1
|
Pawinska M, Paszynska E, Amaechi BT, Meyer F, Enax J, Limeback H. Clinical evidence of caries prevention by hydroxyapatite: An updated systematic review and meta-analysis. J Dent 2024; 151:105429. [PMID: 39471896 DOI: 10.1016/j.jdent.2024.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVES A systematic review and meta-analysis were undertaken to update our 3-year-old meta-analysis to include RCTs, in vivo, and in situ clinical evidence that showed hydroxyapatite in oral care products can reduce dental caries. DATA Using the PICO guide, published clinical trials were searched where subjects (P) of all ages, with primary, mixed or permanent dentitions, using toothpastes, mouthwashes or gels containing hydroxyapatite as an active ingredient (I) were compared to subjects who used placebo or no intervention, or fluoride-containing positive controls (C), and the outcomes (O) were direct measurement of reduced dental caries or suitable proxy for reduced caries risk. SOURCES PubMed, Scopus, EMBASE, and Web of Science databases were searched using search terms from previous searches. STUDY SELECTION All authors collectively agreed which studies to include after applying the exclusion/inclusion criteria. Eighteen studies were retrieved and analyzed. The studies were graded according to a National Institutes of Health grading system. Three authors decided on the final list of publications suitable for meta-analysis, and the meta-analysis was carried out using the public domain R statistical program. RESULTS After applying more specific inclusion criteria and assessment, out of 18 retrieved studies, 5 clinical trials and 8 in situ trials were included in the meta-analysis. CONCLUSIONS The evidence for the effectiveness of fluoride-free, hydroxyapatite-containing oral care products in reducing dental caries, both from RCTs and in situ clinical trials, has expanded. More studies now show that hydroxyapatite is effective as an anti-caries active ingredient in the absence of fluoride. CLINICAL SIGNIFICANCE As a sole active ingredient, considered safe if swallowed, hydroxyapatite is an ideal substitute for fluoride in toothpaste and mouthwash tailored for young children, and new data as presented in this review, demonstrated that hydroxyapatite-based oral care products can be used by people of all ages.
Collapse
Affiliation(s)
- Malgorzata Pawinska
- Department of Integrated Dentistry, Medical University of Bialystok, 24A Maria Sklodowska-Curie, 15-276 Bialystok, Bialystok, Poland.
| | - Elzbieta Paszynska
- Department of Integrated Dentistry, Poznan University of Medical Sciences, 70 Bukowska, Poznan 60-812, Poland.
| | - Bennett T Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States.
| | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG., Johanneswerkstr. 34-36, Bielefeld 33611, Germany.
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG., Johanneswerkstr. 34-36, Bielefeld 33611, Germany.
| | - Hardy Limeback
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Khan AS, AlAbdali A, Irshad N, AlMusayyab O, AlQahtani N, Shah AT, Akhtar S, Slimani Y. Evaluation of Mechanical and Elemental Properties of Bioceramic-Coated Orthodontic Brackets and Enamel Surface. Eur J Dent 2024. [PMID: 39293491 DOI: 10.1055/s-0044-1789003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE The aim is to coat orthodontic brackets with two different bioactive materials and to compare the mechanical and morphological properties of coated brackets and tooth surfaces. MATERIALS AND METHODS A total of 120 stainless steel brackets were divided equally into three groups, that is, the uncoated brackets and nanohydroxyapatite (nHA)-coated, and nanobioactive glass (nBG)-coated brackets using a spin coater machine. The brackets were bonded on the enamel surface and underwent remineralization/demineralization cycles for days 1, 7, 14, and 30. At each time interval, the bond strength of the brackets was assessed using mechanical loading. An optical and scanning electron microscope (SEM) were used for surface evaluation, and the adhesive remanent index (ARI) values were obtained and quantified. STATISTICAL ANALYSIS One-way analysis of variance using Tukey's test was used to compare the differences among the groups. RESULTS A uniform distribution of nanoparticles occurred on the surfaces of brackets. The shear bond strength (SBS) showed no significant differences in any tested groups on days 1, 7, and 14. However, control and nBG showed a significant difference from nHA at day 30. On days 7, 14, and 30, the nHA group showed the highest SBS values among the groups. For ARI, most samples showed an adhesive nature of failure at the enamel-brackets interface. The images confirmed the presence of coated particles on brackets and remnants of adhesives after SBS. CONCLUSION This study confirmed that the nHA- and nBG-coated brackets have a high potential for application in orthodontics regarding structural and mechanical properties.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahlam AlAbdali
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nadia Irshad
- Department of Dental Materials, Sharif Medical and Dental College, Lahore, Pakistan
