1
|
Joo H, Kim S, Park K, Jang SY, Kang K, Kim H, Park JH. Iron-Chelating Hydroxyketone Ligands Promote Degradation of Fe(III)-Tannic Acid Nanofilms. Chem Asian J 2024:e202400864. [PMID: 39238279 DOI: 10.1002/asia.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Polyphenols form nanofilms with transition metal ions by coordination-driven assembly. The as-formed metal-polyphenol nanofilms can degrade in the presence of chelating ligands that exhibit high stability constant with the nanofilm-forming metal ions. We have demonstrated the degradation of Fe(III)-tannic acid nanofilms with hydroxyketone ligands, such as maltol, kojic acid, and deferiprone, which exhibit high availability and excellent cytocompatibility. The concentration screening experiments have been performed with different ligand concentrations ranging from 1 mM-25 mM. It is important to note that only deferiprone degrades Fe(III)-TA nanofilms even at 1 mM, and it retains the degradation activity at pH 7.4. The characteristic degradation activity of hydroxyketone ligands to Fe(III)-TA nanofilms may depend upon their pKa value and stability constant. The degradation studies herein are attractive for the development of biomedical applications utilizing metal-polyphenol nanofilms as a sacrificial template.
Collapse
Affiliation(s)
- Hyejin Joo
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Seulbi Kim
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- Ecogear Inc., 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyungran Park
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Seong Yoon Jang
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
- Ecogear Inc., 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
2
|
Akin B, Akgul B, Tasdurmazli S, Abamor ES, Ozbek T, Ozcelik B, Su E, Ozmen MM. Tannic Acid Incorporated Antibacterial Polyethylene Glycol Based Hydrogel Sponges for Management of Wound Infections. Macromol Biosci 2024; 24:e2400101. [PMID: 38748813 DOI: 10.1002/mabi.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Indexed: 05/24/2024]
Abstract
Conventional wound dressings fail to provide features that can assist the healing process of chronic wounds. Multifunctional wound dressings address this issue by incorporating attributes including antibacterial and antioxidant activity, and the ability to enhance wound healing. Herein, polyethylene glycol (PEG)-based antibacterial hydrogel sponge dressings are prepared by a rapid and facile gas foaming method based on an acid chloride/alcohol reaction where tannic acid (TA) is included as a reactant to impart antibacterial efficacy as well as to enhance the mechanical properties of the samples. The results reveal that the TA-integrated sponges possess excellent antibacterial properties against both Escherichia coli and Staphylococcus aureus with approximately 6-8 log reduction in the microbial colony count after 6 h, indicating their high potential for management of infection-prone wounds. Compared to the control sample, TA incorporation increases the elastic modulus by twofold. As the samples also exhibit biocompatibility, antioxidant activity, and wound healing capacity, the novel TA-incorporated hydrogels can be an alternative to traditional wound dressings for wounds with low-to-moderate exudate.
Collapse
Affiliation(s)
- Basak Akin
- Yildiz Technical University, Department of Bioengineering, Istanbul, 34220, Turkiye
| | - Busra Akgul
- Yildiz Technical University, Department of Bioengineering, Istanbul, 34220, Turkiye
| | - Semra Tasdurmazli
- Yildiz Technical University, Department of Molecular Biology and Genetics, Istanbul, 34220, Turkiye
| | - Emrah Sefik Abamor
- Yildiz Technical University, Department of Bioengineering, Istanbul, 34220, Turkiye
| | - Tulin Ozbek
- Yildiz Technical University, Department of Molecular Biology and Genetics, Istanbul, 34220, Turkiye
| | - Berkay Ozcelik
- University of Melbourne, Department of Chemical and Biomolecular Engineering, Polymer Science Group, Parkville, Melbourne, Victoria, 3010, Australia
| | - Esra Su
- Istanbul University, Faculty of Aquatic Sciences, Aquatic Biotechnology, Fatih, Istanbul, 34134, Turkiye
| | - Mehmet Murat Ozmen
- Yildiz Technical University, Department of Bioengineering, Istanbul, 34220, Turkiye
| |
Collapse
|
3
|
Tithy LH, Rahman A, Wong SY, Li X, Arafat MT. Chitosan/starch based unoxidized tannic acid modified microparticles for rapid hemostasis with broad spectrum antibacterial activity. Carbohydr Polym 2024; 336:122111. [PMID: 38670748 DOI: 10.1016/j.carbpol.2024.122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The development of a rapid hemostat through a facile method with co-existing antibacterial activity and minimum erythrocyte lysis property stands as a major requirement in the field of hemostasis. Herein, a series of novel microparticle hemostats were synthesized using chitosan, different hydrothermally-treated starches, and cross-linked with tannic acid (TA) simultaneously in an unoxidized environment via ionotropic gelation method. Hemostats' comparative functional properties, such as adjustable antibacterial and erythrocyte compatibility upon various starch additions were evaluated. The in vivo hemostatic study revealed that the developed hemostats for mouse liver laceration and rat tail amputation had clotting times (13 s and 38 s, respectively) and blood loss (51 mg and 62 mg, respectively) similar to those of Celox™. The erythrocyte adhesion test suggested that erythrocyte distortion can be lowered by modifying the antibacterial hemostats with different starches. The broad-spectrum antibacterial efficacy of the hemostats remained intact against S. aureus (>90 %), E. coli (>80 %), and P. mirabilis bacteria upon starch modification. They also demonstrated high hemocompatibility (<3 % hemolysis ratio), moderate cell viability (>81 %), in vivo biodegradation, and angiogenesis indicating adequate biocompatibility and wound healing. The developed hemostats hold significant promise to be employed as rapid hemostatic agents for preventing major bleeding and bacterial infection in emergencies.
