of epigenetic changes as potential translational biomarkers for detecting adverse effects of nanomaterials and nanoparticles is discussed.
Collapse
Affiliation(s)
- Marta Pogribna
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| | - George Hammons
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
23
|
González-Palomo AK, Saldaña-Villanueva K, Cortés-García JD, Fernández-Macias JC, Méndez-Rodríguez KB, Pérez Maldonado IN. Effect of silver nanoparticles (AgNPs) exposure on microRNA expression and global DNA methylation in endothelial cells EA.hy926. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103543. [PMID: 33166681 DOI: 10.1016/j.etap.2020.103543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine the effect of AgNPs on the epigenome of endothelial cells EA.hy926, including the levels of expression of microRNAs (miRNAs) and global DNA methylation patterns. In addition, evaluation of the expression of inflammatory genes and the levels of VCAM-1 protein (miRNA-126 target) was performed. The expression levels of analyzed miRNAs (microRNAs-126, 155 and 146) were reduced significantly and there were not observed changes in inflammatory gene expression. Regarding the levels of protein vascular cell adhesion molecule 1 (VCAM-1), they increase significantly to 0.5 μM AgNPs at 24 h of exposure. As far as DNA methylation is concerned, we found that AgNPs induce a state of global hyper-methylation. In conclusion, it was demonstrated that direct contact between AgNPs and endothelial cells resulted in the dysregulation of highly enriched and vastly functional miRNAs and DNA hypermethylation, that may have multiple effects on endothelium function and integrity.
Collapse
Affiliation(s)
- A K González-Palomo
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - K Saldaña-Villanueva
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J D Cortés-García
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J C Fernández-Macias
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - K B Méndez-Rodríguez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - I N Pérez Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
24
|
Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, Sarfraz RM, Farooq MA. Nano-scaled materials may induce severe neurotoxicity upon chronic exposure to brain tissues: A critical appraisal and recent updates on predisposing factors, underlying mechanism, and future prospects. J Control Release 2020; 328:873-894. [PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hnin Ei Thu
- Innoscience Research Sdn. Bhd., Suites B-5-7, Level 5, Skypark@ One City, Jalan Ust 25/1, Subang Jaya 47650, Selangor, Malaysia; Department of Pharmacology, Faculty of Medicine, Lincoln University College, Selangor, Malaysia.
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy & Thumbay Research Institute for Precision Medicine Gulf Medical University, United Arab Emirates
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, 2409 West University Avenue, PHR 4.116, Austin TX78712, USA; Department of Pharmacy, University of Malakand, Dir Lower, Chakdara, KPK, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | | | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| |
Collapse
|
25
|
Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020; 7:587012. [PMID: 33324678 PMCID: PMC7726445 DOI: 10.3389/fmolb.2020.587012] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The use of nanoparticles (NP) in diagnosis and treatment of many human diseases, including cancer, is of increasing interest. However, cytotoxic effects of NPs on cells and the uptake efficiency significantly limit their use in clinical practice. The physico-chemical properties of NPs including surface composition, superficial charge, size and shape are considered the key factors that affect the biocompatibility and uptake efficiency of these nanoplatforms. Thanks to the possibility of modifying physico-chemical properties of NPs, it is possible to improve their biocompatibility and uptake efficiency through the functionalization of the NP surface. In this review, we summarize some of the most recent studies in which NP surface modification enhances biocompatibility and uptake. Furthermore, the most used techniques used to assess biocompatibility and uptake are also reported.
