1
|
Jarrahi A, Aflaki A, Khakpour M, Esfandiari M. Enhancing indoor air quality: Harnessing architectural elements, natural ventilation and passive design strategies for effective pollution reduction - A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176631. [PMID: 39370000 DOI: 10.1016/j.scitotenv.2024.176631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Air pollution poses a critical global challenge with severe environmental and human health implications. The associated health risks, including premature mortality, underscore the urgency of effective mitigation strategies. Many studies focus on control strategies without considering specific contaminant types, and there is a notable gap in research on cost-effective, eco-friendly methods, especially in countries facing substantial air pollution challenges. This study aims to fill this gap by providing a comprehensive review of various air pollutants and proposing optimal passive design strategies for mitigating them in building facades. Through a structural process and comparative analysis of existing literature, this study evaluates the cost, maintenance, applicability of retrofitting, and removal efficacy of three categories of control strategies: bio-filtration, adsorbents, and water-based approaches. The results confirm that biological air purification systems are more effective than other methods at reducing PM2.5, PM10, and VOCs. Moreover, the cost analysis confirms that the more costly approaches are photocatalytic filters and metal-organic frameworks derived from the adsorbent solutions. Thus, the study suggests applying cost-effective techniques like facade biofiltration, and water-based curtain façade in areas with high air pollution. In terms of the applicability of retrofitting, the results ascertain adsorbent strategies are the most effective for reducing air pollutants in existing buildings followed by water-based methods. Considering limitations associated with certain strategies, such as the high cost and regular maintenance, this study proposes five integrated strategies for the effective control and removal of pollutants from building exteriors. By addressing these gaps in knowledge and offering practical insights, this research contributes valuable guidance for architects, policymakers, and practitioners in developing sustainable, efficient solutions to combat indoor air pollution effectively.
Collapse
Affiliation(s)
- Atiye Jarrahi
- School of Architecture and Art, University of Guilan, Rasht 41996-13776, Iran
| | - Ardalan Aflaki
- School of Architecture and Art, University of Guilan, Rasht 41996-13776, Iran.
| | - Mojgan Khakpour
- School of Architecture and Art, University of Guilan, Rasht 41996-13776, Iran
| | - Masoud Esfandiari
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, 10100 Turin, Italy; Infrastructure Department, SYSTRA, Turin, Italy
| |
Collapse
|
2
|
Asgari H, Taghdir S, Amrollahi R, Barzegar Z. The impact of nanomaterials on energy-centric form-finding of educational buildings in semi-arid climate. Heliyon 2024; 10:e39882. [PMID: 39568853 PMCID: PMC11577218 DOI: 10.1016/j.heliyon.2024.e39882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
In the modern world, the use of novel technologies in architecture has become highly significant and transformative for human-environment interactions. One of the most critical concerns in architecture is achieving optimal forms and selecting suitable materials for effective design across diverse climatic zones. Also, adopting innovative climate design methods in public spaces, such as educational buildings, is essential due to their strategic urban locations and diverse user populations. Therefore, the research conducted in this study focuses on two main aspects: optimizing building form based on energy consumption and solar radiation received by vertical surfaces, and, selecting appropriate nanomaterials for building surface to reduce energy usage and maintenance costs. This study begins with theoretical foundations, defining the key terms through a comprehensive review of relevant literature. Then, four identical classroom modules with consistent height and floor levels are proposed, and Energy Plus software is used to evaluate the energy consumption based on a module simulation in initial forms of square and rectangle with varying proportions. The best module and orientation is determined using specified climatic data of the coldest and the hottest days of the year. Further, investigations involve combining these modules in various layouts, emphasizing those that align with the functional requirements of educational spaces. Finally, two parameters of energy consumption and solar radiation on vertical surfaces are measured during specified time interval between sunrise and sunset. The results indicate that among the four proposed modules, the 18 × 18 module with a north-south orientation is the most optimal in the semi-arid climate of Tehran, and therefore, Type 3 layout demonstrates the best performance for energy consumption. This is while by incorporating selected nanotechnology (self-cleaning nanomaterial paint), energy usage decreases in all layouts, regardless of the season.