Collapse
Affiliation(s)
- Lamiya Hassan Tithy
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Abdur Rahman
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Siew Yee Wong
- Institute of sustainability for chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xu Li
- Institute of sustainability for chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| |
Collapse
|
4
|
Shin B, Hillyer T, Shin WS. Rational Design and Testing of Antibacterial Aloe Vera Hemostatic Hydrogel. Gels 2024; 10:409. [PMID: 38920955 PMCID: PMC11202428 DOI: 10.3390/gels10060409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Bleeding resulting from surgical procedures or trauma, including gunshot wounds, represents a life-threatening health issue. Therefore, the development of safe, effective, and convenient hemostatic agents is critical in securing the "golden time" to save patients' lives. Plant-derived compounds and plant extracts have been regarded as promising sources of hemostatic agents in previous studies, regulating hemostatic function with low toxicity and minimal side effects within the human body. Aloe vera-based hydrogels, which are characterized by flexible strength and high functionality, have emerged as a promising platform for wound applications due to their unique biocompatibility features. This study provides a comprehensive exploration of the utilization of thickening agents and natural agents such as xanthan gum, carrageenan, Carbomer, and alginate in applying aloe vera-based hydrogels as a hemostatic. Furthermore, it also tests the use of aloe vera-based hydrogels for therapeutic delivery at wound sites through the incorporation of various antimicrobial agents to extend the utility of the hydrogels beyond hemostasis. Our novel applied research utilizes aloe vera-based hydrogel as an antimicrobial hemostatic agent, providing valuable insights for a wide range of applications and highlighting its potential to enhance hemorrhage control in various emergency scenarios.
Collapse
Affiliation(s)
- Bryan Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Solon High School, Solon, OH 44139, USA
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- University Hospital and Northeast Ohio Medical University Scholarship Program, Rootstown, OH 44272, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
5
|
Shi S, Hu M, Peng X, Cheng C, Feng S, Pu X, Yu X. Double crosslinking decellularized bovine pericardium of dialdehyde chondroitin sulfate and zwitterionic copolymer for bioprosthetic heart valves with enhanced antithrombogenic, anti-inflammatory and anti-calcification properties. J Mater Chem B 2024; 12:3417-3435. [PMID: 38525920 DOI: 10.1039/d4tb00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.
Collapse
Affiliation(s)
- Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Zheng Y, Baidya A, Annabi N. Molecular design of an ultra-strong tissue adhesive hydrogel with tunable multifunctionality. Bioact Mater 2023; 29:214-229. [PMID: 37520304 PMCID: PMC10372327 DOI: 10.1016/j.bioactmat.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Designing adhesive hydrogels with optimal properties for the treatment of injured tissues is challenging due to the tradeoff between material stiffness and toughness while maintaining adherence to wet tissue surfaces. In most cases, bioadhesives with improved mechanical strength often lack an appropriate elastic compliance, hindering their application for sealing soft, elastic, and dynamic tissues. Here, we present a novel strategy for engineering tissue adhesives in which molecular building blocks are manipulated to allow for precise control and optimization of the various aforementioned properties without any tradeoffs. To introduce tunable mechanical properties and robust tissue adhesion, the hydrogel network presents different modes of covalent and noncovalent interactions using N-hydroxysuccinimide ester (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Through combining and tuning different molecular interactions and a variety of crosslinking mechanisms, we were able to design an extremely elastic (924%) and tough (4697 kJ/m3) multifunctional hydrogel that could quickly adhere to wet tissue surfaces within 5 s of gentle pressing and deform to support physiological tissue function over time under wet conditions. While Alg-NHS provides covalent bonding with the tissue surfaces, the catechol moieties of TA molecules synergistically adopt a mussel-inspired adhesive mechanism to establish robust adherence to the wet tissue. The strong adhesion of the engineered bioadhesive patch is showcased by its application to rabbit conjunctiva and porcine cornea. Meanwhile, the engineered bioadhesive demonstrated painless detachable characteristics and in vitro biocompatibility. Additionally, due to the molecular interactions between TA and Fe3+, antioxidant and antibacterial properties required to support the wound healing pathways were also highlighted. Overall, by tuning various molecular interactions, we were able to develop a single-hydrogel platform with an "all-in-one" multifunctionality that can address current challenges of engineering hydrogel-based bioadhesives for tissue repair and sealing.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| |
Collapse
|
7
|
Zhang P, Gong Y, Pan Q, Fan Z, Li G, Pei M, Zhang J, Wang T, Zhou G, Wang X, Ren W. Multifunctional calcium polyphenol networks reverse the hostile microenvironment of trauma for preventing postoperative peritoneal adhesions. Biomater Sci 2023; 11:6848-6861. [PMID: 37646188 DOI: 10.1039/d3bm01091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abdominal adhesions, a commonly observed complication of abdominal surgery, have a high incidence and adversely affect patients' physical and mental health. The primary causes of abdominal adhesions are intraoperative trauma, acute inflammatory response, bleeding, and foreign body infection. Because most current treatment approaches for abdominal adhesions are limited, improved and novel postoperative anti-adhesion regimens are urgently needed. In this study, we developed calcium polyphenol network (CaPN) microspheres based on the self-assembly of the natural triphenolic compound gallic acid and Ca2+ in solution. The physicochemical properties of CaPNs, including their hemostatic, antibacterial, antioxidant, and anti-inflammatory activities, were investigated in vitro. Bleeding and cecal-abdominal wall adhesion models were established to observe the hemostatic activity of CaPNs and their preventive effect on postoperative abdominal wall adhesion in vivo. The results showed that CaPNs significantly reduced inflammation, oxidative stress, fibrosis, and abdominal adhesion formation and had good hemostatic and antibacterial properties. Our findings suggest a novel strategy for the prevention of postoperative adhesions.
