1
|
Charasseangpaisarn T, Wiwatwarrapan C, Thunyakitpisal P, Srimaneepong V. Development of poly(methyl methacrylate)/poly(lactic acid) blend as sustainable biomaterial for dental applications. Sci Rep 2023; 13:16904. [PMID: 37803035 PMCID: PMC10558438 DOI: 10.1038/s41598-023-44150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Poly(lactic acid) (PLA) is gaining popularity in manufacturing due to environmental concerns. When comparing to poly(methyl methacrylate) (PMMA), PLA exhibits low melting and glass transition temperature (Tg). To enhance the properties of these polymers, a PMMA/PLA blend has been introduced. This study aimed to investigate the optimal ratio of PMMA/PLA blends for potential dental applications based on their mechanical properties, physical properties, and biocompatibility. The PMMA/PLA blends were manufactured by melting and mixing using twin screw extruder and prepared into thermoplastic polymer beads. The specimens of neat PMMA (M100), three different ratios of PMMA/PLA blends (M75, M50, and M25), and neat PLA (M0) were fabricated with injection molding technique. The neat polymers and polymer blends were investigated in terms of flexural properties, Tg, miscibility, residual monomer, water sorption, water solubility, degradation, and biocompatibility. The data was statistically analyzed. The results indicated that Tg of PMMA/PLA blends was increased with increasing PMMA content. PMMA/PLA blends were miscible in all composition ratios. The flexural properties of polymer blends were superior to those of neat PMMA and neat PLA. The biocompatibility was not different among different composition ratios. Additionally, the other parameters of PMMA/PLA blends were improved as the PMMA ratio decreased. Thus, the optimum ratio of PMMA/PLA blends have the potential to serve as novel sustainable biomaterial for extensive dental applications.
Collapse
Affiliation(s)
- Taksid Charasseangpaisarn
- Dental Biomaterials Science, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- College of Dental Medicine, Rangsit University, Pathum Thani, 12000, Thailand
| | - Chairat Wiwatwarrapan
- Dental Biomaterials Science, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Chula Unisearch, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasutha Thunyakitpisal
- Dental Biomaterials Science, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Viritpon Srimaneepong
- Dental Biomaterials Science, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wangmai, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
R Lozada E, Gutiérrez Aguilar CM, Jaramillo Carvalho JA, Sánchez JC, Barrera Torres G. Vegetable Cellulose Fibers in Natural Rubber Composites. Polymers (Basel) 2023; 15:2914. [PMID: 37447558 DOI: 10.3390/polym15132914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In the last decade, natural fibers have had a significant impact on the research and development of innovative composites made with natural rubber, improving their properties over those of their counterparts that incorporate polluting synthetic fibers. In recent years, this fact has stimulated the research into several modified natural rubber composites reinforced with vegetable fibers. This paper reviews the scientific literature published in the last decade about the properties and characteristics of natural vegetable fibers and natural rubber used in composites. Nowadays the use of alternative materials has become necessary, considering that synthetic materials have caused irreversible damage to the environment, being associated with global warming, for this reason research and development with materials that print a lower carbon footprint during the manufacturing process and subsequent product manufacturing. This review is an invitation to the use of vegetable fibers, as well as vegetable-type matrices, in this case natural rubber as a binder system, it is fantastic to know the different works carried out by other scientists and engineers, in this way to project new compounds linked to innovation in processes that reduce the carbon footprint and its negative impact on our planet.