Collapse
Affiliation(s)
- Hannaneh Asgari
- School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, 16846, Iran
| | - Samaneh Taghdir
- School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, 16846, Iran
| | - Rezvaneh Amrollahi
- School of Physics Iran University of Science a and Technology, Tehran, 16846, Iran
| | - Zahra Barzegar
- Environmental Studies, Tehran Urban Research and Planning Centre (TURPC), Tehran, 1964635611, Iran
| |
Collapse
|
3
|
Richert M, Dudek M, Sala D. Surface Quality as a Factor Affecting the Functionality of Products Manufactured with Metal and 3D Printing Technologies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5371. [PMID: 39517644 PMCID: PMC11547365 DOI: 10.3390/ma17215371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Surface engineering is one of the most extensive industries. Virtually all areas of the economy benefit from the achievements of surface engineering. Surface quality affects the quality of finished products as well as the quality of manufactured parts. It affects both functional qualities and esthetics. Surface quality affects the image and reputation of a brand. This is particularly true for cars and household appliances. Surface modification of products is also aimed at improving their functional and protective properties. This applies to surfaces for producing hydrophobic surfaces, anti-wear protection of friction pairs, corrosion protection, and others. Metal technologies and 3D printing benefit from surface technologies that improve their functionality and facilitate the operation of products. Surface engineering offers a range of different coating and layering methods from varnishing and painting to sophisticated nanometric coatings. This paper presents an overview of selected surface engineering issues pertaining to metal products, with a particular focus on surface modification of products manufactured by 3D printing technology. It evaluates the impact of the surface quality of products on their functional and performance qualities.
Collapse
Affiliation(s)
- Maria Richert
- Management Faculty, AGH University, Gramatyka 10 str., 30-067 Kraków, Poland; (M.D.); (D.S.)
| | | | | |
Collapse
|
4
|
AlAli M, Beheiry S, Atabay S. Strategies for the Design and Construction of Nature-Inspired & Living Laboratory (NILL 1.0) TM Buildings. Biomimetics (Basel) 2024; 9:441. [PMID: 39056882 PMCID: PMC11274549 DOI: 10.3390/biomimetics9070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This article explores the growing prominence of nature-inspired design philosophies in the context of sustainability and human well-being within the built environment and focuses on their application within laboratory buildings. Biomimicry and biophilic design are highlighted as key nature-inspired design approaches, with biomimicry drawing inspiration from nature for innovations and biophilic design promoting human health through enhancing the connection with the surrounding natural elements. This paper further discusses living building strategy as an emerging method for creating dynamic and adaptable spaces by prioritizing user experience through co-creation and focusing on sustainable and regenerative structures. The potential of integrating these approaches is emphasized using laboratory buildings as an example, with nature-inspired and living laboratories serving as models for future built environments that promote both environmental responsibility and a positive human experience. Accordingly, this work aims to investigate the design and construction of laboratory buildings based on nature-inspired design strategies and the living building concept. Moreover, the paper discusses the application of biomimicry and living building concepts within laboratory buildings as a novel contribution to the body of knowledge, and concludes by proposing the Nature-inspired & Living Laboratory (NILL 1.0)TM Building Assessment index to serve as a guideline for the design and construction of laboratory buildings using nature as an inspiration and the analogy of human body systems.
