1
|
Wang Z, Yuan M, Wang J. Energy recoveries and heavy metal migration behaviors of different oily sludges treated by pyrolysis versus solvent extraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134892. [PMID: 38876024 DOI: 10.1016/j.jhazmat.2024.134892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The pyrolysis and trace element mitigation characteristics are investigated by contrast to solvent extraction for four oily sludges, including storage tank bottom sediment (OS-1), scum from a wastewater separator (OS-2), white-clay-adsorbed waste oil (OS-3), and settlings from wastewater treatment (OS-4). Slow pyrolysis at 700 °C generated a single oil phase for OS-1 and separate oil and aqueous phases for OS-2, OS-3 and OS-4. Up to 73.0-88.3 % of the total energy were recovered from OS-1, OS-2 and OS-3 in the oil phase with 19.9-77.1 % oil yield; however, the oil phase from OS-4 accounted for only 13.3 % of the total energy, while the aqueous product accounted for 68.0 % of the total energy. Quantification of 16 trace elements revealed that OS-2 and OS-4 had much higher contents of Cu/Zn/As/Se/Cd/Pb and Ni/Cu/Zn/Se/Cd contents than the average crustal abundances, respectively. Correlations between evaporation and extraction rates indicated that the mitigation behaviors of trace elements were related to their occurrence modes in different oily sludges. Except for Cd, As and Se, all other trace elements were enriched in the pyrolysis residues of the oily sludges. Ni in the pyrolysis residue of OS-4 posed a moderate potential ecological risk.
Collapse
Affiliation(s)
- Zi Wang
- Department of Chemical Engineering for Energy, East China University of Science and Technology, Engineering Research Center of Resource Utilization of Carbon-containing Waste with Low-carbon Emissions, Ministry of Education, 130# Meilong Rd., Shanghai 200237, PR China
| | - Mengxia Yuan
- Tialoc (Shanghai) Environmental, Ltd., 159#, Tianzhou Rd., Shanghai 200233, PR China
| | - Jie Wang
- Department of Chemical Engineering for Energy, East China University of Science and Technology, Engineering Research Center of Resource Utilization of Carbon-containing Waste with Low-carbon Emissions, Ministry of Education, 130# Meilong Rd., Shanghai 200237, PR China.
| |
Collapse
|
2
|
Biney M, Gusiatin MZ. Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 2: Biochar Characterization and Application in the Remediation of Heavy Metal-Contaminated Soils. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3850. [PMID: 39124513 PMCID: PMC11314058 DOI: 10.3390/ma17153850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The disposal of municipal sewage sludge (MSS) from wastewater treatment plants poses a major environmental challenge due to the presence of inorganic and organic pollutants. Co-pyrolysis, in which MSS is thermally decomposed in combination with biomass feedstocks, has proven to be a promising method to immobilize inorganic pollutants, reduce the content of organic pollutants, reduce the toxicity of biochar and improve biochar's physical and chemical properties. This part of the review systematically examines the effects of various co-substrates on the physical and chemical properties of MSS biochar. This review also addresses the effects of the pyrolysis conditions (temperature and mixing ratio) on the content and stability of the emerging pollutants in biochar. Finally, this review summarizes the results of recent studies to provide an overview of the current status of the application of MSS biochar from pyrolysis and co-pyrolysis for the remediation of HM-contaminated soils. This includes consideration of the soil and heavy metal types, experimental conditions, and the efficiency of HM immobilization. This review provides a comprehensive analysis of the potential of MSS biochar for environmental sustainability and offers insights into future research directions for optimizing biochar applications in soil remediation.