Collapse
Affiliation(s)
- Pei Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Yan Gong
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingqing Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zhenlin Fan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Genke Li
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Mengyu Pei
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Junhe Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Tianyun Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Guangdong Zhou
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiansong Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| |
Collapse
|
8
|
Guo J, Lv A, Wu J, Sun E, Zhu Y, Zhang X, Wang L, Wang K, Li X. Bandage modified with antibacterial films of quaternized chitosan & sodium carboxymethyl cellulose microgels/baicalein nanoparticles for accelerating infected wound healing. Int J Biol Macromol 2023; 250:126274. [PMID: 37572812 DOI: 10.1016/j.ijbiomac.2023.126274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Wound dressings capable of sterilizing pathogenic bacteria and scavenging free radicals are important to inhibit bacterial invasion and accelerate wound healing. The target of this work is to develop an antibacterial dressing by modifying bandages with films composed of biological macromolecule microgels and baicalein@tannic acid (Bai@TA) nanoparticles (NPs). Firstly, hydrophobic Bai was made into water soluble Bai@TA NPs using a solvent exchange method with TA as stabilizer. Polymeric microgels of sodium carboxymethyl cellulose (CMC)&hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were then prepared by a simple blending method. Further, CMC&HACC/Bai@TA multilayer films were deposited on medical bandages by using a layer-by-layer assembly technique to obtain an antibacterial dressing. The as-prepared dressings showed great antibacterial ability against E. coli, S. aureus and methicillin resistant Staphylococcus aureus (MRSA), excellent antioxidant activity and good biological safety. In addition, compared to conventional medical bandages, the dressings could efficaciously diminish inflammation in the wound, accelerate skin regeneration and functional restoration, and promote the in vivo healing speed of full-thickness skin wounds infected by MRSA. We believe that as a low-cost but effective wound dressing, the antibacterial bandage modified with CMC&HACC/Bai@TA films has potentials to replace traditional dressings in the clinical management of infected wounds.
Collapse
Affiliation(s)
- Jiaxiang Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anboyuan Lv
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enze Sun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Xiaozhou Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Zheng Y, Shariati K, Ghovvati M, Vo S, Origer N, Imahori T, Kaneko N, Annabi N. Hemostatic patch with ultra-strengthened mechanical properties for efficient adhesion to wet surfaces. Biomaterials 2023; 301:122240. [PMID: 37480758 DOI: 10.1016/j.biomaterials.2023.122240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Controlling traumatic bleeding from damaged internal organs while effectively sealing the wound is critical for saving the lives of patients. Existing bioadhesives suffer from blood incompatibility, insufficient adhesion to wet surfaces, weak mechanical properties, and complex application procedures. Here, we engineered a ready-to-use hemostatic bioadhesive with ultra-strengthened mechanical properties and fatigue resistance, robust adhesion to wet tissues within a few seconds of gentle pressing, deformability to accommodate physiological function and action, and the ability to stop bleeding efficiently. The engineered hydrogel, which demonstrated high elasticity (>900%) and toughness (>4600 kJ/m3), was formed by fine-tuning a series of molecular interactions and crosslinking mechanisms involving N-hydroxysuccinimide (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Dual adhesive moieties including mussel-inspired pyrogallol/catechol and NHS synergistically enhanced wet tissue adhesion (>400 kPa in a wound closure test). In conjunction with physical sealing, the high affinity of TA/Fe3+ for blood could further augment hemostasis. The engineered bioadhesive demonstrated excellent in vitro and in vivo biocompatibility as well as improved hemostatic efficacy as compared to commercial Surgicel®. Overall, the hydrogel design strategy described herein holds great promise for overcoming existing obstacles impeding clinical translation of engineered hemostatic bioadhesives.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaavian Shariati
- David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Vo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nolan Origer
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Taichiro Imahori
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
10
|
Li Q, He Z, Rozan HE, Feng C, Cheng X, Chen X. An improved blood hemorrhaging treatment using diatoms frustules, by alternating Ca and light levels in cultures. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:316-325. [PMID: 37637254 PMCID: PMC10449749 DOI: 10.1007/s42995-023-00180-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2023] [Indexed: 08/29/2023]
Abstract
Hemorrhage control requires hemostatic materials that are both effective and biocompatible. Among these, diatom biosilica (DBs) could significantly improve hemorrhage control, but it induces hemolysis (the hemolysis rate > 5%). Thus, the purpose of this study was to explore the influence of Ca2+ biomineralization on DBs for developing fast hemostatic materials with a low hemolysis rate. Here, CaCl2 was added to the diatom medium under high light (cool white, fluorescent lamps, 67.5 µmol m-2 s-1), producing Ca-DBs-3 with a particle size of 40-50 μm and a Ca2+ content of Ca-DBs-3 obtained from the higher concentration CaCl2 group (6.7 mmol L-1) of 0.16%. The liquid absorption capacity of Ca-DBs-3 was 30.43 ± 0.57 times its dry weight; the in vitro clotting time was comparable to QuikClot® zeolite; the hemostatic time and blood loss using the rat tail amputation model were 36.40 ± 2.52 s and 0.39 ± 0.12 g, which were 40.72% and 19.50% of QuikClot® zeolite, respectively. Ca-DBs-3 showed no apparent toxicity to L929 cells (cell viability > 80%) and was non-hemolysis (the hemolysis rate < 2%). This study prepared Ca-DBs-3 with a rapid hemostatic effect and good biocompatibility, providing a path to develop diatom biosilica hemostatic materials. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00180-3.