Collapse
Affiliation(s)
- Mariam AlAli
- Engineering Systems Management, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Salwa Beheiry
- Department of Civil Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Serter Atabay
- Department of Civil Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
5
|
Nizioł J, Zięba M, Śniechowski M, Gondek E, Pakieła W, Karasiński P. Demonstration of the Optical Isotropy of TiO 2 Thin Films Prepared by the Sol-Gel Method. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3391. [PMID: 39063683 PMCID: PMC11277656 DOI: 10.3390/ma17143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Titanium dioxide (TiO2) thin films prepared by the sol-gel technique have been shown to be optically isotropic and, unlike the films obtained by competitive methods, do not exhibit measurable birefringence. A series of submicrometer-thin titanium dioxide films were prepared using the sol-gel technique and then thermally annealed at different temperatures. The samples were analyzed by spectroscopic ellipsometry using the Mueller matrix formalism, X-ray diffractometry and scanning electron microscopy. The conversion of amorphous titanium dioxide to polycrystalline anatase occurred at 400 °C or higher. Crystallites of a few percent of the film thickness were observed. Nevertheless, the crystallization process did not trigger the appearance of birefringence. These observations demonstrate that high-quality planar optical waveguides can be successfully fabricated on flexible substrates, in particular those composed of efficient polymers that can withstand the aforementioned temperatures.
Collapse
Affiliation(s)
- Jacek Nizioł
- Faculty of Physics and Applied Computer Science, AGH University of Kraków, al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Magdalena Zięba
- Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland; (M.Z.); (P.K.)
| | - Maciej Śniechowski
- Faculty of Physics and Applied Computer Science, AGH University of Kraków, al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Ewa Gondek
- Institute of Physics, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland;
| | - Wojciech Pakieła
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland;
| | - Paweł Karasiński
- Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland; (M.Z.); (P.K.)
| |
Collapse
|
6
|
Jaramillo-Fierro X, Cuenca G. Enhancing Methylene Blue Removal through Adsorption and Photocatalysis-A Study on the GO/ZnTiO 3/TiO 2 Composite. Int J Mol Sci 2024; 25:4367. [PMID: 38673952 PMCID: PMC11049837 DOI: 10.3390/ijms25084367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study focuses on synthesizing and characterizing a graphene oxide/ZnTiO3/TiO2 (GO/ZTO/TO) composite to efficiently remove methylene blue (MB) from water, presenting a novel solution to address industrial dye pollution. GO and ZTO/TO were synthesized by the modified Hummers and sol-gel methods, respectively, while GO/ZTO/TO was prepared using a hydrothermal process. The structural and surface properties of the composite were characterized using various analytical techniques confirming the integration of the constituent materials and suitability for dye adsorption. The study revealed that GO/ZTO/TO exhibits an adsorption capacity of 78 mg g-1 for MB, with only a 15% reduction in adsorption efficiency until the fifth reuse cycle. Furthermore, the study suggests optimal adsorption near neutral pH and enhanced performance at elevated temperatures, indicating an endothermic reaction. The adsorption behavior fits the Langmuir isotherm, implying monolayer adsorption on homogeneous surfaces, and follows pseudo-second-order kinetics, highlighting chemical interactions at the surface as the rate-limiting step. The photocatalytic degradation of MB by GO/ZTO/TO follows pseudo-first-order kinetics, with a higher rate constant than that of GO alone, demonstrating the enhanced photocatalytic activity of the composite. In conclusion, GO/ZTO/TO emerges as a promising and sustainable approach for water purification, through an adsorption process and subsequent photocatalytic degradation.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Guisella Cuenca
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| |
Collapse
|
7
|
Maqbool Q, Favoni O, Wicht T, Lasemi N, Sabbatini S, Stöger-Pollach M, Ruello ML, Tittarelli F, Rupprechter G. Highly Stable Self-Cleaning Paints Based on Waste-Valorized PNC-Doped TiO 2 Nanoparticles. ACS Catal 2024; 14:4820-4834. [PMID: 38601782 PMCID: PMC11003396 DOI: 10.1021/acscatal.3c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 04/12/2024]
Abstract
Adding photocatalytically active TiO2 nanoparticles (NPs) to polymeric paints is a feasible route toward self-cleaning coatings. While paint modification by TiO2-NPs may improve photoactivity, it may also cause polymer degradation and release of toxic volatile organic compounds. To counterbalance adverse effects, a synthesis method for nonmetal (P, N, and C)-doped TiO2-NPs is introduced, based purely on waste valorization. PNC-doped TiO2-NP characterization by vibrational and photoelectron spectroscopy, electron microscopy, diffraction, and thermal analysis suggests that TiO2-NPs were modified with phosphate (P=O), imine species (R=N-R), and carbon, which also hindered the anatase/rutile phase transformation, even upon 700 °C calcination. When added to water-based paints, PNC-doped TiO2-NPs achieved 96% removal of surface-adsorbed pollutants under natural sunlight or UV, paralleled by stability of the paint formulation, as confirmed by micro-Fourier transform infrared (FTIR) surface analysis. The origin of the photoinduced self-cleaning properties was rationalized by three-dimensional (3D) and synchronous photoluminescence spectroscopy, indicating that the dopants led to 7.3 times stronger inhibition of photoinduced e-/h+ recombination when compared to a benchmark P25 photocatalyst.