Collapse
Affiliation(s)
| | - Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna Str. 45G, 10-709 Olsztyn, Poland;
| |
Collapse
|
3
|
Yadav A, Yadav P, Bojjagani S, Srivastava JK, Raj A. Investigation of the speciation and environmental risk of heavy metals in biochar produced from textile sludge waste by pyrolysis at different temperatures. CHEMOSPHERE 2024; 360:142454. [PMID: 38810801 DOI: 10.1016/j.chemosphere.2024.142454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/09/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The aim of the present study was to find environmentally friendly solutions for the disposal of problematic and toxic textile sludge (TS) by producing textile sludge biochar (TSB) by pyrolysis and evaluating its chemical properties, polycyclic aromatic hydrocarbon (PAH) content, heavy metals (HMs) speciation, environmental risks, and effects on seed germination. Pyrolysis of TS at temperatures ranging from 300 to 700 °C significantly reduced (85-95%) or eliminated certain PAHs in the biochar, enriched heavy metal content within land use limits, and increased bioavailability of HMs in biochar produced at 300 °C and decreased leaching capacity of HMs in biochar produced at 700 °C. The speciation of HMs and their bioavailability during pyrolysis processes was strongly temperature dependent, with lower temperatures increasing the toxic and bioavailable forms of Zn and Ni, while higher temperatures converted the bioavailable Ni to a more stable form, while Cu, Cr, and Pb were transformed from stable to toxic and bioavailable forms. The ecological risk index (RI) values of TSB-300 and TSB-700 are below the threshold value of 150, indicating a low-risk level, and the risk level decreases at temperatures above 500 °C. Further, the extracts of TSB-300 and TSB-700 had the highest percentage of germinating seeds, while the extracts of TS and TSB-500 inhibited seed germination by 20-30% compared to the control. These results indicate that pyrolysis effectively reduces PAHs and binds leachable HMs in biochar, however, the specific pyrolysis temperature influences metal speciation, bioavailability, seed germination, and environmental risk.
Collapse
Affiliation(s)
- Ashutosh Yadav
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Pooja Yadav
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Malhour (Near Railway Station) Gomti Nagar Extension, Lucknow, 227105, India
| | - Sreekanth Bojjagani
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Janmejai Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Malhour (Near Railway Station) Gomti Nagar Extension, Lucknow, 227105, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
4
|
Halalsheh M, Shatanawi K, Shawabkeh R, Kassab G, Mohammad H, Adawi M, Ababneh S, Abdullah A, Ghantous N, Balah N, Almomani S. Impact of temperature and residence time on sewage sludge pyrolysis for combined carbon sequestration and energy production. Heliyon 2024; 10:e28030. [PMID: 38596039 PMCID: PMC11002555 DOI: 10.1016/j.heliyon.2024.e28030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Environmental challenges related to sewage sludge call for urgent sustainable management of this resource. Sludge pyrolysis might be considered as a sustainable technology and is anticipated to support measures for mitigating climate change through carbon sequestration. The end products of the process have various applications, including the agricultural utilization of biochar, as well as the energy exploitation of bio-oil and syngas. In this research, sewage sludge was pyrolyzed at 500 °C, 600 °C, 750 °C, and 850 °C. At each temperature, pyrolysis was explored at 1hr, 2hrs, and 3hrs residence times. The ratio (H/Corg)at was tapped to imply organic carbon stability and carbon sequestration potential. Optimum operating conditions were achieved at 750 °C and 2hrs residence time. Produced biochar had (H/Corg)at ratio of 0.54, while nutrients' contents based on dry weight were 3.99%, 3.2%, and 0.6% for total nitrogen (TN), total phosphorus (TP), and total potassium (TK), respectively. Electrical conductivity of biochar was lesser than the feed sludge. Heavy metals in biochar aligned with the recommended values of the International Biochar Initiative. Heat content of condensable and non-condensable volatiles was sufficient to maintain the temperature of the furnace provided that PYREG process is considered. However, additional energy source is demanded for sludge drying.