Collapse
Affiliation(s)
- Qinfeng Li
- College of Marine Life Science, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003 China
| | - Zheng He
- College of Marine Life Science, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003 China
| | - Hussein. E. Rozan
- College of Marine Life Science, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003 China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Chao Feng
- College of Marine Life Science, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003 China
| | - Xiaojie Cheng
- College of Marine Life Science, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003 China
| | - Xiguang Chen
- College of Marine Life Science, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
11
|
Huang Z, Wang D, Sønderskov SM, Xia D, Wu X, Liang C, Dong M. Tannic acid-functionalized 3D porous nanofiber sponge for antibiotic-free wound healing with enhanced hemostasis, antibacterial, and antioxidant properties. J Nanobiotechnology 2023; 21:190. [PMID: 37312106 PMCID: PMC10262547 DOI: 10.1186/s12951-023-01922-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023] Open
Abstract
Developing an antibiotic-free wound dressing with effective hemostasis and antibacterial and antioxidant capacity is highly desirable. In this work, a three-dimensional (3D) chitosan/polyvinyl alcohol-tannic acid porous nanofiber sponge (3D-TA) was prepared via electrospinning. Compared with two-dimensional (2D) fiber membrane, the unique fluffy 3D-TA nanofiber sponge had high porosity, water absorption and retention ability, hemostatic capacity. Furthermore, the 3D sponge functionalized by tannic acid (TA) endow the sponge with high antibacterial and antioxidant capacity without loading antibiotics. In addition, 3D-TA composite sponges have shown highly biocompatibility against L929 cells. The in vivo experiment shows the 3D-TA is enable to accelerate wound healing. This newly 3D-TA sponges hold great potential as wound dressings for future clinical application.
Collapse
Affiliation(s)
- Zihang Huang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Donghui Wang
- Center for Health Science and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | | | - Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Xiaotong Wu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Chunyong Liang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
- Center for Health Science and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
12
|
Miao C, Wang L, Shang Y, Du M, Yang J, Yuan J. Tannic Acid-Assisted Immobilization of Copper(II), Carboxybetaine, and Argatroban on Poly(ethylene terephthalate) Mats for Synergistic Improvement of Blood Compatibility and Endothelialization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15683-15693. [PMID: 36480797 DOI: 10.1021/acs.langmuir.2c02508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to thrombosis and intimal hyperplasia, small-diameter vascular grafts have poor long-term patency. A combination strategy based on nitric oxide (NO) and anticoagulants has the potential to address those issues. In this study, poly(ethylene terephthalate) (PET) mats were prepared by electrospinning and coated with tannic acid (TA)/copper ion complexes. The chelated copper ions endowed the mats with sustained NO generation by catalytic decomposition of endogenous S-nitrosothiol. Subsequently, zwitterionic carboxybetaine acrylate (CBA) and argatroban (AG) were immobilized on the mats. The introduced AG and CBA had synergistic effects on the improvement of blood compatibility, resulting in reduced platelet adhesion and prolonged blood clotting time. The biocomposite mats selectively promoted the proliferation and migration of human umbilical vein endothelial cells while inhibiting the proliferation and migration of human umbilical arterial smooth muscle cells under physiological conditions. In addition, the prepared mats exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. Collectively, the prepared mats hold great promise as artificial small-diameter vascular grafts.
Collapse
Affiliation(s)
- Cuie Miao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Mingyu Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinyu Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
13
|
Zhu J, Li Y, Xie W, Yang L, Li R, Wang Y, Wan Q, Pei X, Chen J, Wang J. Low-Swelling Adhesive Hydrogel with Rapid Hemostasis and Potent Anti-Inflammatory Capability for Full-Thickness Oral Mucosal Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53575-53592. [PMID: 36416245 DOI: 10.1021/acsami.2c18664] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Full-thickness oral mucosal defects are accompanied by significant blood loss and frequent infections. Instead of conventional therapies that separate hemostasis and anti-inflammation in steps, emerging hydrogels can integrate multiple functions for the successive process after defect including hemostasis/inflammatory phase, proliferative phase, and remodeling phase. However, these functions can be easily compromised by rapid swelling and degradation of hydrogels in wet oral environment. Herein, a low-swelling adhesive hydrogel with rapid hemostasis and potent anti-inflammatory capability was developed using a dual cross-linking strategy as well as a safe and facile fabrication method. It was double cross-linked hydrogel consisting of gelatin methacrylate (GelMA), nanoclay, and tannic acid (TA) (referred to as GNT). GNT hydrogel exhibited low-swelling (one-eighth of that of GelMA), excellent stretchability (211.86%), and good adhesive properties (5 times the adhesive strength of GelMA). Physicochemical characterization illuminated the close interactions among the three components. A systematic investigation of the therapeutic effects of GNT hydrogels was performed. In vitro and in vivo experimental results demonstrated the potent hemostatic property and excellent antibacterial and anti-inflammatory effects of GNT hydrogels. The RNA sequencing analysis results for rat full-thickness oral mucosal samples showed that GNT reduced inflammation levels by down-regulating the expression of multiple inflammation-related pathways, including TNF and IL-17 pathways. It also enhanced the expression levels of tissue regeneration-related genes and thus accelerated defective mucosal repair. More importantly, the therapeutic effects of GNT were superior to those of a commercial oral tissue repair membrane when applied for full-thickness oral mucosal defect repair in rabbits. In summary, the prepared low-swelling adhesive GNT hydrogel with rapid hemostasis and potent anti-inflammatory is a promising therapy for full-thickness mucosal defect in the moist and dynamic oral environment.