| | - Othoob AlMusayyab
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Norah AlQahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Campus G, Cocco F, Wierichs RJ, Wolf TG, Salerno C, Arghittu A, Dettori M, Cagetti MG. Effects of Hydroxyapatite-Containing Toothpastes on Some Caries-Related Variables: A Randomised Clinical Trial. Int Dent J 2024; 74:754-761. [PMID: 38453554 PMCID: PMC11287134 DOI: 10.1016/j.identj.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVES This randomised clinical trial was designed and carried out with the aim to evaluate the capacity of fluoride-substituted hydroxyapatite (HAF) toothpaste to modulate oral microflora composition and biofilm acidogenicity in schoolchildren. METHODS In all, 610 children (4 to 5 and 6 to 7 years) were enrolled. Four toothpastes were randomly administered during 24 months: 2 contained fluoride-substituted hydroxyapatite (HAF1000 and HAF1450; 1000 and 1450 ppmF) and magnesium-, strontium-, and carbonate-substituted hydroxyapatite in a chitosan matrix, and 2 were monofluorophosphate fluoridated toothpastes (F1000 and F1450; 1000 and 1450 ppmF). Caries lesions were assessed by International Caries Detection and Assessment System scores, supragingival plaque was sampled from the approximal sites between primary molars using sterile Gracey curettes for microbiological analysis, and plaque pH curves after sucrose challenge were assessed at baseline and reevaluated after 1 year and after 2 years. The minimum and maximum pH decrease was calculated for caries-free patients and participants with a caries lesion(s) at baseline and at the end of the experimental period (24 months). Differences amongst measurements were analysed with 1-way analysis of variance. RESULTS During the trial, the minimum pH value increased statistically significantly in all groups; in HAF1000 and HAF1450, the increase was greatest. At the end of trial, in the 2 HAF groups all primary cariogenic bacteria were statistically significantly lower with respect to F groups (P = .03 for Streptococcus mutans and sobrinus, for Lactobacillus casei, and for Lactobacillus fermentum). CONCLUSIONS The trial provides robust but still inconclusive evidence on the efficacy of HAF toothpastes compared to traditional fluoridated toothpastes to reduce caries risk factors and to prevent caries lesions.
Collapse
Affiliation(s)
- Guglielmo Campus
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland; Department of Surgery, Microsurgery and Medicine Sciences, School of Dentistry, University of Sassari, Sassari, Italy; Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, India.
| | - Fabio Cocco
- Department of Surgery, Microsurgery and Medicine Sciences, School of Dentistry, University of Sassari, Sassari, Italy
| | - Richard Johannes Wierichs
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Thomas Gerhard Wolf
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claudia Salerno
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Antonella Arghittu
- Department of Surgery, Microsurgery and Medicine Sciences, School of Dentistry, University of Sassari, Sassari, Italy
| | - Marco Dettori
- Department of Surgery, Microsurgery and Medicine Sciences, School of Dentistry, University of Sassari, Sassari, Italy
| | - Maria Grazia Cagetti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Strähle UT, Pütz N, Hannig M. A coating machine for coating filaments with bioactive nanomaterials for extrusion 3D printing. Heliyon 2024; 10:e33223. [PMID: 39027443 PMCID: PMC11254607 DOI: 10.1016/j.heliyon.2024.e33223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Extrusion printing based on biocompatible filaments offers a wide variety of targeted medical and dental applications in the area of personalized medicine, if combined with bioactive nanomaterials. However, this requires filament to be coated with bioactive nanomaterial. This study introduces a concept of a machine to coat filament with bioactive nanomaterials and its application. A machine was constructed with modules manufactured using additive manufacturing. A filament spool of polylactide (PLA) or glycol-modified polyethylene terephthalate (PETG) was transported through a copper tube, with the outer surface of the filament heated to the appropriate glass transition temperature to incorporate added nanomaterials such as nano-hydroxyapatite (nHA) or nano-fluorapatite(nFA). Coatings with nHA led to an increase in diameter of around 3 μm, while coatings with nFA increased the diameter by 4 μm. Printing of cubes with a standard extrusion printer platform using PLA or PETG filaments with added nHA or nFA has been successfully carried out. Scanning electron microscope (SEM) images of coated filaments and printed cubes showed an irregular distribution of nHA or nFA, which could be verified by energy dispersive X-ray analysis (EDX). Adding and adjusting bioactive nanomaterials to filament with a coating machine for filament proved to generate printable filaments. With the wide range of possible applications by different nanomaterials it is anticipated that extrusion printing can cover needs for personalized medicine and dentistry.