Collapse
Affiliation(s)
- M. Halalsheh
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - K. Shatanawi
- Civil Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| | - R. Shawabkeh
- Department of Chemical Engineering, School of Engineering, The University of Jordan, Amman, Jordan
| | - G. Kassab
- Civil Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| | - H. Mohammad
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - M. Adawi
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - S. Ababneh
- German Development Cooperation, Amman, Jordan
| | - A. Abdullah
- German Development Cooperation, Amman, Jordan
| | - N. Ghantous
- German Development Cooperation, Amman, Jordan
| | - N. Balah
- German Development Cooperation, Amman, Jordan
| | - S. Almomani
- German Development Cooperation, Amman, Jordan
| |
Collapse
|
5
|
Sun T, Zhan D, Wang X, Guo Q, Wu M, Shen P, Wu M. Release and Degradation Mechanism of Modified Polyvinyl Alcohol-Based Double-Layer Coated Controlled-Release Phosphate Fertilizer. Polymers (Basel) 2024; 16:1041. [PMID: 38674960 PMCID: PMC11054636 DOI: 10.3390/polym16081041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study aims to improve the slow-release performance of a film material for a controlled-release fertilizer (CRF) while enhancing its biodegradability. A water-based biodegradable polymer material doped with biochar (BC) was prepared from modified polyvinyl alcohol (PVA) with polyvinylpyrrolidone (PVP) and chitosan (CTS), hereinafter referred to as PVA/PVP-CTSaBCb. An environmentally friendly novel controlled-release phosphate fertilizer (CRPF) was developed using PVA/PVP-CTS8%BC7% as the film. The effect of the PVA/PVP-CTS8%BC7% coating on the service life of the CRPF was investigated. The film was characterized via stress-strain testing, SEM, FTIR, XRD, and TGA analyses. The addition of the CTS modifier increased the stress of PVA/PVP-CTS8% by 7.6% compared with that of PVA/PVP owing to the decrease in the crystallinity of PVP/PVP-CTS8%. The hydrophilic -OH groups were reduced due to the mixing of CTS and PVA/PVP. Meanwhile, the water resistance of the PVA/PVP-CTS8%BC7% was improved. And the controlled-release service life of the CRPF was prolonged. Moreover, the addition of BC increased the crystallinity of the PVA/PVP-CTS8% by 10%, reduced the fracture elongation of the material, and further improved the biodegradability of the PVA/PVP-CTS8%BC7%. When the amount of BC added was 7%, the phosphorus release rate of the CRPF was 30% on the 28th day. Moreover, the degradation rate of the PVA/PVP-CTS8%BC7% polymer film was 35% after 120 days. This study provides basic data for applying water-based degradable polymer materials in CRFs.
Collapse
Affiliation(s)
- Teng Sun
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| | - Dekang Zhan
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| | - Xiangzhu Wang
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| | - Qingjie Guo
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| | - Mingzhou Wu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China;
| | - Pu Shen
- Key Laboratory of Peanut Biology, Genetics & Breeding, Shandong Peanut Research Institute, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao 266100, China
| | - Man Wu
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| |
Collapse
|
6
|
Schlederer F, Martín-Hernández E, Vaneeckhaute C. Ensuring safety standards in sewage sludge-derived biochar: Impact of pyrolysis process temperature and carrier gas on micropollutant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119964. [PMID: 38228044 DOI: 10.1016/j.jenvman.2023.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/18/2024]
Abstract
The application of sewage sludge to agricultural land is facing increasing restrictions due to concerns about various micropollutants, including polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs), per- and poly-fluoroalkyl substances (PFAS), and heavy metals (HMs). As an alternative approach to manage this residue, the use of pyrolysis, a process that transforms sludge into biochar, a carbon-rich solid material, is being explored. Despite the potential benefits of pyrolysis, there is limited data on its effectiveness in removing micropollutants and the potential presence of harmful elements in the resulting biochar. This study aims to evaluate the impact of the temperature and the use of a carrier gas (N2) during a two-stage pyrolysis and cooling on micropollutant removal. Pilot-scale tests showed that a higher temperature (650 °C) and the use of a carrier gas (0.4 L/min N2) during the pyrolysis and the cooling process led to a reduction of PAHs, PCDD/Fs, PCBs and PFAS below their detection limits. As such, the generated biochar aligns with the guidelines set by the International Biochar Initiative (IBI) and the European Biochar Certificate (EBC) for all micropollutants, except for zinc and copper. Additional investigation is required to determine whether the micropollutants undergo destruction or transition into other pyrolysis end-products, such as the gas or liquid phase.