Collapse
Affiliation(s)
- Junjin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yahong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Wenjia Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Linxin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Ruyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| |
Collapse
|
14
|
Improving flame retardant and smoke suppression efficiency for PBS by adding a tannin surface and interfacial modified IFR/MMT synergist. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Chen Q, Kou M, He Y, Zhao Y, Chen L. Constructing hierarchical surface structure of hemodialysis membranes to intervene in oxidative stress through Michael addition reaction between tannic acid and PEtOx brushes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Li X, Wang Y, Shi Q, Zhen N, Xue J, Liu J, Zhou D, Zhang H. Zein-Based Nanomedicines for Synergistic Chemodynamic/Photodynamic Therapy. ACS OMEGA 2022; 7:29256-29265. [PMID: 36033651 PMCID: PMC9404477 DOI: 10.1021/acsomega.2c03404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 05/13/2023]
Abstract
Current cancer treatment is not only limited to monotherapy but is also influenced by limited drug delivery options. Combined chemokinetic-photokinetic therapy has great promise in enhancing anticancer effects. Meanwhile, zein has superior self-assembly properties and can be loaded with photosensitizers. Herein, the targeted multifunctional nanoparticles based on zein/hyaluronate acid (HA)/tannin (TA)/Cu2+ loaded with IR780 (ZHTC@IR780) are constructed for synergetic cancer therapy by chemo-dynamic therapy (CDT) and photodynamic therapy (PDT). There is experimental proof that ZHTC@IR780 nanoparticles (NPs) can relieve the tumor hypoxic microenvironment by catalytic decomposition of endogenous H2O2 to O2 and further react with O2 to produce toxic 1O2 with 808 nm laser irradiation. The glutathione oxidase-like effects of ZHTC@IR780 NPs can generate Fenton-like Cu+ ions and deplete GSH for efficient hydroxyl radical (•OH) production. In addition, CDT combined with PDT enhances the antitumor effect. Photodynamic therapy can cause immunogenic cell death, increase calreticulin eversion, release histone with high mobility, and promote apoptosis of tumor cells.
Collapse
Affiliation(s)
- Xiang Li
- College
of Food Science and Engineering, National Engineering Laboratory for
Wheat and Corn Deep Processing, Jilin Agricultural
University, Changchun, Jilin 130118, China
| | - Yupeng Wang
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiankun Shi
- College
of Food Science and Engineering, National Engineering Laboratory for
Wheat and Corn Deep Processing, Jilin Agricultural
University, Changchun, Jilin 130118, China
| | - Nuo Zhen
- College
of Food Science and Engineering, National Engineering Laboratory for
Wheat and Corn Deep Processing, Jilin Agricultural
University, Changchun, Jilin 130118, China
| | - Jin Xue
- College
of Food Science and Engineering, National Engineering Laboratory for
Wheat and Corn Deep Processing, Jilin Agricultural
University, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College
of Food Science and Engineering, National Engineering Laboratory for
Wheat and Corn Deep Processing, Jilin Agricultural
University, Changchun, Jilin 130118, China
| | - Dongfang Zhou
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Zhang
- College
of Food Science and Engineering, National Engineering Laboratory for
Wheat and Corn Deep Processing, Jilin Agricultural
University, Changchun, Jilin 130118, China
- ; Phone: +86-43184533321
| |
Collapse
|
17
|
Chen D, Liu X, Qi Y, Ma X, Wang Y, Song H, Zhao Y, Li W, Qin J. Poly(aspartic acid) based self-healing hydrogel with blood coagulation characteristic for rapid hemostasis and wound healing applications. Colloids Surf B Biointerfaces 2022; 214:112430. [PMID: 35272235 DOI: 10.1016/j.colsurfb.2022.112430] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
External hemorrhage, caused by insufficient hemostasis or surgical failure, could leads to shock or even tissue necrosis as the results of excessive blood loss. Furthermore, delayed coagulation, chronic inflammation, bacterial infection and slow cell proliferation are also major challenges to effective wound repairing. In this study, a novel hemostatic hydrogel was prepared by cross-linking inorganic polyphosphate (PolyP) conjugated poly(aspartic acid) hydrazide (PAHP) and PEO90 dialdehyde (PEO90 DA). Based on the dynamic characteristics of the acylhydrazone bond, the hydrogel could repair its cracks when broken under external forces. At the same time, the hydrogel showed outstanding biocompatibility and tissue adhesion with remarkable hemostatic performance. The New Zealand rabbit ear artery used as a in vivo hemostasis model and the results showed the PAHP hydrogel could stop bleeding of traumatic wound and reduce blood loss significantly. Meanwhile, the PAHP hydrogel presented intrinsic antibacterial activity, thus could inhibit the bacterial infection. In addition, the hydrogel loaded with mouse epidermal growth factor (mEGF) accelerated the wound repair rate and promoted the regeneration of fresh tissue in the mouse full thickness skin defect model. Altogether, the PAHP hydrogels exhibits great potential in the biomedical application, especially in wound dressing materials and tissue repairing.