Collapse
Affiliation(s)
- Elizabeth R Lozada
- Faculty of Arts and Humanities, Metropolitan Institute of Technology-ITM, Medellín 050036, Colombia
| | | | | | - Juan C Sánchez
- Advanced Manufacturing Technology Center, SENA, Medellín 050036, Colombia
| | - Giovanni Barrera Torres
- Faculty of Arts and Humanities, Metropolitan Institute of Technology-ITM, Medellín 050036, Colombia
| |
Collapse
|
3
|
Yilmaz EG, Ece E, Erdem Ö, Eş I, Inci F. A Sustainable Solution to Skin Diseases: Ecofriendly Transdermal Patches. Pharmaceutics 2023; 15:579. [PMID: 36839902 PMCID: PMC9960884 DOI: 10.3390/pharmaceutics15020579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin is the largest epithelial surface of the human body, with a surface area of 2 m2 for the average adult human. Being an external organ, it is susceptible to more than 3000 potential skin diseases, including injury, inflammation, microbial and viral infections, and skin cancer. Due to its nature, it offers a large accessible site for administrating several medications against these diseases. The dermal and transdermal delivery of such medications are often ensured by utilizing dermal/transdermal patches or microneedles made of biocompatible and biodegradable materials. These tools provide controlled delivery of drugs to the site of action in a rapid and therapeutically effective manner with enhanced diffusivity and minimal side effects. Regrettably, they are usually fabricated using synthetic materials with possible harmful environmental effects. Manufacturing such tools using green synthesis routes and raw materials is hence essential for both ecological and economic sustainability. In this review, natural materials including chitosan/chitin, alginate, keratin, gelatin, cellulose, hyaluronic acid, pectin, and collagen utilized in designing ecofriendly patches will be explored. Their implementation in wound healing, skin cancer, inflammations, and infections will be discussed, and the significance of these studies will be evaluated with future perspectives.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Emre Ece
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Pepelnjak T, Stojšić J, Sevšek L, Movrin D, Milutinović M. Influence of Process Parameters on the Characteristics of Additively Manufactured Parts Made from Advanced Biopolymers. Polymers (Basel) 2023; 15:polym15030716. [PMID: 36772018 PMCID: PMC9922018 DOI: 10.3390/polym15030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades, additive manufacturing (AM) has become a reliable tool for prototyping and low-volume production. In recent years, the market share of such products has increased rapidly as these manufacturing concepts allow for greater part complexity compared to conventional manufacturing technologies. Furthermore, as recyclability and biocompatibility have become more important in material selection, biopolymers have also become widely used in AM. This article provides an overview of AM with advanced biopolymers in fields from medicine to food packaging. Various AM technologies are presented, focusing on the biopolymers used, selected part fabrication strategies, and influential parameters of the technologies presented. It should be emphasized that inkjet bioprinting, stereolithography, selective laser sintering, fused deposition modeling, extrusion-based bioprinting, and scaffold-free printing are the most commonly used AM technologies for the production of parts from advanced biopolymers. Achievable part complexity will be discussed with emphasis on manufacturable features, layer thickness, production accuracy, materials applied, and part strength in correlation with key AM technologies and their parameters crucial for producing representative examples, anatomical models, specialized medical instruments, medical implants, time-dependent prosthetic features, etc. Future trends of advanced biopolymers focused on establishing target-time-dependent part properties through 4D additive manufacturing are also discussed.
Collapse
Affiliation(s)
- Tomaž Pepelnjak
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-47-71-734
| | - Josip Stojšić
- Mechanical Engineering Faculty in Slavonski Brod, University of Slavonski Brod, Trg Ivane Brlić Mažuranić 2, 35000 Slavonski Brod, Croatia
| | - Luka Sevšek
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Dejan Movrin
- Department for Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Mladomir Milutinović
- Department for Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
Chaari M, Elhadef K, Akermi S, Ben Akacha B, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Rebezov M, Abdelkafi S, Mellouli L, Smaoui S. Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants (Basel) 2022; 11:2095. [PMID: 36358468 PMCID: PMC9686688 DOI: 10.3390/antiox11112095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Currently, the exploration of natural colorants from vegetal waste has gained particular attention. Furthermore, incorporation of these natural sources into biopolymers is an encouraging environmentally friendly approach to establishing active films with biological activities for food packaging. The present study developed bioactive antioxidant films based on gelatin-sodium alginate (NaAlg) incorporated with aqueous beetroot peel extract (BPE). Firstly, the effects of combining gelatin-NaAlg and BPE at 0.25, 0.5, and 1% on the mechanical, physical, antioxidant, and antibacterial properties of the films were analyzed. With increasing BPE, mechanico-physical properties and antioxidant and anti-foodborne pathogen capacities were enhanced. Likewise, when added to gelatin-NaAlg films, BPE remarkably increased the instrumental color properties. Moreover, during 14 days of storage at 4 °C, the impact of gelatin-NaAlg coating impregnated with BPE on microbial and chemical oxidation and on the sensory characteristics of beef meat samples was periodically assessed. Interestingly, by the end of the storage, BPE at 1% limited the microbial deterioration, enhanced the instrumental color, delayed chemical oxidation, and improved sensory traits. By practicing chemometrics tools (principal component analysis and heat maps), all data provided valuable information for categorizing all samples regarding microbiological and oxidative properties, sensory features, and instrumental color. Our findings revealed the ability of gelatin-NaAlg with BPE as an antioxidant to be employed as food packaging for meat preservation.