Collapse
Affiliation(s)
- Qaisar Maqbool
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
- Institute of Materials Chemistry, TU
Wien, Getreidemarkt 9/BC, A-1060 Vienna, Austria
| | - Orlando Favoni
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
| | - Thomas Wicht
- Institute of Materials Chemistry, TU
Wien, Getreidemarkt 9/BC, A-1060 Vienna, Austria
| | - Niusha Lasemi
- Institute of Materials Chemistry, TU
Wien, Getreidemarkt 9/BC, A-1060 Vienna, Austria
| | - Simona Sabbatini
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
| | - Michael Stöger-Pollach
- University Service Center for Transmission
Electron Microscopy, TU Wien, 1040 Vienna,
Austria
| | - Maria Letizia Ruello
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
| | - Francesca Tittarelli
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU
Wien, Getreidemarkt 9/BC, A-1060 Vienna, Austria
| |
Collapse
|
8
|
Wang S, Wan Y, Song N, Liu Y, Xie T, Hoex B. Automatically Generated Datasets: Present and Potential Self-Cleaning Coating Materials. Sci Data 2024; 11:146. [PMID: 38296978 PMCID: PMC10831094 DOI: 10.1038/s41597-024-02983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
The rise of urbanization coupled with pollution has highlighted the importance of outdoor self-cleaning coatings. These revolutionary coatings contribute to the longevity of various surfaces and reduce maintenance costs for a wide range of applications. Despite ongoing research to develop efficient and durable self-cleaning coatings, adopting systematic research methodologies could accelerate these advancements. In this work, we use Natural Language Processing (NLP) strategies to generate open- and traceable-sourced datasets about self-cleaning coating materials from 39,011 multi-disciplinary papers. The data are from function-based and property-based corpora for self-cleaning purposes. These datasets are presented in four different formats for diverse uses or combined uses: material frequency statistics, material dictionary, measurement value datasets for self-cleaning-related properties and optical properties, and sentiment statistics of material stability and durability. This provides a literature-based data resource for the development of self-cleaning coatings and also offers potential pathways for material discovery and prediction by machine learning.
Collapse
Affiliation(s)
- Shaozhou Wang
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Kensington, NSW, Australia
- GreenDynamics Pty. Ltd, Kensington, NSW, Australia
| | - Yuwei Wan
- GreenDynamics Pty. Ltd, Kensington, NSW, Australia
- Department of Linguistics and Translation, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Ning Song
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Kensington, NSW, Australia.
| | - Yixuan Liu
- GreenDynamics Pty. Ltd, Kensington, NSW, Australia
| | - Tong Xie
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Kensington, NSW, Australia.
- GreenDynamics Pty. Ltd, Kensington, NSW, Australia.