Collapse
Affiliation(s)
- Felizitas Schlederer
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
| | - Edgar Martín-Hernández
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
| | - Céline Vaneeckhaute
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
7
|
Zulkernain NH, Uvarajan T, Ng CC. Roles and significance of chelating agents for potentially toxic elements (PTEs) phytoremediation in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117926. [PMID: 37163837 DOI: 10.1016/j.jenvman.2023.117926] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Phytoremediation is a biological remediation technique known for low-cost technology and environmentally friendly approach, which employs plants to extract, stabilise, and transform various compounds, such as potentially toxic elements (PTEs), in the soil or water. Recent developments in utilising chelating agents soil remediation have led to a renewed interest in chelate-induced phytoremediation. This review article summarises the roles of various chelating agents and the mechanisms of chelate-induced phytoremediation. This paper also discusses the recent findings on the impacts of chelating agents on PTEs uptake and plant growth and development in phytoremediation. It was found that the chelating agents have increased the rate of metal absorption and translocation up to 45% from roots to the aboveground plant parts during PTEs phytoremediation. Besides, it was also explored that the plants may experience some phytotoxicity after adding chelating agents to the soil. However, due to the leaching potential of synthetic chelating agents, the use of organic chelants have been explored to be used in PTEs phytoremediation. Finally, this paper also presents comprehensive insights on the significance of using chelating agents through SWOT analysis to discuss the advantages and limitations of chelate-induced phytoremediation.
Collapse
Affiliation(s)
- Nur Hanis Zulkernain
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia (XMUM), Sepang, Selangor Darul Ehsan, Malaysia; School of Postgraduate Studies, Research and Internationalisation, Faculty of Integrated Life Sciences, Quest International University, Malaysia
| | - Turkeswari Uvarajan
- School of Postgraduate Studies, Research and Internationalisation, Faculty of Integrated Life Sciences, Quest International University, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia (XMUM), Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
Zhengfeng S, Ming C, Geming W, Quanrong D, Shenggao W, Yuan G. Synthesis, characterization and removal performance of Cr (Ⅵ) by orange peel-based activated porous biochar from water. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Gu S, Zhang W, Wang F, Meng Z, Cheng Y, Geng Z, Lian F. Particle size of biochar significantly regulates the chemical speciation, transformation, and ecotoxicity of cadmium in biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121100. [PMID: 36669715 DOI: 10.1016/j.envpol.2023.121100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The pyrolysis of biomass containing excessive heavy metals is likely to produce heavy metal contaminated biochar (BC). Although multiple lines of evidence indicate that higher charring temperature leads to enhanced immobilization of heavy metals in BC, we find that particle size could also play a critical role in the content of heavy metals in BC and BC ecotoxicity. Here, BC derived from cadmium (Cd) enriched rice straw was prepared at different temperatures (300-600 °C) and divided into macro-, colloidal-, and nano-sized fractions, respectively. The content and chemical forms of Cd in BC fractions as well as related algal toxicity were examined. The results show that for the same temperature BC the content of Cd followed an order of colloidal-BC > macro-BC > nano-BC; and the residual fractions of Cd significantly decreased (3.47-16.08%) while that of acid soluble and reducible fractions significantly increased (4.13-16.51% and 0.24-1.71%, respectively) with decreasing particle size of BC. Consistently, colloidal-BC exhibited the highest ecotoxicity for Scenedesmus obliquus. The acid soluble fractions of Cd in macro- and colloidal-BC played a dominating role in their algal toxicity (p < 0.05). However, the ecotoxicity of nano-BC was more dependent on the total content of Cd than specific fractions probably due to the phagocytosis by algal cells. These results indicate that the chemical forms and ecotoxicity of Cd in BC could be remarkably modified by its particle size, which has profound implications for understanding the behavior and potential risk of heavy metal contaminated BC in the environment.