Collapse
Affiliation(s)
- Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, Sfax 3018, Tunisia
- Valuation, Security and Food Analysis Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
| | - Maksim Rebezov
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research, Center for Food Systems, 26 Talalikhin St., 109316 Moscow, Russia
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| |
Collapse
|
6
|
In Service Performance of Toughened PHBV/TPU Blends Obtained by Reactive Extrusion for Injected Parts. Polymers (Basel) 2022; 14:polym14122337. [PMID: 35745913 PMCID: PMC9231000 DOI: 10.3390/polym14122337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Moving toward a more sustainable production model based on a circular economy, biopolymers are considered as one of the most promising alternatives to reduce the dependence on oil-based plastics. Polyhydroxybutyrate-co-valerate (PHBV), a bacterial biopolyester from the polyhydroxialkanoates (PHAs) family, seems to be an attractive candidate to replace commodities in many applications such as rigid packaging, among others, due to its excellent overall physicochemical and mechanical properties. However, it presents a relatively poor thermal stability, low toughness and ductility, thus limiting its applicability with respect to other polymers such as polypropylene (PP). To improve the performance of PHBV, reactive blending with an elastomer seems to be a proper cost-effective strategy that would lead to increased ductility and toughness by rubber toughening mechanisms. Hence, the objective of this work was the development and characterization of toughness-improved blends of PHBV with thermoplastic polyurethane (TPU) using hexamethylene diisocyanate (HMDI) as a reactive extrusion agent. To better understand the role of the elastomer and the compatibilizer, the morphological, rheological, thermal, and mechanical behavior of the blends were investigated. To explore the in-service performance of the blends, mechanical and long-term creep characterization were conducted at three different temperatures (−20, 23, 50 °C). Furthermore, the biodegradability in composting conditions has also been tested. The results showed that HMDI proved its efficiency as a compatibilizer in this system, reducing the average particle size of the TPU disperse phase and enhancing the adhesion between the PHBV matrix and TPU elastomer. Although the sole incorporation of the TPU leads to slight improvements in toughness, the compatibilizer plays a key role in improving the overall performance of the blends, leading to a clear improvement in toughness and long-term behavior.
Collapse
|
7
|
Li M, Jing J, Su T. Synthesis of Poly(Hexamethylene Succinate-Co-Ethylene Succinate) Copolymers With Different Physical Properties and Enzymatic Hydrolyzability by Regulating the Ratio of Monomer. Front Bioeng Biotechnol 2022; 10:894046. [PMID: 35573230 PMCID: PMC9096553 DOI: 10.3389/fbioe.2022.894046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Poly(hexylene succinate) (PHS), poly(ethylene succinate) (PES), and their random copolyesters, poly(hexylene succinate-co-ethylene succinate) ((P(HS-co-ES)), were synthesized by melting polycondensation. Simply varying the ratios of HS/ES afforded control over the copolymer crystallinity, thermal and mechanical properties, wettability, and enzymatic hydrolyzability as shown by X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests, and water contact angle (WCA) measurements. The enzymatic hydrolysis rates of all prepared copolyesters were higher than those of the corresponding homopolyesters. The hydrolysis rates were affected by crystallinity, melting temperature, and hydrophobicity of the copolyesters, and therefore, the degradation rates could be tuned along with the ES content. The library of copolymers prepared here with tunable degradation rates, ranging from HS-enriched to ES-enriched copolyesters, is promising for a variety of different applications. The P(HS-co-ES51) copolyester that did not fully degrade is particularly promising for use in long-term storage applications, whereas P(HS-co-ES13) and P(HS-co-ES76) that rapidly degrade are good for use in very short-term applications.