| | - Bram Hoex
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
9
|
Bonsu DNO, Higgins D, Austin JJ. From clean spaces to crime scenes: Exploring trace DNA recovery from titania-coated self-cleaning substrates. Sci Justice 2023; 63:588-597. [PMID: 37718006 DOI: 10.1016/j.scijus.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/28/2023] [Accepted: 07/16/2023] [Indexed: 09/19/2023]
Abstract
Titanium dioxide (titania, TiO2) is frequently used as a coating for a variety of self-cleaning products, such as antifogging vehicle mirrors, ceramic tiles, and glass windows because of its distinct physiochemical features. When exposed to light TiO2 causes photocatalytic decomposition of organic contaminants, potentially compromising DNA integrity. The impact of TiO2-coated commercial glasses, Bioclean® and SaniTise™, on trace DNA persistence, recovery, and profiling was investigated. DNA in saliva and touch samples deposited on self-cleaning glass slides exposed to indoor fluorescent light for up to seven days was more degraded than control samples indicating some degree of fluorescent light-induced photocatalytic activity of the self-cleaning surfaces. When exposed to sunlight, DNA yields from saliva and touch samples deposited on the titania-coated substrates decreased rapidly, with a corresponding increase in DNA degradation. After three days no DNA samples applied to self-cleaning glass and exposed to natural sunlight yielded STR profiles. These results suggest that the photocatalytic activation of TiO2 is the likely mechanism of action underlying the extreme DNA degradation on the Bioclean® and SaniTise™ glasses. Consequently, rapid sample collection and use may be warranted in casework scenarios involving TiO2-coated materials.
Collapse
Affiliation(s)
- Dan Nana Osei Bonsu
- Chemistry and Forensic Sciences, Griffith University, Nathan, Queensland, Australia; Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia; Forensic Science Queensland, 39 Kessels Rd, Coopers Plains, Queensland, Australia.
| | - Denice Higgins
- Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia; School of Dentistry, Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| | - Jeremy J Austin
- Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
10
|
Yang X, Yan D, Lu Y, Shang Y, Sun J, Song J. Passive-Cooling Building Coating with Efficient Cooling Performance and Excellent Superhydrophobicity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5232. [PMID: 37569936 PMCID: PMC10419716 DOI: 10.3390/ma16155232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
Passive-cooling building materials can achieve cooling without external energy consumption, which is an energy-saving and environmentally friendly cooling method. However, the existing passive-cooling building materials have the limitations of high cost, complicated processes, and a toxic organic solvent, which hinders the passive-cooling technology applied in practical building. To overcome these limitations, we developed a facile, high-efficiency, non-toxic, and superhydrophobic passive-cooling building coating (SPCBC) with an efficient cooling capability and excellent durability that was composed of polydimethylsiloxane and SiO2. The fabricated SPCBC demonstrated a high reflectance and a high emittance, showing a superior cooling capability with a 14 °C temperature drop compared with a bare cement surface on a hot summer day. In addition, the SPCBC could not be wetted or contaminated by muddy water, corrosive aqueous solutions, or dust, which presented an excellent anti-fouling and self-cleaning capability. Moreover, the fabricated SPCBC could work outdoors for 30 days, withstand UV irradiation for 30 days, and resist accelerated aging for 100 h without any significant changes in the superhydrophobicity and the cooling capability, meaning that the SPCBC had an outstanding durability. This work provides a new method to facilitate passive-cooling technology to apply in practical building in hot weather regions of the world.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (X.Y.); (D.Y.); (Y.L.); (Y.S.)
| | - Defeng Yan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (X.Y.); (D.Y.); (Y.L.); (Y.S.)
| | - Yi Lu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (X.Y.); (D.Y.); (Y.L.); (Y.S.)
| | - Yulin Shang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (X.Y.); (D.Y.); (Y.L.); (Y.S.)
| | - Jing Sun
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (X.Y.); (D.Y.); (Y.L.); (Y.S.)
| | - Jinlong Song
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (X.Y.); (D.Y.); (Y.L.); (Y.S.)