Collapse
Affiliation(s)
- Ulf Tilman Strähle
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
- Synoptic Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| | - Norbert Pütz
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| |
Collapse
|
5
|
Abedi M, Ghasemi Y, Nemati MM. Nanotechnology in toothpaste: Fundamentals, trends, and safety. Heliyon 2024; 10:e24949. [PMID: 38317872 PMCID: PMC10838805 DOI: 10.1016/j.heliyon.2024.e24949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Several studies have revealed that healthcare nanomaterials are widely used in numerous areas of dentistry, including prevention, diagnosis, treatment, and repair. Nanomaterials in dental cosmetics are utilized to enhance the efficacy of toothpaste and other mouthwashes. Nanoparticles are added to toothpastes for a variety of reasons, including dental decay prevention, remineralization, hypersensitivity reduction, brightening, and antibacterial qualities. In this review, the benefits and uses of many common nanomaterials found in toothpaste are outlined. Additionally, the capacity and clinical applications of nanoparticles as anti-bacterial, whitening, hypersensitivity, and remineralizing agents in the treatment of dental problems and periodontitis are discussed.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Tuygunov N, Khairunnisa Z, Yahya NA, Aziz AA, Zakaria MN, Israilova NA, Cahyanto A. Bioactivity and remineralization potential of modified glass ionomer cement: A systematic review of the impact of calcium and phosphate ion release. Dent Mater J 2024; 43:1-10. [PMID: 38220163 DOI: 10.4012/dmj.2023-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This systematic review investigates the effectiveness of calcium and phosphate ions release on the bioactivity and remineralization potential of glass ionomer cement (GIC). Electronic databases, including PubMed-MEDLINE, Scopus, and Web of Science, were systematically searched according to PRISMA guidelines. This review was registered in the PROSPERO database. Five eligible studies on modifying GIC with calcium and phosphate ions were included. The risk of bias was assessed using the RoBDEMAT tool. The incorporation of these ions into GIC enhanced its bioactivity and remineralization properties. It promoted hydroxyapatite formation, which is crucial for remineralization, increased pH and inhibited cariogenic bacteria growth. This finding has implications for the development of more effective dental materials. This can contribute to improved oral health outcomes and the management of dental caries, addressing a prevalent and costly oral health issue. Nevertheless, comprehensive longitudinal investigations are needed to evaluate the clinical efficacy of this GIC's modification.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
| | - Zahra Khairunnisa
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | | | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| |
Collapse
|
7
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
8
|
Alhussein A, Alsahafi R, Alfaifi A, Alenizy M, Ba-Armah I, Schneider A, Jabra-Rizk MA, Masri R, Garcia Fay G, Oates TW, Sun J, Weir MD, Xu HHK. Novel Remineralizing and Antibiofilm Low-Shrinkage-Stress Nanocomposites to Inhibit Salivary Biofilms and Protect Tooth Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6770. [PMID: 37895752 PMCID: PMC10608551 DOI: 10.3390/ma16206770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Recurrent caries remain a persistent concern, often linked to microleakage and a lack of bioactivity in contemporary dental composites. Our study aims to address this issue by developing a low-shrinkage-stress nanocomposite with antibiofilm and remineralization capabilities, thus countering the progression of recurrent caries. In the present study, we formulated low-shrinkage-stress nanocomposites by combining triethylene glycol divinylbenzyl ether and urethane dimethacrylate, incorporating dimethylaminododecyl methacrylate (DMADDM), along with nanoparticles of calcium fluoride (nCaF2) and nanoparticles of amorphous calcium phosphate (NACP). The biofilm viability, biofilm metabolic activity, lactic acid production, and ion release were evaluated. The novel formulations containing 3% DMADDM exhibited a potent antibiofilm activity, exhibiting a 4-log reduction in the human salivary biofilm CFUs compared to controls (p < 0.001). Additionally, significant reductions were observed in biofilm biomass and lactic acid (p < 0.05). By integrating both 10% NACP and 10% nCaF2 into one formulation, efficient ion release was achieved, yielding concentrations of 3.02 ± 0.21 mmol/L for Ca, 0.5 ± 0.05 mmol/L for P, and 0.37 ± 0.01 mmol/L for F ions. The innovative mixture of DMADDM, NACP, and nCaF2 displayed strong antibiofilm effects on salivary biofilm while concomitantly releasing a significant amount of remineralizing ions. This nanocomposite is a promising dental material with antibiofilm and remineralization capacities, with the potential to reduce polymerization-related microleakage and recurrent caries.
Collapse
Affiliation(s)
- Abdullah Alhussein
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.)