Collapse
Affiliation(s)
- Menglu Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Jing Jing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Tingting Su
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| |
Collapse
|
8
|
Naseem S, Wießner S, Kühnert I, Leuteritz A. Layered Double Hydroxide (MgFeAl-LDH)-Based Polypropylene (PP) Nanocomposite: Mechanical Properties and Thermal Degradation. Polymers (Basel) 2021; 13:3452. [PMID: 34641267 PMCID: PMC8512664 DOI: 10.3390/polym13193452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/01/2022] Open
Abstract
This work analyzes the thermal degradation and mechanical properties of iron (Fe)-containing MgAl layered double hydroxide (LDH)-based polypropylene (PP) nanocomposite. Ternary metal (MgFeAl) LDHs were prepared using the urea hydrolysis method, and Fe was used in two different concentrations (5 and 10 mol%). Nanocomposites containing MgFeAl-LDH and PP were prepared using the melt mixing method by a small-scale compounder. Three different loadings of LDHs were used in PP (2.5, 5, and 7.5 wt%). Rheological properties were determined by rheometer, and flammability was studied using the limiting oxygen index (LOI) and UL94 (V and HB). Color parameters (L*, a*, b*) and opacity of PP nanocomposites were measured with a spectrophotometer. Mechanical properties were analyzed with a universal testing machine (UTM) and Charpy impact test. The thermal behavior of MgFeAl-LDH/PP nanocomposites was studied using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The morphology of LDH/PP nanocomposites was analyzed with a scanning electron microscope (SEM). A decrease in melt viscosity and increase in burning rate were observed in the case of iron (Fe)-based PP nanocomposites. A decrease in mechanical properties interpreted as increased catalytic degradation was also observed in iron (Fe)-containing PP nanocomposites. Such types of LDH/PP nanocomposites can be useful where faster degradation or faster recycling of polymer nanocomposites is required because of environmental issues.
Collapse
Affiliation(s)
- Sajid Naseem
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
- Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sven Wießner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
- Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ines Kühnert
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
| | - Andreas Leuteritz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
| |
Collapse
|
9
|
Hormaiztegui MEV, Marin D, Gañán P, Stefani PM, Mucci V, Aranguren MI. Nanocelluloses Reinforced Bio-Waterborne Polyurethane. Polymers (Basel) 2021; 13:polym13172853. [PMID: 34502892 PMCID: PMC8434354 DOI: 10.3390/polym13172853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to evaluate the influence of two kinds of bio- nano-reinforcements, cellulose nanocrystals (CNCs) and bacterial cellulose (BC), on the properties of castor oil-based waterborne polyurethane (WBPU) films. CNCs were obtained by the acidolysis of microcrystalline cellulose, while BC was produced from Komagataeibacter medellinensis. A WBPU/BC composite was prepared by the impregnation of a wet BC membrane and further drying, while the WBPU/CNC composite was obtained by casting. The nanoreinforcement was adequately dispersed in the polymer using any of the preparation methods, obtaining optically transparent compounds. Thermal gravimetric analysis, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, dynamical mechanical analysis, differential scanning calorimetry, contact angle, and water absorption tests were carried out to analyze the chemical, physical, and thermal properties, as well as the morphology of nanocelluloses and composites. The incorporation of nanoreinforcements into the formulation increased the storage modulus above the glass transition temperature of the polymer. The thermal stability of the BC-reinforced composites was slightly higher than that of the CNC composites. In addition, BC allowed maintaining the structural integrity of the composites films, when they were immersed in water. The results were related to the relatively high thermal stability and the particular three-dimensional interconnected reticular morphology of BC.
Collapse
Affiliation(s)
- M. E. Victoria Hormaiztegui
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
- Centro de Investigación y Desarrollo en Ciencia y Tecnología de Materiales (CITEMA), Facultad Regional La Plata, Universidad Tecnológica Nacional (UTN)-Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Av. 60 y 124, Berisso 1923, Argentina
| | - Diana Marin
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Piedad Gañán
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana (UPB), Circular 1, No 70-01, Medellín 050031, Colombia;
| | - Pablo Marcelo Stefani
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Verónica Mucci
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Mirta I. Aranguren
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
- Correspondence:
| |
Collapse
|
10
|
Silva JAC, Grilo LM, Gandini A, Lacerda TM. The Prospering of Macromolecular Materials Based on Plant Oils within the Blooming Field of Polymers from Renewable Resources. Polymers (Basel) 2021; 13:1722. [PMID: 34070232 PMCID: PMC8197318 DOI: 10.3390/polym13111722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022] Open
Abstract
This paper provides an overview of the recent progress in research and development dealing with polymers derived from plant oils. It highlights the widening interest in novel approaches to the synthesis, characterization, and properties of these materials from renewable resources and emphasizes their growing impact on sustainable macromolecular science and technology. The monomers used include unmodified triglycerides, their fatty acids or the corresponding esters, and chemically modified triglycerides and fatty acid esters. Comonomers include styrene, divinylbenzene, acrylics, furan derivatives, epoxides, etc. The synthetic pathways adopted for the preparation of these materials are very varied, going from traditional free radical and cationic polymerizations to polycondensation reactions, as well as metatheses and Diels-Alder syntheses. In addition to this general appraisal, the specific topic of the use of tung oil as a source of original polymers, copolymers, and (nano)composites is discussed in greater detail in terms of mechanisms, structures, properties, and possible applications.