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Hegyi A, Lăzărescu AV, Ciobanu AA, Ionescu BA, Grebenişan E, Chira M, Florean C, Vermeşan H, Stoian V. Study on the Possibilities of Developing Cementitious or Geopolymer Composite Materials with Specific Performances by Exploiting the Photocatalytic Properties of TiO 2 Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103741. [PMID: 37241366 DOI: 10.3390/ma16103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Starting from the context of the principles of Sustainable Development and Circular Economy concepts, the paper presents a synthesis of research in the field of the development of materials of interest, such as cementitious composites or alkali-activated geopolymers. Based on the reviewed literature, the influence of compositional or technological factors on the physical-mechanical performance, self-healing capacity and biocidal capacity obtained was analyzed. The inclusion of TiO2 nanoparticles in the matrix increase the performances of cementitious composites, producing a self-cleaning capacity and an anti-microbial biocidal mechanism. As an alternative, the self-cleaning capacity can be achieved through geopolymerization, which provides a similar biocidal mechanism. The results of the research carried out indicate the real and growing interest for the development of these materials but also the existence of some elements still controversial or insufficiently analyzed, therefore concluding the need for further research in these areas. The scientific contribution of this study consists of bringing together two apparently distinct research directions in order to identify convergent points, to create a favorable framework for the development of an area of research little addressed so far, namely, the development of innovative building materials by combining improved performance with the possibility of reducing environmental impact, awareness and implementation of the concept of a Circular Economy.
Collapse
Affiliation(s)
- Andreea Hegyi
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | | | | | | | - Elvira Grebenişan
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | - Mihail Chira
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | - Carmen Florean
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
- NIRD URBAN-INCERC Iaşi Branch, 6 Anton Şesan Street, 700048 Iaşi, Romania
| | - Horaţiu Vermeşan
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
| | - Vlad Stoian
- Department of Microbiology, Facutly of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Eddy DR, Permana MD, Sakti LK, Sheha GAN, Solihudin, Hidayat S, Takei T, Kumada N, Rahayu I. Heterophase Polymorph of TiO 2 (Anatase, Rutile, Brookite, TiO 2 (B)) for Efficient Photocatalyst: Fabrication and Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:704. [PMID: 36839072 PMCID: PMC9965282 DOI: 10.3390/nano13040704] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 07/30/2023]
Abstract
TiO2 exists naturally in three crystalline forms: Anatase, rutile, brookite, and TiO2 (B). These polymorphs exhibit different properties and consequently different photocatalytic performances. This paper aims to clarify the differences between titanium dioxide polymorphs, and the differences in homophase, biphase, and triphase properties in various photocatalytic applications. However, homophase TiO2 has various disadvantages such as high recombination rates and low adsorption capacity. Meanwhile, TiO2 heterophase can effectively stimulate electron transfer from one phase to another causing superior photocatalytic performance. Various studies have reported the biphase of polymorph TiO2 such as anatase/rutile, anatase/brookite, rutile/brookite, and anatase/TiO2 (B). In addition, this paper also presents the triphase of the TiO2 polymorph. This review is mainly focused on information regarding the heterophase of the TiO2 polymorph, fabrication of heterophase synthesis, and its application as a photocatalyst.
Collapse
Affiliation(s)
- Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Muhamad Diki Permana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu 400-8511, Japan
- Center for Crystal Science and Technology, University of Yamanashi, Kofu 400-8511, Japan
| | - Lintang Kumoro Sakti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Geometry Amal Nur Sheha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Solihudin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Sahrul Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Takahiro Takei
- Center for Crystal Science and Technology, University of Yamanashi, Kofu 400-8511, Japan
| | - Nobuhiro Kumada
- Center for Crystal Science and Technology, University of Yamanashi, Kofu 400-8511, Japan
| | - Iman Rahayu
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
13
|