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed Alsahafi
- Department of Restorative Dental Sciences, Umm Al-Qura University, College of Dentistry, Makkah 24211, Saudi Arabia
| | - Areej Alfaifi
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.)
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Mohammad Alenizy
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.)
| | - Ibrahim Ba-Armah
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (A.A.)
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mary-Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi Masri
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Guadalupe Garcia Fay
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W. Oates
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jirun Sun
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, USA
| | - Michael D. Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H. K. Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Samarkin Y, Amao AO, Aljawad MS, Borji M, Scott N, AlTammar MJ, Alruwaili KM. In-situ micro-CT scanning and compressive strength assessment of diammonium hydrogen phosphate (DAP) treated chalk. Sci Rep 2023; 13:16806. [PMID: 37798425 PMCID: PMC10556016 DOI: 10.1038/s41598-023-43609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
The occurrence of wellbore mechanical failure is a consequence of the interaction among factors such as in situ stress, rock strength, and engineering procedures. The process of hydrocarbons production, causing reduction of pore pressure, alters the effective stresses in the vicinity of a borehole, leading to borehole instability issues. Estimating the rocks' elastic modulus and compressive strength is essential to comprehend the rock matrix's mechanical response during drilling and production operations. This study aimed to assess the practicality of Diammonium Hydrogen Phosphate (DAP) application as a chemical for strengthening chalk in hydrocarbon reservoirs, to make it resistant to high stresses and failure during drilling and production. The mechanical and physical properties of Austin chalk rock samples treated with DAP under mimicked reservoir conditions were studied. The results showed that DAP is a highly effective carbonate rock consolidating agent that improves the mechanical strength of the chalk. Compressive test measurements conducted on rocks treated at two different temperatures (ambient and 50 °C) showed that DAP effectively strengthened the rock matrix, resulting in an increase in its compressive strength (22-24%) and elastic modulus (up to 115%) compared to the untreated sample. The favorable outcomes of this research suggest that the DAP solution holds promise as a consolidation agent in hydrocarbon reservoirs. This contributes to the advancement of knowledge regarding effective strategies for mitigating mechanical failures of the wellbore during drilling and production.
Collapse
Affiliation(s)
- Yevgeniy Samarkin
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Abduljamiu Olalekan Amao
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
| | - Murtada Saleh Aljawad
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
| | - Mostafa Borji
- Bruker microCT N.V, Kartuizersweg 3 B, 2550, Kontich, Belgium
| | - Norman Scott
- Bruker microCT N.V, Kartuizersweg 3 B, 2550, Kontich, Belgium
| | | | | |
Collapse
|
10
|
Nikfallah A, Mohammadi A, Ahmadakhondi M, Ansari M. Synthesis and physicochemical characterization of mesoporous hydroxyapatite and its application in toothpaste formulation. Heliyon 2023; 9:e20924. [PMID: 37876441 PMCID: PMC10590784 DOI: 10.1016/j.heliyon.2023.e20924] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
The key characteristics of mesoporous hydroxyapatite, such as high porosity and expansive surface area, along with its biocompatibility with dental tissues and potential as a delivery vehicle for active ingredients, have recently garnered significant research focus. In the present study, mesoporous hydroxyapatite was synthesized using a precipitation technique and was subsequently characterized via X-ray diffraction, Fourier transform infrared, dynamic light scattering, field emission scanning electron microscopy and N2 adsorption-desorption isotherms. The results revealed that the synthesized mesopore particles exhibited significant adsorption potential, and were thereby considered a carrier of thymol, an effective antibacterial on oral pathogens. Specifically, mesoporous hydroxyapatite's surface area and pore volume were approximately 2.66-fold and 1.95-fold higher than hydroxyapatite's. A statistically significant divergence in the release profiles of thymol from thymol-loaded mesoporous hydroxyapatite and thymol-loaded hydroxyapatite was noted, as indicated by the similarity factor (f2 < 50). Evaluation of organoleptic parameters (taste, odor, smoothness, appearance) showed that thymol-loaded mesoporous hydroxyapatite toothpaste had superior organoleptic attributes compared to thymol-loaded hydroxyapatite toothpaste. However, both formulations were acceptable regarding pH and stability and were desirable regarding abrasiveness with no significant difference compared to the standard formulation (p > 0.05). Overall, the findings demonstrate the suitability of mesoporous hydroxyapatite as an abrasive material for developing hydroxyapatite-based toothpaste formulations.