Collapse
Affiliation(s)
- Julio Antonio Conti Silva
- Biotechnology Department, Lorena School of Engineering, University of São Paulo, CEP 12602-810 Lorena, SP, Brazil; (J.A.C.S.); (L.M.G.)
| | - Luan Moreira Grilo
- Biotechnology Department, Lorena School of Engineering, University of São Paulo, CEP 12602-810 Lorena, SP, Brazil; (J.A.C.S.); (L.M.G.)
| | - Alessandro Gandini
- Graduate School of Engineering in Paper, Print Media and Biomaterials (Grenoble INP-Pagora), University Grenoble Alpes, LGP2, CEDEX 9, 38402 Saint Martin d’Hères, France;
| | - Talita Martins Lacerda
- Biotechnology Department, Lorena School of Engineering, University of São Paulo, CEP 12602-810 Lorena, SP, Brazil; (J.A.C.S.); (L.M.G.)
| |
Collapse
|
11
|
Adediran AA, Akinwande AA, Balogun OA, Olasoju OS, Adesina OS. Experimental evaluation of bamboo fiber/particulate coconut shell hybrid PVC composite. Sci Rep 2021; 11:5465. [PMID: 33750871 PMCID: PMC7943790 DOI: 10.1038/s41598-021-85038-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Bamboo fibers (BF) treated in 1.3 Molar NaOH and particulate coconut shell (PCS) sieved to − 45 µm were incorporated into polyvinyl chloride (PVC) matrix towards improving the properties of PVC composite for ceiling boards and insulating pipes which sags and degrade with time needing improvement in properties. The process was carried out via compression moulding applying 0.2 kPa pressure and carried out at a temperature of 170 °C. Composites developed were grouped according to their composition. Groups A, B, C, and D were infused with 2, 4, 6 and 8 wt% PCS at constant amount, respectively. Each group was intermixed with a varying proportions of BF (0–30 wt% at 5% interval). Tests carried out on the samples produced revealed that the yield strength, modulus of elasticity, flexural strength, modulus of rupture were enhanced with increasing BF proportion from 0 to 30 wt% BF at 2 wt% constant PCS input. Thermal and electrical properties trended downward as the fiber content reduced even as the hardness was enhanced with PCS/BF intermix which was also reflected in the wear loss index. Impact strength was highest on the infix of 4 wt% PCS and 15 wt% BF. Compressive strength was better boasted with increasing fiber and PCS amount but 8 wt% PCS amounted to depreciation in trend. It was generally observed that PCS performed optimally at 2 wt% incorporation while beyond that resulted in lowering of strength. Blending of the two variable inputs; 0–30 wt% BF and 2 wt% PCS presented better enhancement in properties.
Collapse
Affiliation(s)
- Adeolu A Adediran
- Department of Mechanical Engineering, Landmark University, PMB, Omu-Aran, 1001, Kwara State, Nigeria.
| | - Abayomi A Akinwande
- Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Oluwatosin A Balogun
- Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo State, Nigeria
| | - O S Olasoju
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Olanrewaju S Adesina
- Department of Mechanical Engineering, Landmark University, PMB, Omu-Aran, 1001, Kwara State, Nigeria
| |
Collapse
|
12
|
Progress in Biodegradable Flame Retardant Nano-Biocomposites. Polymers (Basel) 2021; 13:polym13050741. [PMID: 33673607 PMCID: PMC7957674 DOI: 10.3390/polym13050741] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
This paper summarizes the results obtained in the course of the development of a specific group of biocomposites with high functionality of flame retardancy, which are environmentally acceptable at the same time. Conventional biocomposites have to be altered through different modifications, to be able to respond to the stringent standards and environmental requests of the circular economy. The most commonly produced types of biocomposites are those composed of a biodegradable PLA matrix and plant bast fibres. Despite of numerous positive properties of natural fibres, flammability of plant fibres is one of the most pronounced drawbacks for their wider usage in biocomposites production. Most recent novelties regarding the flame retardancy of nanocomposites are presented, with the accent on the agents of nanosize (nanofillers), which have been chosen as they have low or non-toxic environmental impact, but still offer enhanced flame retardant (FR) properties. The importance of a nanofiller’s geometry and shape (e.g., nanodispersion of nanoclay) and increase in polymer viscosity, on flame retardancy has been stressed. Although metal oxydes are considered the most commonly used nanofillers there are numerous other possibilities presented within the paper. Combinations of clay based nanofillers with other nanosized or microsized FR agents can significantly improve the thermal stability and FR properties of nanocomposite materials. Further research is still needed on optimizing the parameters of FR compounds to meet numerous requirements, from the improvement of thermal and mechanical properties to the biodegradability of the composite products. Presented research initiatives provide genuine new opportunities for manufacturers, consumers and society as a whole to create a new class of bionanocomposite materials with added benefits of environmental improvement.