Collapse
Affiliation(s)
- Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Falagan-Lotsch P, Murphy CJ. Network-based analysis implies critical roles of microRNAs in the long-term cellular responses to gold nanoparticles. NANOSCALE 2020; 12:21172-21187. [PMID: 32990715 PMCID: PMC7606723 DOI: 10.1039/d0nr04701e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since gold nanoparticles (AuNPs) have great potential to bring improvements to the biomedical field, their impact on biological systems should be better understood, particularly over the long term, using realistic doses of exposure. MicroRNAs (miRNAs) are small noncoding RNAs that play key roles in the regulation of biological pathways, from development to cellular stress responses. In this study, we performed genome-wide miRNA expression profiling in primary human dermal fibroblasts 20 weeks after chronic and acute (non-chronic) treatments to four AuNPs with different shapes and surface chemistries at a low dose. The exposure condition and AuNP surface chemistry had a significant impact on the modulation of miRNA levels. In addition, a network-based analysis was employed to provide a more complex, systems-level perspective of the miRNA expression changes. In response to the stress caused by AuNPs, miRNA co-expression networks perturbed in cells under non-chronic exposure to AuNPs were enriched for target genes implicated in the suppression of proliferative pathways, possibly in attempt to restore cell homeostasis, while changes in miRNA co-expression networks enriched for target genes related to activation of proliferative and suppression of apoptotic pathways were observed in cells chronically exposed to one specific type of AuNPs. In this case, miRNA dysregulation might be contributing to enforce a new cell phenotype during stress. Our findings suggest that miRNAs exert critical roles in the cellular responses to the stress provoked by a low dose of NPs in the long term and provide a fertile ground for further targeted experimental studies.
Collapse
Affiliation(s)
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
27
|
Zhang W, Liu S, Han D, He Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine. Acta Biomater 2020; 117:93-107. [PMID: 32980543 DOI: 10.1016/j.actbio.2020.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Engineered nanoparticles (ENPs) are now being applied across a range of disciplines, and as a result numerous studies have now assessed ENP-related bioeffects. Among them, ENP-induced epigenetic changes including DNA methylation, histone modifications, and miRNA-mediated regulation of gene expression have recently attracted attention. In this review, we describe the diversity of ENP-induced epigenetic changes, focusing on their interplay with related functional biological events, especially oxidative stress, MAPK pathway activation, and inflammation. In doing so, we highlight the underlying mechanisms and biological effects of ENP-induced epigenetic changes. We also summarize how high-throughput technologies have helped to uncover ENP-induced epigenetic changes. Finally, we discuss future perspectives and the challenges related to ENP-induced epigenetic changes that still need to be addressed.
Collapse
|
28
|
Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M, Majd A, Oraghi Ardebili Z. Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114727. [PMID: 32806441 DOI: 10.1016/j.envpol.2020.114727] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 05/05/2023]
Abstract
This study aimed to explore whether supplementation of the culture medium with selenium nanoparticles (nSe) can influence growth, biochemistry, expression of transcription factors, and epigenetic DNA methylation in Capsicum annuum. The seeds were grown in hormone-free MS culture medium supplemented with nSe (0, 0.5, 1, 10, and 30 mgL-1) or corresponding doses of bulk type selenate (BSe). Incorporation of nSe into the medium caused variations in morphology and growth in a manner dependent on the dose and Se type. The low doses of nSe displayed growth-promoting effects, whereas nSe at 10 and 30 mgL-1 were associated with severe toxicity and abnormality in leaf and root development. MSAP analysis confirmed the substantial variation in cytosine DNA methylation in response to the toxic dose of nSe exhibiting epigenetic modification. The nSe toxicity was associated with DNA hyper-methylations. The nSe treatments transcriptionally upregulated the bZIP1 transcription factor by an average of 3.5 folds. With a similar trend, the upregulation (mean = 9.8 folds) in the expression of the WRKY1 transcription factor resulted from the nSe application. The nSe0.5 or nSe1 treatments resulted in a significant induction (mean = 48%) in nitrate reductase activity. A high dose of nSe led to an increase in proline concentration. The nSe treatments were also associated with modifications in activities of peroxidase and catalase enzymes. Besides, the nSe utilization increased the activity of phenylalanine ammonia-lyase enzyme (mean = 76%) and concentrations of soluble phenols (mean = 51%). The toxic dose of nSe also caused abnormalities in the structure of the stem apical meristem. The nSe toxicity was also associated with inhibition in the differentiation of xylem tissues. These findings provide novel insights into the nSe-associated molecular variations in conferring the modified growth, anatomy, and metabolism.