Collapse
Affiliation(s)
- Azarmidokht Nikfallah
- Department of Pharmaceutics, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadsadegh Ahmadakhondi
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences. Tehran, Iran
- Dental Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Florea AD, Pop LC, Benea HRC, Tomoaia G, Racz CP, Mocanu A, Dobrota CT, Balint R, Soritau O, Tomoaia-Cotisel M. Remineralization Induced by Biomimetic Hydroxyapatite Toothpastes on Human Enamel. Biomimetics (Basel) 2023; 8:450. [PMID: 37887581 PMCID: PMC10604461 DOI: 10.3390/biomimetics8060450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/28/2023] Open
Abstract
This work aimed to compare the effect of four new toothpastes (P1-P4) based on pure and biomimetic substituted nano-hydroxyapatites (HAPs) on remineralization of human enamel. Artificially demineralized enamel slices were daily treated for ten days with different toothpastes according to the experimental design. Tooth enamel surfaces were investigated using atomic force microscope (AFM) images and surface roughness (Ra) determined before and after treatment. The surface roughness of enamel slices was statistically analyzed by one-way ANOVA and Bonferroni's multiple comparison test. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) data revealed the HAP structure with crystal sizes between 28 and 33 nm and crystallinity between 29 and 37%. The average size of HAP particles was found to be between 30 and 40 nm. The Ra values indicated that P3 (HAP-Mg-Zn-Sr-Si) toothpaste was the most effective after 10 days of treatment, leading to the lowest mean roughness. The P3 and P2 (HAP) toothpastes were found to be effective in promoting remineralization. Specifically, their effectiveness can be ranked as follows: P3 = P2 > P4 (HAP-Mg-Zn-Si) > P1 (HAP-Zn), considering both the chemical composition and the size of their constitutive nanoparticles. The proposed toothpastes might be used successfully to treat early tooth decay.
Collapse
Affiliation(s)
- Alexandra-Diana Florea
- Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania; (A.-D.F.); (L.C.P.); (C.-P.R.); (A.M.); (C.-T.D.); (R.B.)
| | - Lucian Cristian Pop
- Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania; (A.-D.F.); (L.C.P.); (C.-P.R.); (A.M.); (C.-T.D.); (R.B.)
| | - Horea-Rares-Ciprian Benea
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Gen. Traian Mosoiu Str., 400132 Cluj-Napoca, Romania; (H.-R.-C.B.); (G.T.)
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Gen. Traian Mosoiu Str., 400132 Cluj-Napoca, Romania; (H.-R.-C.B.); (G.T.)
- Academy of Romanian Scientists, 3 Ilfov Str., 050044 Bucharest, Romania
| | - Csaba-Pal Racz
- Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania; (A.-D.F.); (L.C.P.); (C.-P.R.); (A.M.); (C.-T.D.); (R.B.)
| | - Aurora Mocanu
- Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania; (A.-D.F.); (L.C.P.); (C.-P.R.); (A.M.); (C.-T.D.); (R.B.)
| | - Cristina-Teodora Dobrota
- Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania; (A.-D.F.); (L.C.P.); (C.-P.R.); (A.M.); (C.-T.D.); (R.B.)
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 44 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Reka Balint
- Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania; (A.-D.F.); (L.C.P.); (C.-P.R.); (A.M.); (C.-T.D.); (R.B.)
| | - Olga Soritau
- Oncology Institute of Cluj-Napoca, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania; (A.-D.F.); (L.C.P.); (C.-P.R.); (A.M.); (C.-T.D.); (R.B.)
- Academy of Romanian Scientists, 3 Ilfov Str., 050044 Bucharest, Romania
| |
Collapse
|
12
|
Pompapathi K, Anantharaju KS, Surendra BS, Meena S, Uma B, Chowdhury AP, Murthy HCA. Synergistic effect of a Bi 2Zr 2O 7 and hydroxyapatite composite: organic pollutant remediation, antibacterial and electrochemical sensing applications. RSC Adv 2023; 13:28198-28210. [PMID: 37753401 PMCID: PMC10518660 DOI: 10.1039/d3ra05222b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Global concern regarding the energy crisis and environmental pollution is increasing. The fabrication of efficient catalysts remains a long-term goal. Recently, green synthesis methods for catalyst fabrication have attracted the scientific community. Herein, a simple approach to synthesize bismuth zirconate-hydroxyapatite (BZO-HA) nanocomposites using Mentha spicata (mint) leaves as a reducing agent via a combustion method has been reported. The use of a green reducing agent provided economic attributes to this work. Among the prepared samples, the BZO-HA (20%) composite exhibited superior photocatalytic activity. The photodegradation efficiency of the composite reached 90.3% and 98.4% for methylene blue (MB) and rose Bengal (RB) dyes, respectively. The results showed the excellent optical performance of the prepared composites. The constructed sensor (BZO-HA 20%) for the very first time showed outstanding selectivity and performance towards sensing lead nitrate and dextrose compared to bare bismuth zirconate (BZO) and hydroxyapatite (HA). A three-electrode system using 0.1 M KCl was used for the study. The synthesized composite BZO-HA (20%) can sense lead nitrate and dextrose over the concentration range of 1-5 mM in the potential range from -1.0 V to +1.0 V. The BZO-HA composite was also investigated against Gram-negative (S. typhi) and Gram-positive (S. aureus) bacteria for antibacterial activity studies. Enhanced antibacterial activity was observed compared to bare BZO and HA catalysts. Thus, the prepared BZO-HA nanocomposite exhibited multifunctional applications.