Collapse
Affiliation(s)
- Shiguo Gu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, Anhui, 239000, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhanhang Meng
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yu Cheng
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zexuan Geng
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
10
|
Marcińczyk M, Krasucka P, Duan W, Pan B, Siatecka A, Oleszczuk P. Ecotoxicological characterization of engineered biochars produced from different feedstock and temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160640. [PMID: 36464053 DOI: 10.1016/j.scitotenv.2022.160640] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) engineering, which has recently gained a lot of interest, allows designing the functional materials. BC modification improves the properties of pristine biochar, especially in terms of adsorption parameters. An interesting type of modification is the introduction of metals into the BC's structure. There is a knowledge gap regarding the effects of modified BC (e.g., BC-Mg, BC-Zn) on organisms. The aim of this study was the ecotoxicological evaluation of BC-Mg and BC-Zn composites, received under diverse conditions from willow or sewage sludge at 500 or 700 °C. The ecotoxicological tests with bacteria Vibrio fischeri (V. fischeri) and invertebrates Folsomia candida (F. candida) were applied to determine the toxicity of BC. The content of toxic substances (e.g., polycyclic aromatic hydrocarbons (PAHs), heavy metals (HMs), environmentally persistent free radicals (EPFRs)) in BC were also determined and compared with ecotoxicological parameters. The ecotoxicity of studied BCs depends on many variables: feedstock type, pyrolysis temperature and the modification type. The Zn and Mg modification reduced (from 28 to 63 %) the total Ʃ16 PAHs content in willow-derived BCs while in SL-derived BCs the total Ʃ16 PAHs content was even 1.5-3 times higher compared to pristine BCs. The Zn modified willow-derived BCs affected positively on F. candida reproduction but showed inhibition of luminescence V. fischeri. BC-Mg exhibited harmful effect to F. candida. The ecotoxicological assessment carried out sheds light on the potential toxicity of BC-Zn and BC-Mg composites, which are widely used in the removal of heavy metals, pharmaceuticals, dyes from waters and soils.
Collapse
Affiliation(s)
- Marta Marcińczyk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Wenyan Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Anna Siatecka
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
11
|
Alharbi HA, Alotaibi KD, EL-Saeid MH, Giesy JP. Polycyclic Aromatic Hydrocarbons (PAHs) and Metals in Diverse Biochar Products: Effect of Feedstock Type and Pyrolysis Temperature. TOXICS 2023; 11:toxics11020096. [PMID: 36850971 PMCID: PMC9968133 DOI: 10.3390/toxics11020096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/01/2023]
Abstract
Biochar's agricultural and environmental benefits have been widely demonstrated; however, it may cause environmental contamination if it contains large amounts of pollutants such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs). Therefore, this study aimed to assess the contents of PAHs and HM in a range of biochars generated from different sources and pyrolysis temperatures. A range of feedstock was converted to biochar, including sewage sludge (SS), olive mill pomace (OP), feather meal (FM), soft offal meal (CSM), chicken manure (CM), and date palm residues (DPR). Each feedstock was then pyrolyzed at three temperatures of 300, 500, or 700 °C, thereby producing a total of 18 types of biochar. These biochar products were analyzed for 16 PAHs and eight metals (Cr, Mn, Fe, Ni, Cu, Zn, Cd, and Pb). Benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo(a)pyrene were significantly greater in the biochar produced at 700 °C than in that produced at 300 °C, especially for CM. The concentrations of dibenz(a,h)anthracene were significantly lower at 700 °C but greater at 500 °C and 300 °C in DPR. Increasing the pyrolysis temperature from 300 to 700 °C significantly increased the concentrations of metals, including Cr in SS and OP; Mn in CM; and Fe, Ni, Cu, and Zn in SS. However, the concentration of Cd was significantly lower in the SS when biochar was produced at 700 °C than at 500 or 300 °C. The type of feedstock used and the pyrolysis temperature are key factors influencing the contents of PAHs and HMs in biochar, both of which need to be considered during the production and use of biochar. Further investigations are recommended to establish the relationships between pyrolysis temperature and types of feedstock and the formation of PAH or the concentrations of metals. Monitoring the concentrations of PAHs and HMs before applying biochar to soil is also recommended.