Collapse
Affiliation(s)
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
29
|
Yu M, Zhou X, Ju L, Yu M, Gao X, Zhang M, Tang S. Characteristics of iron status, oxidation response, and DNA methylation profile in response to occupational iron oxide nanoparticles exposure. Toxicol Ind Health 2020; 36:170-180. [DOI: 10.1177/0748233720918683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the growing development and application of iron oxide nanoparticles (IONPs) may pose exposure risk and adverse health outcomes, biological changes due to occupational exposure remain unexplored. This cross-sectional study recruited 23 workers at a plant that manufactures IONPs and 23 age- and sex-matched controls without metal-rich occupational hazards exposure. Exposure metrics at worksites were monitored, and iron status, oxidation markers, and methylation profiles of genomic DNA in peripheral blood were measured using corresponding enzyme-linked immunosorbent assays and methylation-specific polymerase chain reaction (PCR), respectively. The mass concentration, number counting, and surface area concentration of airborne particles at the worksite significantly increased during the work process of manufacturing/handling IONPs. Overall, compared to controls, workers exhibited increased 5-hydroxymethylcytosine (5hmC) levels without changes in 5-methylcytosine (5mC), hepcidin methylation, iron, soluble transferrin receptor (sTfR), ferritin, hepcidin, 8-hydroxydeoxyguanosine, and glutathione. A positive correlation was found between 5hmC and IONP exposure year with adjustment for age, sex, and cotinine using partial correlation analyses ( r = 0.521, p < 0.001). After stratification of INOPs exposure and 5hmC levels, the univariate general linear model with adjustment for age, sex, and cotinine found that the estimated mean levels of 5mC and sTfR in subjects with low and high 5hmC levels among controls were 11% and 14.4% ( p ≤ 0.01) and 80.9 nM and 70.3 nM ( p < 0.05), respectively. The estimated mean levels of sTfR in workers and controls with low 5hmC levels were 88.3 nM and 68.7 nM ( p ≤ 0.01). Multivariate linear regression analyses suggested an association between sTfR and 5hmC (standardized β = −0.420, p = 0.014) and female sex (standardized β = 0.672, p < 0.001) for subjects with low 5hmC levels. These findings suggest that increased 5hmC could be differentially employed to monitor an epigenetic signature with steady iron homeostasis for occupational IONP-exposed individuals who are likely to experience early but specific decreased sTfR, especially for females concurrent with the onset of increment in 5hmC at low level.
Collapse
Affiliation(s)
- Min Yu
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Xingfan Zhou
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| | - Li Ju
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Man Yu
- Department of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangjing Gao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Meibian Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Shichuan Tang
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Balasubramanian S, Gunasekaran K, Sasidharan S, Jeyamanickavel Mathan V, Perumal E. MicroRNAs and Xenobiotic Toxicity: An Overview. Toxicol Rep 2020; 7:583-595. [PMID: 32426239 PMCID: PMC7225592 DOI: 10.1016/j.toxrep.2020.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/27/2022] Open
Abstract
The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally. Here, we provide a comprehensive view on miRNA biogenesis, their mechanism of action and, their possible role in xenobiotic toxicity. Further, we review the recent in vitro and in vivo studies involved in xenobiotic exposure induced miRNA alterations and the mRNA-miRNA interactions. Finally, we address the challenges associated with the miRNAs in toxicological studies.
Collapse
Key Words
- ADAMTS9, A disintegrin and metalloproteinase with thrombospondin motifs 9
- AHR, Aryl Hydrocarbon Receptor
- AMPK, Adenosine Monophosphate-activated protein kinase
- ARRB1, Arrestin beta 1
- Ag, Silver
- Al2O3, Aluminium oxide
- Au, Gold
- Aβ, Amyloid Beta
- BCB, Blood-cerebrospinal fluid barrier
- BNIP3−3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3
- BaP, Benzo[a]pyrene
- Biomarkers
- CCNB1, Cyclin B1
- CDC25A, M-phase inducer phosphatase 1
- CDC25C, M-phase inducer phosphatase 3
- CDK, Cyclin-dependent Kinase
- CDK1, Cyclin-dependent kinase 1
- CDK6, Cyclin-dependent kinase 6
- CDKN1b, Cyclin-dependent kinase Inhibitor 1B
- CEC, Contaminants of Emerging Concern
- COPD, Chronic obstructive pulmonary disease