Collapse
Affiliation(s)
- K Pompapathi
- Dr. D. Premachandra Sagar Centre for Advanced Materials, Dayananda Sagar College of Engineering Shavige Malleshwara Hills, Kumaraswamy Layout Bengaluru 560111 India
- Department of Material Science, Mangalore University Mangalagangotri Mangalore 574199 Karnataka India
| | - K S Anantharaju
- Dr. D. Premachandra Sagar Centre for Advanced Materials, Dayananda Sagar College of Engineering Shavige Malleshwara Hills, Kumaraswamy Layout Bengaluru 560111 India
- Department of Chemistry, Dayananda Sagar College of Engineering Shavige Malleshwara Hills, Kumaraswamy Layout Bengaluru 560111 India
| | - B S Surendra
- Department of Chemistry, Dayananda Sagar College of Engineering Shavige Malleshwara Hills, Kumaraswamy Layout Bengaluru 560111 India
| | - S Meena
- Department of Chemistry, Dayananda Sagar College of Engineering Shavige Malleshwara Hills, Kumaraswamy Layout Bengaluru 560111 India
| | - B Uma
- Department of Chemistry, Dayananda Sagar College of Engineering Shavige Malleshwara Hills, Kumaraswamy Layout Bengaluru 560111 India
| | - Arpita Paul Chowdhury
- Department of Chemistry, Dayananda Sagar College of Engineering Shavige Malleshwara Hills, Kumaraswamy Layout Bengaluru 560111 India
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University Adama, P O Box 1888 Ethiopia
- Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University Chennai 600077 Tamil Nadu India
| |
Collapse
|
13
|
Lagopati N, Pippa N, Gatou MA, Papadopoulou-Fermeli N, Gorgoulis VG, Gazouli M, Pavlatou EA. Marine-Originated Materials and Their Potential Use in Biomedicine. APPLIED SCIENCES 2023; 13:9172. [DOI: 10.3390/app13169172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Aquatic habitats cover almost 70% of the Earth, containing several species contributing to marine biodiversity. Marine and aquatic organisms are rich in chemical compounds that can be widely used in biomedicine (dentistry, pharmacy, cosmetology, etc.) as alternative raw biomaterials or in food supplements. Their structural characteristics make them promising candidates for tissue engineering approaches in regenerative medicine. Thus, seaweeds, marine sponges, arthropods, cnidaria, mollusks, and the biomaterials provided by them, such as alginate, vitamins, laminarin, collagen, chitin, chitosan, gelatin, hydroxyapatite, biosilica, etc., are going to be discussed focusing on the biomedical applications of these marine-originated biomaterials. The ultimate goal is to highlight the sustainability of the use of these biomaterials instead of conventional ones, mainly due to the antimicrobial, anti-inflammatory, anti-aging and anticancer effect.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Vassilis G. Gorgoulis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
14
|
Torres-Mansilla A, Álvarez-Lloret P, Fernández-Penas R, D’Urso A, Baldión PA, Oltolina F, Follenzi A, Gómez-Morales J. Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2299. [PMID: 37630883 PMCID: PMC10458568 DOI: 10.3390/nano13162299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
The eggshell is a biomineral consisting of CaCO3 in the form of calcite phase and a pervading organic matrix (1-3.5 wt.%). Transforming eggshell calcite particles into calcium phosphate (apatite) micro-nanoparticles opens the door to repurposing the eggshell waste as materials with potential biomedical applications, fulfilling the principles of the circular economy. Previous methods to obtain these particles consisted mainly of two steps, the first one involving the calcination of the eggshell. In this research, direct transformation by a one-pot hydrothermal method ranging from 100-200 °C was studied, using suspensions with a stoichiometric P/CaCO3 ratio, K2HPO4 as P reagent, and eggshells particles (Ø < 50 μm) both untreated and treated with NaClO to remove surface organic matter. In the untreated group, the complete conversion was achieved at 160 °C, and most particles displayed a hexagonal plate morphology, eventually with a central hole. In the treated group, this replacement occurred at 180 °C, yielding granular (spherulitic) apatite nanoparticles. The eggshell particles and apatite micro-nanoparticles were cytocompatible when incubated with MG-63 human osteosarcoma cells and m17.ASC murine mesenchymal stem cells and promoted the osteogenic differentiation of m17.ASC cells. The study results are useful for designing and fabricating biocompatible microstructured materials with osteoinductive properties for applications in bone tissue engineering and dentistry.