Collapse
Affiliation(s)
- Danyang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Xiaojun Liu
- Warrenmore Biotechnology Ltd., Handan 056002, China
| | - Yuehua Qi
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China
| | - Hongzan Song
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Youliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenjuan Li
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China.
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
18
|
Zhang H, Zhang M, Zhang X, Gao Y, Ma Y, Chen H, Wan J, Li C, Wang F, Sun X. Enhanced postoperative cancer therapy by iron-based hydrogels. Biomater Res 2022; 26:19. [PMID: 35606838 PMCID: PMC9125885 DOI: 10.1186/s40824-022-00268-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractSurgical resection is a widely used method for the treatment of solid tumor cancers. However, the inhibition of tumor recurrence and metastasis are the main challenges of postoperative tumor therapy. Traditional intravenous or oral administration have poor chemotherapeutics bioavailability and undesirable systemic toxicity. Polymeric hydrogels with a three-dimensional network structure enable on-site delivery and controlled release of therapeutic drugs with reduced systemic toxicity and have been widely developed for postoperative adjuvant tumor therapy. Among them, because of the simple synthesis, good biocompatibility, biodegradability, injectability, and multifunctionality, iron-based hydrogels have received extensive attention. This review has summarized the general synthesis methods and construction principles of iron-based hydrogels, highlighted the latest progress of iron-based hydrogels in postoperative tumor therapy, including chemotherapy, photothermal therapy, photodynamic therapy, chemo-dynamic therapy, and magnetothermal-chemical combined therapy, etc. In addition, the challenges towards clinical application of iron-based hydrogels have also been discussed. This review is expected to show researchers broad perspectives of novel postoperative tumor therapy strategy and provide new ideas in the design and application of novel iron-based hydrogels to advance this sub field in cancer nanomedicine.
Collapse
|
19
|
Lu R, Zhang X, Cheng X, Zan X, Geng W. Secondary Structure-Dominated Layer-by-Layer Growth Mode of Protein Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13000-13011. [PMID: 34723563 DOI: 10.1021/acs.langmuir.1c02062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the luxury functions of proteins, protein coatings have been extended to various applications, including tissue engineering scaffolds, drug delivery, antimicrobials, sensing and diagnostic equipment, food packaging, etc. Fast construction of protein coatings is always interesting to materials science and significant to industrialization. Here, we report a layer-by-layer (LbL) multilayer-constructed coating of tannic acid (TA) and lysozyme (Lyz), in which the secondary conformations of Lyz dominate the growth rate of the TA/Lyz coating. As well characterized by various techniques (quartz crystal microbalance with dissipation (QCM-D), circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), contact angle, etc.), TA-induced conformational transition of Lyz to α-helices occurs at pH 8 from other secondary structures (β-sheets, β-turns, and random coils), which leads to the very fast growth of TA/Lyz with a number of deposited bilayers, with thicknesses of more than 90 nm for six bilayers. In contrast to the leading conformation of α-helices at pH 8, Lyz displayed multiple conformations (α-helices, β-sheets, β-turns, and random coils) at pH 6, which resulted in coating thicknesses of less than 30 nm for six bilayers. By the addition of NaCl, Tween 20, and urea, we further confirmed that the secondary conformations of Lyz relied greatly on the interactions between TA and Lyz and dominated the growth rate of the multilayers. We believe that these findings will help to understand the transformation of secondary conformations by TA or other polyphenols and inspire a new route to quickly build protein coatings.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wujun Geng
- Wenzhou Key Laboratory of Perioperative Medicine, Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
20
|
Choi S, Jo HS, Song H, Kim HJ, Oh JK, Cho JW, Park K, Kim SE. Multifunctional Tannic Acid-Alendronate Nanocomplexes with Antioxidant, Anti-Inflammatory, and Osteogenic Potency. NANOMATERIALS 2021; 11:nano11071812. [PMID: 34361198 PMCID: PMC8308329 DOI: 10.3390/nano11071812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
In the current study, we fabricated tannic acid-alendronate (TA-ALN) nanocomplexes (NPXs) via self-assembly. These TA-ALNs were characterized by dynamic light scattering, zeta potential, transmission electron microscopy, and FT-IR spectroscopy. The TA-ALNs were evaluated for antioxidant, anti-inflammatory, and osteogenesis-accelerating abilities in osteoblast-like cells (MC3T3-E1 cells). All TA-ALNs displayed nano-sized beads that were circular in form. Treatment with TA-ALN (1:0.1) efficiently removed reactive oxygen species in cells and protected osteoblast-like cells from toxic hydrogen peroxide conditions. Moreover, TA-ALN (1:0.1) could markedly decrease the mRNA levels of pro-inflammatory mediators in lipopolysaccharide-stimulated cells. Furthermore, cells treated with TA-ALN (1:1) exhibited not only significantly greater alkaline phosphatase activity and calcium collection, but also outstandingly higher mRNA levels of osteogenesis-related elements such as collagen type I and osteocalcin. These outcomes indicate that the prepared TA-ALNs are excellent for antioxidant, anti-inflammatory, and osteogenic acceleration. Accordingly, TA-ALN can be used latently for bone renovation and regeneration in people with bone fractures, diseases, or disorders.