Collapse
|
13
|
Development of Eco-Sustainable PBAT-Based Blown Films and Performance Analysis for Food Packaging Applications. MATERIALS 2020; 13:ma13235395. [PMID: 33261089 PMCID: PMC7730826 DOI: 10.3390/ma13235395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 01/26/2023]
Abstract
In this work, eco-sustainable blown films with improved performance, suitable for flexible packaging applications requiring high ductility, were developed and characterized. Films were made by blending two bioplastics with complementary properties—the ductile and flexible poly(butylene-adipate-co-terephthalate) (PBAT) and the rigid and brittle poly(lactic acid) (PLA)—at a 60/40 mass ratio. With the aim of improving the blends’ performance, the effects of two types of PLA, differing for viscosity and stereoregularity, and the addition of a commercial polymer chain extender (Joncryl®), were analyzed. The use of the PLA with a viscosity ratio closer to PBAT and lower stereoregularity led to a finer morphology and better interfacial adhesion between the phases, and the addition of the chain extender further reduced the size of the dispersed phase domains, with beneficial effects on the mechanical response of the produced films. The best system composition, made by the blend of PBAT, amorphous PLA, and the compatibilizer, proved to have improved mechanical properties, with a good balance between stiffness and ductility and also good transparency and sealability, which are desirable features for flexible packaging applications.
Collapse
|
14
|
Zhao Z, Hurren C, Zhang M, Zhou L, Wu J, Sun L. In Situ Synthesis of a Double-Layer Chitosan Coating on Cotton Fabric to Improve the Color Fastness of Sodium Copper Chlorophyllin. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5365. [PMID: 33256124 PMCID: PMC7730442 DOI: 10.3390/ma13235365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 05/06/2023]
Abstract
Natural dye's poor affinity for cotton and poor fastness properties still hinder its applications in the textile industry. In this study, a doubled-layered chitosan coating was cured on cotton fabric to serve as bio-mordant and form a protective layer on it. Under the optimal treatment conditions, the maximum qe (adsorption amount) of the natural dye sodium copper chlorophyllin (SCC) calculated from the Langmuir isothermal model was raised from 4.5 g/kg to 19.8 g/kg. The dye uptake of the treated fabric was improved from 22.7% to 96.4% at 1% o.w.f. dye concentration. By a second chitosan layer cured on the dyed fabric via the cross-linking method, the wash fastness of the cotton fabric dyed with SCC can be improved from 3 to 5 (ISO 105 C-06). The natural source of the biopolymer material, chitosan, and its ability to biodegrade at end of life met with the initial objective of green manufacturing in applying natural dyes and natural materials to the textile industry.
Collapse
Affiliation(s)
- Zhong Zhao
- Institute for Frontier Materials, Deakin University, Geelong 3220, Australia; (Z.Z.); (C.H.); (M.Z.)
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Chris Hurren
- Institute for Frontier Materials, Deakin University, Geelong 3220, Australia; (Z.Z.); (C.H.); (M.Z.)
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Mingwen Zhang
- Institute for Frontier Materials, Deakin University, Geelong 3220, Australia; (Z.Z.); (C.H.); (M.Z.)
| | - Liming Zhou
- R&D Center, Guangdong Esquel Co. Ltd. Group, Foshan 528500, China;
| | - Jihong Wu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Lu Sun
- Institute for Frontier Materials, Deakin University, Geelong 3220, Australia; (Z.Z.); (C.H.); (M.Z.)
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|