Collapse
Affiliation(s)
- Adriana Torres-Mansilla
- Departament of Geology, University of Oviedo, 33005 Oviedo, Spain;
- Laboratory of Crystallographic Studies, IACT-CSIC-University of Granada, Avda. Las Palmeras, n° 4, 18100 Armilla, Spain;
| | | | - Raquel Fernández-Penas
- Laboratory of Crystallographic Studies, IACT-CSIC-University of Granada, Avda. Las Palmeras, n° 4, 18100 Armilla, Spain;
| | - Annarita D’Urso
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, “A. Avogadro” Via Solaroli, 17, 28100 Novara, Italy; (A.D.); (F.O.); (A.F.)
| | - Paula Alejandra Baldión
- Departament of Oral Health, Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, “A. Avogadro” Via Solaroli, 17, 28100 Novara, Italy; (A.D.); (F.O.); (A.F.)
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, “A. Avogadro” Via Solaroli, 17, 28100 Novara, Italy; (A.D.); (F.O.); (A.F.)
| | - Jaime Gómez-Morales
- Laboratory of Crystallographic Studies, IACT-CSIC-University of Granada, Avda. Las Palmeras, n° 4, 18100 Armilla, Spain;
| |
Collapse
|
15
|
Khurshid Z, Alfarhan MFA, Bayan Y, Mazher J, Adanir N, Dias GJ, Cooper PR, Ratnayake J. Development, physicochemical characterization and in-vitro biocompatibility study of dromedary camel dentine derived hydroxyapatite for bone repair. PeerJ 2023; 11:e15711. [PMID: 37551347 PMCID: PMC10404400 DOI: 10.7717/peerj.15711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 08/09/2023] Open
Abstract
This study aimed to produce hydroxyapatite from the dentine portion of camel teeth using a defatting and deproteinizing procedure and characterize its physicochemical and biocompatibility properties. Biowaste such as waste camel teeth is a valuable source of hydroxyapatite, the main inorganic constituent of human bone and teeth which is frequently used as bone grafts in the biomedical field. Fourier Transform infrared (FTIR), and micro-Raman spectroscopy confirmed the functional groups as-sociated with hydroxyapatite. X-ray diffraction (XRD) studies showed camel dentine-derived hydroxyapatite (CDHA) corresponded with hydroxyapatite spectra. Scanning electron micros-copy (SEM) demonstrated the presence of dentinal tubules measuring from 1.69-2.91 µm. The inorganic phases of CDHA were primarily constituted of calcium and phosphorus, with trace levels of sodium, magnesium, potassium, and strontium, according to energy dispersive X-ray analysis (EDX) and inductively coupled plasma mass spectrometry (ICP-MS). After 28 days of incubation in simulated body fluid (SBF), the pH of the CDHA scaffold elevated to 9.2. in-vitro biocompatibility studies showed that the CDHA enabled Saos-2 cells to proliferate and express the bone marker osteonectin after 14 days of culture. For applications such as bone augmentation and filling bone gaps, CDHA offers a promising material. However, to evaluate the clinical feasibility of the CDHA, further in-vivo studies are required.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | | - Yasmin Bayan
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Javed Mazher
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - George J. Dias
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Paul R. Cooper
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jithendra Ratnayake
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Badea MA, Balas M, Popa M, Borcan T, Bunea AC, Predoi D, Dinischiotu A. Biological Response of Human Gingival Fibroblasts to Zinc-Doped Hydroxyapatite Designed for Dental Applications-An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114145. [PMID: 37297278 DOI: 10.3390/ma16114145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the biological response induced by hydroxyapatite (HAp) and zinc-doped HAp (ZnHAp) in human gingival fibroblasts and to explore their antimicrobial activity. The ZnHAp (with xZn = 0.00 and 0.07) powders, synthesized by the sol-gel method, retained the crystallographic structure of pure HA without any modification. Elemental mapping confirmed the uniform dispersion of zinc ions in the HAp lattice. The size of crystallites was 18.67 ± 2 nm for ZnHAp and 21.54 ± 1 nm for HAp. The average particle size was 19.38 ± 1 nm for ZnHAp and 22.47 ± 1 nm for HAp. Antimicrobial studies indicated an inhibition of bacterial adherence to the inert substrate. In vitro biocompatibility was tested on various doses of HAp and ZnHAp after 24 and 72 h of exposure and revealed that cell viability decreased after 72 h starting with a dose of 31.25 µg/mL. However, cells retained membrane integrity and no inflammatory response was induced. High doses (such as 125 µg/mL) affected cell adhesion and the architecture of F-actin filaments, while in the presence of lower doses (such as 15.625 µg/mL), no modifications were observed. Cell proliferation was inhibited after treatment with HAp and ZnHAp, except the dose of 15.625 µg/mL ZnHAp at 72 h of exposure, when a slight increase was observed, proving an improvement in ZnHAp activity due to Zn doping.