Jaramillo-Fierro X, Cuenca MF. Novel Semiconductor Cu(C 3H 3N 3S 3) 3/ZnTiO 3/TiO 2 for the Photoinactivation of E. coli and S. aureus under Solar Light. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:173. [PMID: 36616082 PMCID: PMC9824406 DOI: 10.3390/nano13010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The use of semiconductors for bacterial photoinactivation is a promising approach that has attracted great interest in wastewater remediation. The photoinactivator Cu-TTC/ZTO/TO was synthesized by the solvothermal method from the coordination complex Cu(C3H3N3S3)3 (Cu-TTC) and the hybrid semiconductor ZnTiO3/TiO2 (ZTO/TO). In this study, the effect of photocatalyst composition/concentration as well as radiation intensity on the photoinactivation of the gram-negative bacteria Escherichia coli and the gram-positive bacteria Staphylococcus aureus in aqueous solutions was investigated. The results revealed that 25 mg/mL of photoinactivator, in a Cu-TTC:ZTO/TO molar ratio of 1:2 (w/w%) presents a higher rate of bacterial photoinactivation under simulated solar light (λ = 300-800 nm) in comparison to the individual components. The evidence of this study suggests that the presence of the Cu(C3H3N3S3)3 coordination complex in the ZnTiO3/TiO2 hybrid semiconductor would contribute to the generation of reactive oxygen species (ROS) that are essential to initiate the bacterial photoinactivation process. Finally, the results obtained allow us to predict that the Cu-TTC/ZTO/TO photocatalyst could be used for effective bacterial inactivation of E. coli and S. aureus in aqueous systems under simulated solar light.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - María Fernanda Cuenca
- Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| |
Collapse
|
14
|
Fan H, Frank ES, Tobias DJ, Grassian VH. Interactions of limonene and carvone on titanium dioxide surfaces. Phys Chem Chem Phys 2022; 24:23870-23883. [PMID: 36165087 DOI: 10.1039/d2cp03021g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limonene, a monoterpene, found in cleaning products and air fresheners can interact with a variety of surfaces in indoor environments. An oxidation product of limonene, carvone, has been reported to cause contact allergens. In this study, we have investigated the interactions of limonene and carvone with TiO2, a component of paint and self-cleaning surfaces, at 297 ± 1 K with FTIR spectroscopy and force field-based molecular dynamics and ab initio simulations. The IR absorption spectra and computational methods show that limonene forms π-hydrogen bonds with the surface O-H groups on the TiO2 surface and that carvone adsorbs on the TiO2 surface through a variety of molecular interactions including through carbonyl oxygen atoms with Ti4+ surface atoms, O-H hydrogen bonding (carbonyl O⋯HO) and π-hydrogen bonds with surface O-H groups. Furthermore, we investigated the effects of relative humidity (RH) on the adsorption of limonene and carvone on the TiO2 surface. The spectroscopic results show that the adsorbed limonene can be completely displaced by water at a relative humidity of ca. 50% RH (∼2 MLs of water) and that 25% of carvone is displaced at ca. 67% RH, which agrees with the calculated free energies of adsorption which show carvone more strongly adsorbs on the surface relative to limonene and thus would be harder to displace from the surface. Overall, this study shows how a monoterpene and its oxidation product interact with TiO2 and the impact of relative humidity on these interactions.
Collapse
Affiliation(s)
- Hanyu Fan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Elianna S Frank
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
15
|
Jamaludin L, Razak RA, Abdullah MMAB, Vizureanu P, Bras A, Imjai T, Sandu AV, Abd Rahim SZ, Yong HC. The Suitability of Photocatalyst Precursor Materials in Geopolymer Coating Applications: A Review. COATINGS 2022; 12:1348. [DOI: 10.3390/coatings12091348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Today, the building and construction sector demands environmentally friendly and sustainable protective coatings using inorganic coating materials for safe, non-hazardous, and great performance. Many researchers have been working on sustainable solutions to protect concrete and metal infrastructures against corrosion and surface deterioration with the intention of introducing green alternatives to conventional coatings. This article presents a review of developments of geopolymer pastes doped with different types of photocatalyst precursors including factors affecting geopolymer properties for enhancing coating with photocatalytic performance. Photodegradation using geopolymer photocatalyst has great potential for resolving harmless substances and removing pollutants when energized with ultraviolet (UV) light. Although geopolymer is a potentially new material with great properties, there has been less research focusing on the development of this coating. This study demonstrated that geopolymer binders are ideal precursor support materials for the synthesis of photocatalytic materials, with a significant potential for optimizing their distinctive properties.