Collapse
Affiliation(s)
- Somang Choi
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
| | - Han-Saem Jo
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
| | - Heegyeong Song
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea;
| | - Hak-Jun Kim
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
| | - Jong-Keon Oh
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
| | - Jae-Woo Cho
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
- Correspondence: (J.-W.C.); (K.P.); (S.-E.K.); Tel.: +82-2-2626-1869 (J.-W.C.); +82-31-670-3357 (K.P.); +82-2-6738-4514 (S.-E.K.)
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea;
- Correspondence: (J.-W.C.); (K.P.); (S.-E.K.); Tel.: +82-2-2626-1869 (J.-W.C.); +82-31-670-3357 (K.P.); +82-2-6738-4514 (S.-E.K.)
| | - Sung-Eun Kim
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
- Correspondence: (J.-W.C.); (K.P.); (S.-E.K.); Tel.: +82-2-2626-1869 (J.-W.C.); +82-31-670-3357 (K.P.); +82-2-6738-4514 (S.-E.K.)
| |
Collapse
|
21
|
Qiu P, Xu Y. The construction of multifunctional nanoparticles system for dual-modal imaging and arteriosclerosis targeted therapy. Am J Transl Res 2021; 13:4026-4039. [PMID: 34149996 PMCID: PMC8205662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Atherosclerosis is a major risk factor for the development of cardiovascular disease. Unfortunately, due to relatively low sensitivities and poor resolution, the results of surgical resection are often largely unsatisfactory. Moreover, many chemotherapeutic agents, such as curcumin (Cur), are restricted by the low blood-brain barrier (BBB) permeability. Recently, nanotechnology proposes new opportunities to overcome these treatment barriers. In this study, superparamagnetic iron oxide nanoparticles (SPIO) was prepared by the high-temperature solid-state method, and then loaded into amphiphilic polymer DSPE-PEG to form SDP nanoparticles by hydrogen bonding in oil phase. The curcumin was encapsulated in SDP nanoparticles by self-assembly. Finally, vascular cell adhesion molecule-1 (VCAM-1) and Cy5.5 were conjugated on into SDP/Cur nanoparticles by amidation reaction. The average particle size of the prepared multifunctional SDP-VCAM-1/Cur/Cy5.5 nanoparticles is 124.4 nm, which can provide the sustained release of Cur. Moreover, the nanoparticles are proved to have superparamagnetic properties and fluorescence properties. In vitro cell experiments show that nanoparticles have excellent biocompatibility, blood compatibility and macrophage targeting. These results show that SDP-VCAM-1/Cur/Cy5.5 nanoparticles can be used not only as dual imaging probe for magnetic resonance (MR) and fluorescence imaging, but also as carriers to deliver chemotherapeutic drugs to inflammatory tissue, thus providing a promising opportunity for the treatment, molecular imaging and targeted therapy in atherosclerosis due to their established specificity and safety.
Collapse
Affiliation(s)
- Pengda Qiu
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University No. 63, Duobao Road, Liwan District, Guangzhou 510150, Guangdong, P. R. China
| | - Yunhong Xu
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University No. 63, Duobao Road, Liwan District, Guangzhou 510150, Guangdong, P. R. China
| |
Collapse
|
22
|
Chen Q, He Y, Zhao Y, Chen L. Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Liu Y, Li X, Hua Y, Zhang W, Zhou X, He J, Chen D. Tannic Acid as a Natural Ferroptosis Inhibitor: Mechanisms and Beneficial Role of 3’‐
O
‐Galloylation. ChemistrySelect 2021. [DOI: 10.1002/slct.202004392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yangping Liu
- The Fourth Clinical Medical College Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Xican Li
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Yujie Hua
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Wenhui Zhang
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Xianxi Zhou
- School of Basic Medical Science Guangzhou University of Chinese Medicine Guangzhou China 510006
| | - Jianfeng He
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Dongfeng Chen
- School of Basic Medical Science Guangzhou University of Chinese Medicine Guangzhou China 510006
| |
Collapse
|
24
|
Chen J, Qiu L, Li Q, Ai J, Liu H, Chen Q. Rapid hemostasis accompanied by antibacterial action of calcium crosslinking tannic acid-coated mesoporous silica/silver Janus nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111958. [PMID: 33812586 DOI: 10.1016/j.msec.2021.111958] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022]
Abstract
It is important to control bleeding and prevent bacterial infection for the wound people. The effective way is to fabricate an asymmetric Janus matrial for realizing rapid hemostasis and promoting wound healing. Herein, mesoporous silica nanoparticles (MSN) modified by tannic acid (TA), silver nanoparticles, and calcium ions (Ca-TA-MSN@Ag) with Janus structure were prepared via redox and coordination reactions. These anisotropic snowman-like particles possess obvious chemical compartition, in which silver nanoparticles are embedding in large MSN body. During blood coagulation, TA with catechol structure acts as a vasoconstrictor. Then, Ca-TA-MSN@Ag with high specific surface area (510.62 m2·g-1) and large pore volume (0.48 m3·g-1) induces red blood cell aggregation to form three-dimensional network structure with fibrin. Additionally, calcium ions as clotting factor IV and negative charge of Ca-TA-MSN@Ag accelerate coagulation cascade reaction. These three synergistic effects on animal model showed that hemostatic time of Ca-TA-MSN@Ag was shortened by nearly 50% compared to that of MSN. Moreover, Ca-TA-MSN@Ag possessed good blood compatibility, biocompatibility and antibacterial activity (~99%) against E. coli and S. aureus. The anisotropic Janus particles of Ca-TA-MSN@Ag with hemostatic performance and antibacterial activity will be a promising biomaterial for designing wound dressings in clinical application.