- COX2, Cyclooxygenase-2
- CTGF, Connective Tissue Growth Factor
- DGCR8, DiGeorge syndrome chromosomal [or critical] region 8
- DNA, Deoxy ribonucleic acid
- DON, Deoxynivalenol
- ER, Endoplasmic Reticulum
- Environment
- Epigenetics
- Fadd, Fas-associated protein with death domain
- GTP, Guanosine triphosphate
- Gene regulation
- Grp78/BIP, Binding immunoglobulin protein
- HSPA1A, Heat shock 70 kDa protein 1
- Hpf, Hours post fertilization
- IL-6, Interleukin 6
- IL1R1, Interleukin 1 receptor, type 1
- LIN28B, Lin-28 homolog B
- LRP-1-, Low density lipoprotein receptor-related protein 1
- MAPK, Mitogen Activated Protein Kinase
- MC-LR, Microcystin-Leucine Arginine
- MC-RR, Microcystin-Arginine Arginine
- MRE, MicroRNA Response Elements
- Mn, Manganese
- NASH, Non-alcoholic steatohepatitis
- NET1, Neuroepithelial Cell Transforming 1
- NF- ҡB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NFKBAP, NFKB Activating protein-1
- NMDAR, N-methyl-d-aspartate receptor
- NPs, Nanoparticles
- Non-coding RNAs
- Nrf2, Nuclear factor erythroid 2-related factor 2
- PDCD4, Programmed cell death protein 4
- PFAS, Poly-fluoroalkyl substances
- PM2.5, Particulate Matter2.5
- RISC, RNA-induced silencing complex
- RNA, Ribonucleic acid
- RNAi, RNA interference
- RNase III, Ribonuclease III
- SEMA6D, Semaphorin-6D
- SOLiD, Sequencing by Oligonucleotide Ligation and Detection
- SPIONs, Superparamagnetic Iron Oxide Nanoparticles
- SiO2, Silicon dioxide
- TCDD, 2,3,7,8-Tetrachlorodibenzodioxin
- TNF-α, Tumor necrosis factor – alpha
- TP53, Tumor protein 53
- TRBP, Transactivation Response RNA Binding Protein
- Toxicity
- UTR, Untranslated region
- WHO, World Health Organization
- Wnt, Wingless-related integration site
- ZEA, Zearalanone
- Zn, Zinc
- bcl2l11, B-cell lymphoma-2-like protein 11
- ceRNA, Competing endogenous RNA
- lncRNAs, Long non-coding RNA
- mRNA, Messenger RNA
- miRNA, MicroRNA
- qRT-PCR, quantitative Real Time-Polymerase Chain Reaction
- ripk 1, Receptor-interacting serine/threonine-protein kinase 1
Collapse
Affiliation(s)
| | - Kanmani Gunasekaran
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | - Saranyadevi Sasidharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| |
Collapse
|
31
|
Zhao P, Chen X, Wang Q, Zou H, Xie Y, Liu H, Zhou Y, Liu P, Dai H. Differential toxicity mechanism of gold nanoparticles in HK-2 renal proximal tubular cells and 786-0 carcinoma cells. Nanomedicine (Lond) 2020; 15:1079-1096. [PMID: 32031480 DOI: 10.2217/nnm-2019-0417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To research the influence and mechanism of gold nanoparticles (AuNPs) with different size for HK-2 cells (kidney normal cells) and 786-0 cells (kidney cancer cells). Materials & methods: HK-2 cells and 786-0 cells were treated with 5 and 200 nm AuNPs at 1 and 10 μg/ml. The cell viability, intracellular reactive oxygen species levels, cell apoptosis, cell autophagy, and related cell signaling pathways were analyzed. Results: In HK-2 cells, AuNPs reduced the activity of Akt and mTOR and upregulated the expression of LC3 II. In 786-0 cells, the activity of p38 was upregulated, which leaded to the increase of caspase 3 and initiated apoptosis. Conclusion: AuNPs of 5 and 200 nm at 10 μg/ml exerted antitumor effect by prompting apoptosis and inhibiting proliferation, while autophagy was activated to protect HK-2 cells from AuNPs-induced cytotoxicity.
Collapse
Affiliation(s)
- Peipei Zhao
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Qiaoling Wang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Hanbing Zou
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yuexia Xie
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Hongmei Liu
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yan Zhou
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Huili Dai
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| |
Collapse
|
32
|
Rossnerova A, Honkova K, Pelclova D, Zdimal V, Hubacek JA, Chvojkova I, Vrbova K, Rossner P, Topinka J, Vlckova S, Fenclova Z, Lischkova L, Klusackova P, Schwarz J, Ondracek J, Ondrackova L, Kostejn M, Klema J, Dvorackova S. DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles. Int J Mol Sci 2020; 21:E2420. [PMID: 32244494 PMCID: PMC7177382 DOI: 10.3390/ijms21072420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Vladimir Zdimal
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jaroslav A. Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic;
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.V.); (P.R.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.V.); (P.R.)