Collapse
Affiliation(s)
- Hattan A. Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Khaled D. Alotaibi
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mohamed H. EL-Saeid
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - John P. Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
12
|
Wu M, Liu B, Li J, Su X, Liu W, Li X. Influence of pyrolysis temperature on sludge biochar: the ecological risk assessment of heavy metals and the adsorption of Cd(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12608-12617. [PMID: 36112281 DOI: 10.1007/s11356-022-22827-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Pyrolysis of sludge to biochar can not only reduce the sludge volume, toxic organic compound, and pathogens, but also be applied as effective adsorbents. However, the immobilization of heavy metals in the sludge and the properties of the biochar greatly rely on the pyrolysis temperature. In this paper, municipal sludge biochar (SBC) was prepared from 400 to 1000 °C. Pyrolysis immobilized heavy metals in sludge and the potential ecological risk of heavy metals significantly decreased to low level at temperature above 500 °C. At 700 °C, the adsorption capacity of Cd(II) reached a maximum (120.24 mg·g-1). The Cd(II) adsorption fitted the Pseudo-second-order model, indicating the existence of chemical adsorption. The adsorption capacity increased along with the initial pH and slowed down after pH reached 5.5. The existence of coexisting cations (Ca2+ and Na+) and anions (SO42- and NO3-) displayed different degree of inhibitory action on Cd(II) adsorption. The SEM, XRD, FTIR, and XPS analysis of sludge biochar before and after adsorption revealed that there were CdCO3, CdSO4, Cd2SiO4, Cd3(PO4)2, and Cd9(PO4)6 appearing on the surface of sludge biochar, suggesting that the adsorption of Cd(II) by SBC included co-precipitation, ion exchange, coordination with π electrons, and complexation. It was confirmed that different properties formed by pyrolysis temperature made a difference in adsorption mechanism of sludge biochar.
Collapse
Affiliation(s)
- Menglan Wu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Bo Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jun Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaoqin Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
13
|
Hu J, Zhao L, Luo J, Gong H, Zhu N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129437. [PMID: 35810514 DOI: 10.1016/j.jhazmat.2022.129437] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Conversion of sewage sludge to biochar for contaminants removal from water achieves the dual purpose of solid waste reuse and pollution elimination, in line with the concept of circular economy and carbon neutrality. However, the current understanding of sludge-derived biochar (SDB) for wastewater treatment is still limited, with a lack of summary regarding the effect of modification on the mechanism of SDB adsorption/catalytic removal aqueous contaminants. To advance knowledge in this aspect, this paper systematically reviews the recent studies on the use of (modified) SDB as adsorbents and in persulfate-based advanced oxidation processes (PS-AOPs) as catalysts for the contaminants removal from water over the past five years. Unmodified SDB not only exhibits stronger cation exchange and surface precipitation for heavy metals due to its nitrogen/mineral-rich properties, but also can provide abundant catalytic active sites for PS. An emphatic summary of how certain adsorption removal mechanisms of SDB or its catalytic performance in PS-AOPs can be enhanced by targeted regulation/modification such as increasing the specific surface area, functional groups, graphitization degree, N-doping or transition metal loading is presented. The interference of inorganic ions/natural organic matter is one of the unavoidable challenges that SDB is used for adsorption/catalytic removal of contaminants in real wastewater. Finally, this paper presents the future perspectives of SDB in the field of wastewater treatment. This review can contribute forefront knowledge and new ideas for advancing sludge treatment toward sustainable green circular economy.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Wu L, Ren L, Li J, Li X, Yang S, Song Y, Li X. Novel maricultural-solid-waste derived biochar for removing eutrophic nutrients and enrofloxacin: Property, mechanism, and application assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128147. [PMID: 34999400 DOI: 10.1016/j.jhazmat.2021.128147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Land-based seawater aquaculture accompanied by high stocking density usually involves producing excess eutrophic nutrients, residual baits, excrement, and antibiotics. Because of limited technology and salinity, proper and efficient treatment of these wastes is still an unsolved issue. In this study, the feasibility of maricultural fish residual bait and excrement-derived biochar as water pollutant remover and saline-alkaline soil amendment were firstly assessed. The biochar was pyrolyzed at 300, 500, 700, 800, 900 ℃ (marked as BC300, BC500, BC700, BC800, BC900) and modified by zirconium or iron (BC700-Zr or BC700-Fe). BC700-Zr had the highest specific surface area. BC700-Zr and BC700-Fe exhibited higher nitrogen removal efficiency. The biochars exhibited nitrogen and phosphate desorption, while we observed no obvious phosphate desorption in BC700-Zr or BC700-Fe. Adsorption kinetics analysis indicated that adsorption processes of nitrate, nitrite and enrofloxacin were consistent with pseudo-second-order model, while ammonium and phosphate adsorption processes fitted pseudo-first-order model better. The biochar showed nitrogen and phosphate nutrients release effects, indicating potential application in saline-alkaline soil improvement. Multi-linear regression analysis indicated that nitrogen release was closely related to biochar nitrogen content, pH and average pore width. Phosphate release was inversely related to pH and positively related to average pore width.