Collapse
Affiliation(s)
- Jiawen Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Liping Qiu
- Fujian Provincial Jinshan Hospital, Fuzhou 350007, People's Republic of China
| | - Qinglin Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Jie Ai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
25
|
Lu R, Zhang X, Cheng X, Zhang Y, Zan X, Zhang L. Medical Applications Based on Supramolecular Self-Assembled Materials From Tannic Acid. Front Chem 2020; 8:583484. [PMID: 33134280 PMCID: PMC7573216 DOI: 10.3389/fchem.2020.583484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenol, characterized by various phenolic rings in the chemical structure and an abundance in nature, can be extracted from vegetables, grains, chocolates, fruits, tea, legumes, and seeds, among other sources. Tannic acid (TA), a classical polyphenol with a specific chemical structure, has been widely used in biomedicine because of its outstanding biocompatibility and antibacterial and antioxidant properties. TA has tunable interactions with various materials that are widely distributed in the body, such as proteins, polysaccharides, and glycoproteins, through multimodes including hydrogen bonding, hydrophobic interactions, and charge interactions, assisting TA as important building blocks in the supramolecular self-assembled materials. This review summarizes the recent immense progress in supramolecular self-assembled materials using TA as building blocks to generate different materials such as hydrogels, nanoparticles/microparticles, hollow capsules, and coating films, with enormous potential medical applications including drug delivery, tumor diagnosis and treatment, bone tissue engineering, biofunctional membrane material, and the treatment of certain diseases. Furthermore, we discuss the challenges and developmental prospects of supramolecular self-assembly nanomaterials based on TA.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi, China.,School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
26
|
Chen J, Wang X, Ye H, Yu Z, Feng L, Zhou J, Che Y. Fe (III)@TA@IGF-2 microspheres loaded hydrogel for liver injury treatment. Int J Biol Macromol 2020; 159:183-193. [PMID: 32353494 DOI: 10.1016/j.ijbiomac.2020.04.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
As one of the most commonly used materials in liver tissue engineering, hydrogel has received much attention in recent years. In this work, we prepared a gelatin methacrylate (GelMA)/oxidized hyaluronic acid (OHA)/galactosylated chitosan (Gal-CS)/Fe (III)@TA@IGF-2 200 (TA200) hydrogel loaded with insulin-like growth factor 2 (IGF-2) for regeneration of damaged hepatocytes. Fe (III)@TA microspheres served as carrier to achieve sustained release of IGF-2 to promote hepatocytes regeneration. Galactose ligands could bind to the asialoglycoprotein receptor (ASGPR) on the surface of hepatocytes. Galactosylated chitosan could significantly increase the specific function of hepatocytes. The hydrogel we prepared had a storage modulus of 1100 Pa and was suitable for migration of hepatocytes. The release ratio of IGF-2 could reach up to 90% within 14 days. For carbon tetrachloride (CCl4) induced human hepatic stellate cell line LX2 damage, GelMA/OHA/Gal-CS/TA200 hydrogel could significantly improve the survival of LX2 cells. The expression of HNF-4α and transferrin was detected in LX2 cells treated with hydrogel, indicating that the specific function of the liver was also restored. In summary, the GelMA/OHA/Gal-CS/TA200 hydrogels could be used as new tissue engineering scaffolds for the construction of artificial livers.
Collapse
Affiliation(s)
- Jie Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xicheng Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Ye
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenyan Yu
- Teaching and Research Bureau of Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jing Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yajin Che
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Suchý P, Paprskářová A, Chalupová M, Marholdová L, Nešporová K, Klusáková J, Kuzmínová G, Hendrych M, Velebný V. Composite Hemostatic Nonwoven Textiles Based on Hyaluronic Acid, Cellulose, and Etamsylate. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1627. [PMID: 32244805 PMCID: PMC7178357 DOI: 10.3390/ma13071627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022]
Abstract
The achievement of rapid hemostasis represents a long-term trend in hemostatic research. Specifically, composite materials are now the focus of attention, based on the given issues and required properties. In urology, different materials are used to achieve fast and effective hemostasis. Additionally, it is desirable to exert a positive influence on local tissue reaction. In this study, three nonwoven textiles prepared by a wet spinning method and based on a combination of hyaluronic acid with either oxidized cellulose or carboxymethyl cellulose, along with the addition of etamsylate, were introduced and assessed in vivo using the rat partial nephrectomy model. A significantly shorter time to hemostasis in seconds (p < 0.05), was attributed to the effect of the carboxymethyl cellulose material. The addition of etamsylate did not noticeably contribute to further hemostasis, but its application strengthened the structure and therefore significantly improved the effect on local changes, while also facilitating any manipulation by the surgeons. Specifically, the hyaluronic acid supported the tissue healing and regeneration, and ensured the favorable results of the histological analysis. Moreover, the prepared textiles proved their bioresorbability after a three-day period. In brief, the fabrics yielded favorable hemostatic activity, bioresorbability, non-irritability, and had a beneficial effect on the tissue repair.
Collapse
Affiliation(s)
- Pavel Suchý
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | - Alice Paprskářová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | - Marta Chalupová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | | | | | - Jarmila Klusáková
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | - Gabriela Kuzmínová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | - Michal Hendrych
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
- First Department of Pathology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno 656 91, Czech Republic
| | | |
Collapse
|
28
|
Effect of tannic acid on blood components and functions. Colloids Surf B Biointerfaces 2019; 184:110505. [DOI: 10.1016/j.colsurfb.2019.110505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
|