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Jaroslav Schwarz
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Lucie Ondrackova
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Martin Kostejn
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic;
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2 Liberec, Czech Republic;
| |
Collapse
|
33
|
Hashemi MS, Gharbi S, Jafarinejad-Farsangi S, Ansari-Asl Z, Dezfuli AS. Secondary toxic effect of graphene oxide and graphene quantum dots alters the expression of miR-21 and miR-29a in human cell lines. Toxicol In Vitro 2020; 65:104796. [PMID: 32070776 DOI: 10.1016/j.tiv.2020.104796] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
For in vitro studies, non-toxic doses of nanomaterials are routinely selected by quantification of live cells after exposing to different concentrations of nanoparticles but considering only morphological changes or viability of cells is not sufficient to conclude that these nanomaterials are non-cytotoxic. Here we investigated if secondary toxicity is active in the cells exposed to non-toxic doses of graphene oxide (GO) and graphene quantum dots (GQDs). Non-cytotoxic dose of 15 μg mL-1 of GO (100 nm) and GQDs (50 nm) was selected according to MTT and Hoechst 33342/PI double staining assays. In order to investigate the secondary toxicity, the expression of miR-21, miR-29a and three genes at both mRNA and protein level were evaluated in MCF-7, HUVEC, KMBC/71 cells 4 and 24 h post exposure. Mitochondrial membrane potential (MMP) was assessed by Rhodamine 123 staining. According to our results, there was no significant decrease in viability of cells after exposure to the non-cytotoxic dose of GO and GQDs, but we observed significant alterations in the expression level of miR-21, miR-29a, Bax, Bcl2 and PTEN genes after treatment in all three cells. In addition to molecular changes, we observed alteration in mitochondrial activity at cellular level. However, we also observed that GO influenced the basal level of genes and MMP more compare to GQDs. Considering that all these genes are involved in breast tumor development and metastasis, the observed changes in miRNA expression and protein synthesis may alter cell fate and susceptibility and cause deviation in the desired outcome of GO and GQDs application in medical research.
Collapse
Affiliation(s)
- Mahnaz Sadat Hashemi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | | |
Collapse
|
34
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
35
|
Gedda MR, Babele PK, Zahra K, Madhukar P. Epigenetic Aspects of Engineered Nanomaterials: Is the Collateral Damage Inevitable? Front Bioeng Biotechnol 2019; 7:228. [PMID: 31616663 PMCID: PMC6763616 DOI: 10.3389/fbioe.2019.00228] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
The extensive application of engineered nanomaterial (ENM) in various fields increases the possibilities of human exposure, thus imposing a huge risk of nanotoxicity. Hence, there is an urgent need for a detailed risk assessment of these ENMs in response to their toxicological profiling, predominantly in biomedical and biosensor settings. Numerous "toxico-omics" studies have been conducted on ENMs, however, a specific "risk assessment paradigm" dealing with the epigenetic modulations in humans owing to the exposure of these modern-day toxicants has not been defined yet. This review aims to address the critical aspects that are currently preventing the formation of a suitable risk assessment approach for/against ENM exposure and pointing out those researches, which may help to develop and implement effective guidance for nano-risk assessment. Literature relating to physicochemical characterization and toxicological behavior of ENMs were analyzed, and exposure assessment strategies were explored in order to extrapolate opportunities, challenges, and criticisms in the establishment of a baseline for the risk assessment paradigm of ENMs exposure. Various challenges, such as uncertainty in the relation of the physicochemical properties and ENM toxicity, the complexity of the dose-response relationships resulting in difficulty in its extrapolation and measurement of ENM exposure levels emerged as issues in the establishment of a traditional risk assessment. Such an appropriate risk assessment approach will provide adequate estimates of ENM exposure risks and will serve as a guideline for appropriate risk communication and management strategies aiming for the protection and the safety of humans.
Collapse
Affiliation(s)
- Mallikarjuna Rao Gedda
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Piyoosh Kumar Babele
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Kulsoom Zahra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Prasoon Madhukar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|