Collapse
Affiliation(s)
- Lele Wu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Liping Ren
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Shengmao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Yuanzhao Song
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiangping Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, PR China
| |
Collapse
|
15
|
You M, Hu Y, Yan Y, Yao J. Speciation Characteristics and Ecological Risk Assessment of Heavy Metals in Municipal Sludge of Huainan, China. Molecules 2021; 26:molecules26216711. [PMID: 34771118 PMCID: PMC8587855 DOI: 10.3390/molecules26216711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
In order to fully understand the morphological characteristics and pollution status of heavy metals in the dewatered sludge of Huainan Municipal sewage treatment plant, the physical and chemical properties were analyzed, and the content and occurrence forms of heavy metals (As, Cu, Zn, Pb, Cd, Cr, and Ni) in the sludge were studied using the geological accumulation method (Igeo), risk assessment coding method (RAC), and potential ecological risk index method to evaluate the ecological risk. The results showed that the municipal sludge in Huainan was rich in nutrients, with good prospects for agricultural utilization. There were differences in the morphological distributions of different heavy metals. The Igeo values for Ni, As, Cr, and Pb were below 0. The results of RAC indicated that the risk level of Cr in sludge was a low risk, and those of other heavy metals were moderate risks. The potential ecological risk of Cd had the highest potential ecological risk, and the other six metals were of low ecological risk. This conclusion can provide basic data and a theoretical reference for the comprehensive utilization of sludge in sewage treatment plants.
Collapse
Affiliation(s)
- Mu You
- National Center of Coal Chemical Products Quality Supervision & Inspection (Anhui), Huainan 232001, China; (M.Y.); (J.Y.)
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232001, China;
| | - Yunhu Hu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232001, China;
| | - Yule Yan
- National Center of Coal Chemical Products Quality Supervision & Inspection (Anhui), Huainan 232001, China; (M.Y.); (J.Y.)
- Correspondence: ; Tel.: +86-0554-2686992
| | - Jie Yao
- National Center of Coal Chemical Products Quality Supervision & Inspection (Anhui), Huainan 232001, China; (M.Y.); (J.Y.)
| |
Collapse
|
16
|
Influence of Temperature on Characteristics of Particulate Matter and Ecological Risk Assessment of Heavy Metals during Sewage Sludge Pyrolysis. MATERIALS 2021; 14:ma14195838. [PMID: 34640235 PMCID: PMC8510102 DOI: 10.3390/ma14195838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022]
Abstract
The formation process of Particulate Matter (PM) during sludge pyrolysis at different temperatures (300–700 °C) and the ecological risks of heavy metals were studied. The results showed that the particulate matter is mainly condensed on the quartz film in a carbon-based organic matter when the pyrolysis temperature was between 200–500 °C in a volatilization process. Inorganic particles was found in the particulate matter when the temperature was raised to 500–700 °C in a decomposition stage. Heavy metals were enriched in particulate matter with increase in pyrolysis temperature. When the temperature reached 700 °C, the concentration of Pb and Cd in the particulate matter significantly increased. The ecological risk assessment showed that heavy metals in the sewage sludge had considerable ecological toxicity. When the pyrolysis temperature reached 700 °C, the ecological toxicity of those heavy metals enriched in the particulate matter decreased considerably.