Collapse
|
16
|
Hossain MN, Lee SJ, Kim CL. Fabrication of TiO 2 ̶ KH550 ̶ PEG Super-Hydrophilic Coating on Glass Surface without UV/Plasma Treatment for Self-Cleaning and Anti-Fogging Applications. MATERIALS 2022; 15:ma15093292. [PMID: 35591625 PMCID: PMC9105175 DOI: 10.3390/ma15093292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
In this study, we have developed a self-cleaning transparent coating on a glass substrate by dip coating a TiO2 – KH550 – PEG mixed solution with super-hydrophilicity and good antifogging properties. The fabrication of the thin-film-coated glass is a one-step solution blending method that is performed by depositing only one layer of modified TiO2 nanoparticles at room temperature. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the structure and morphology of the nanoparticles and the thin-film-coated glass. The surface functional groups were investigated using Fourier-transform infrared spectroscopy (FT-IR), and the optical properties of the glass coating were measured using a UV/Vis spectrometer. The results revealed that the KH-500-modified TiO2 film coating was in an anatase crystalline form. The hydrophilicity of the coated and uncoated glass substrates was observed by measuring their water contact angle (WCA) using a contact angle instrument. The maximum transparency of the coated glass measured in the visible region (380–780 nm) was approximately 70%, and it possessed excellent super-hydrophilic properties (WCA ~0°) at an annealing temperature of 350 °C without further need of UV or plasma treatment. These results demonstrate the super-hydrophilic coated glass surface has potential for use in self-cleaning and anti-fogging applications.
Collapse
Affiliation(s)
- Muhammad Nobi Hossain
- BK21 FOUR Program for Development of Regional Future Engineers in Smart Mechanical Components, Chosun University, Gwangju 61452, Korea; (M.N.H.); (S.-J.L.)
| | - Sung-Jun Lee
- BK21 FOUR Program for Development of Regional Future Engineers in Smart Mechanical Components, Chosun University, Gwangju 61452, Korea; (M.N.H.); (S.-J.L.)
- Department of Mechanical Engineering, Chosun University, Gwangju 61452, Korea
| | - Chang-Lae Kim
- BK21 FOUR Program for Development of Regional Future Engineers in Smart Mechanical Components, Chosun University, Gwangju 61452, Korea; (M.N.H.); (S.-J.L.)
- Department of Mechanical Engineering, Chosun University, Gwangju 61452, Korea
- Correspondence:
| |
Collapse
|
17
|
Nanoparticle Engineered Photocatalytic Paints: A Roadmap to Self-Sterilizing against the Spread of Communicable Diseases. Catalysts 2022. [DOI: 10.3390/catal12030326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Applications of visible-light photocatalytic engineered nanomaterials in the preparation of smart paints are of recent origin. The authors have revealed a great potential of these new paints for self-sterilizing of the surfaces in hospitals and public places simply with visible light exposure and this is reported for the first time in this review. A recent example of a communicable disease such as COVID-19 is considered. With all precautions and preventions taken as suggested by the World Health Organization (WHO), COVID-19 has remained present for a longer time compared to other diseases. It has affected millions of people worldwide and the significant challenge remains of preventing infections due to SARS-CoV-2. The present review is focused on revealing the cause of this widespread disease and suggests a roadmap to control the spread of disease. It is understood that the transmission of SARS-CoV-2 virus takes place through contact surfaces such as doorknobs, packaging and handrails, which may be responsible for many preventable and nosocomial infections. In addition, due to the potent transmissibility of SARS-CoV-2, its ability to survive for longer periods on common touch surfaces is also an important reason for the spread of COVID-19. The existing antimicrobial cleaning technologies used in hospitals are not suitable, viable or economical to keep public places free from such infections. Hence, in this review, an innovative approach of coating surfaces in public places with visible-light photocatalytic nanocomposite paints has been suggested as a roadmap to self-sterilizing against the spread of communicable diseases. The formulations of different nanoparticle engineered photocatalytic paints with their ability to destroy pathogens using visible light, alongwith the field trials are also summarized and reported in this review. The potential suggestions for controlling the spread of communicable diseases are also listed at the end of the review.
Collapse
|