Collapse
|
17
|
Integrating Pyrolysis or Combustion with Scrubbing to Maximize the Nutrient and Energy Recovery from Municipal Sewage Sludge. RECYCLING 2021. [DOI: 10.3390/recycling6030052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on mass and energy balance calculations, this work investigates the possibility of recovering heat and nutrients (nitrogen and phosphorus) from municipal sewage sludge using pyrolysis or combustion in combination with a gas scrubbing technology. Considering a wastewater treatment plant (WWTP) with 65,000 t/a of mechanically dewatered digestate (29% total solids), 550 t/a nitrogen and 500 t/a phosphorus were recovered from the 4900 t/a total nitrogen and 600 t/a total phosphorus that entered the WWTP. Overall, 3600 t/a (73%) of total nitrogen was lost to the air (as N2) and clean water, while 90 t/a (15%) of total phosphorus was lost to clean water released by the WWTP. Both in combustion and in pyrolysis, the nitrogen (3%) released within thermal drying fumes was recovered through condensate stripping and subsequent gas scrubbing, and together with the recovery of nitrogen from WWTP reject water, a total of 3500 t/a of ammonium sulfate fertilizer can be produced. Furthermore, 120 GWh/a of district heat and 9700 t/a of ash with 500 t/a phosphorus were obtained in the combustion scenario and 12,000 t/a of biochar with 500 t/a phosphorus was obtained in the pyrolysis scenario. The addition of a stripper and a scrubber for nitrogen recovery increases the total electricity consumption in both scenarios. According to an approximate cost estimation, combustion and pyrolysis require annual investment costs of 2–4 M EUR/a and 2–3 M EUR/a, respectively, while 3–5 M EUR/a and 3–3.5 M EUR/a will be generated as revenues from the products.
Collapse
|
18
|
Gondek K, Mierzwa-Hersztek M, Grzymała W, Głąb T, Bajda T. Cavitated Charcoal-An Innovative Method for Affecting the Biochemical Properties of Soil. MATERIALS 2021; 14:ma14092466. [PMID: 34068651 PMCID: PMC8126090 DOI: 10.3390/ma14092466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Thermal biomass transformation products are considered to be one of the best materials for improving soil properties. The aim of the study was to assess the effect of charcoal after cavitation on the chemical and biochemical properties of soil. The study was carried out with a 10% aqueous charcoal mixture that was introduced into loamy sand and clay at rates of 1.76%, 3.5%, 7.0%, and 14.0%. The effect of the application of cavitated charcoal was tested on Sorghum saccharatum (L.). Soil and plant material was collected to determine chemical and biochemical properties. The application of cavitated charcoal reduced the acidification of both soils. The highest rate (14.0%) of cavitated charcoal increased the content of soil total carbon (CTot) by 197% in the loamy sand compared to CTot in the control treatments, 19% for clay soil, respectively. The application of cavitated charcoal did not significantly change the total content of heavy metals. Regardless of the element and the soil used, the application of cavitated charcoal reduced the content of the CaCl2-extracted forms of heavy metals. Following the application of cavitated charcoal, the loamy sand soil presented an even lower content of the most mobile forms of the studied elements. It should also be noted that regardless of the soil texture, mobile forms of the elements decreased with the increased cavitated charcoal rate. The results of dehydrogenase and urease activity indicated the low metabolic activity of the microbial population in the soils, especially with the relatively high rates (7.0% and 14.0%) of cavitated charcoal. However, the cavitated charcoal used in the study showed a significant, positive effect on the amount of biomass S. saccharatum (L.), and its application significantly reduced the heavy metal content in the biomass of S. saccharatum (L.).
Collapse
Affiliation(s)
- Krzysztof Gondek
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
- Correspondence: (K.G.); (T.G.); (T.B.)
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | | | - Tomasz Głąb
- Department of Machinery Exploitation, Ergonomics and Production Processes, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Ul. Balicka 116B, 31-149 Krakow, Poland
- Correspondence: (K.G.); (T.G.); (T.B.)
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
- Correspondence: (K.G.); (T.G.); (T.B.)
| |
Collapse
|