Collapse
Affiliation(s)
- Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Marcela Popa
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Teodora Borcan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Anamaria-Cristina Bunea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Daniela Predoi
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
17
|
Novozhilova N, Andreeva E, Polyakova M, Makeeva I, Sokhova I, Doroshina V, Zaytsev A, Babina K. Antigingivitis, Desensitizing, and Antiplaque Effects of Alkaline Toothpastes: A Randomized Clinical Trial. Dent J (Basel) 2023; 11:96. [PMID: 37185474 PMCID: PMC10136796 DOI: 10.3390/dj11040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Gingivitis is a widespread disease commonly associated with dentin hypersensitivity, that, in turn, may complicate routine dental care, leading to plaque accumulation. We aimed to assess the antigingivitis, desensitizing, and antiplaque effects of a fluoride-containing (TWF) alkaline toothpaste and a fluoride-free (TW) alkaline toothpaste. Eighty-four consenting patients aged 20-25 years with diagnosed gingivitis and dentin hypersensitivity (DH) were recruited in this double-blind, parallel-group study and randomly divided into two groups (each n = 42). Eighty-two patients completed the entire study protocol. The outcomes were assessed after 4 weeks of intervention. A significant improvement in gingival condition was found according to the modified gingival index, with effect sizes of 0.99 [CI95%: 0.52-1.46] and 1.71 [CI95%: 1.18-2.24], and the gingival bleeding index, with effect sizes of 3.17 [CI95%: 2.39-3.94] and 2.64 [CI95%: 1.96-3.32] in the TW and TWF groups, respectively. DH also decreased in both groups, with a significantly greater reduction in the TWF group (effect sizes of 3.28 [CI95%: 2.51-4.04] and 3.10 [CI95%: 2.40-3.80] according to the visual analog scale and Schiff scale, respectively). No side effects were registered. In conclusion, the use of alkaline toothpaste provided a significant reduction in gingival inflammation and bleeding, DH, and oral hygiene after 4 weeks of daily use in young adults. Trial Registration: NCT0562376. Funding: none.
Collapse
Affiliation(s)
- Nina Novozhilova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elena Andreeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Maria Polyakova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Inna Sokhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladlena Doroshina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexandr Zaytsev
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ksenia Babina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
18
|
Limeback H, Meyer F, Enax J. Tooth Whitening with Hydroxyapatite: A Systematic Review. Dent J (Basel) 2023; 11:dj11020050. [PMID: 36826195 PMCID: PMC9955010 DOI: 10.3390/dj11020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
A steadily increasing public demand for whiter teeth has resulted in the development of new oral care products for home use. Hydroxyapatite (HAP) is a new ingredient to whiten teeth. This systematic review focuses on the evidence of whether HAP can effectively whiten teeth. A systematic search using the PICO approach and PRISMA guidelines was conducted using PubMed, Scopus, Web of Science, SciFinder, and Google Scholar as databases. All study designs (in vitro, in vivo) and publications in foreign language studies were included. Of the 279 study titles that the searches produced, 17 studies met the inclusion criteria. A new "Quality Assessment Tool For In Vitro Studies" (the QUIN Tool) was used to determine the risk of bias of the 13 studies conducted in vitro. Moreover, 12 out of 13 studies had a low risk of bias. The in vivo studies were assigned Cochrane-based GRADE scores. The results in vitro and in vivo were consistent in the direction of showing a statistically significant whitening of enamel. The evidence from in vitro studies is rated overall as having a low risk of bias. The evidence from in vivo clinical trials is supported by modest clinical evidence based on six preliminary clinical trials. It can be concluded that the regular use of hydroxyapatite-containing oral care products effectively whitens teeth, but more clinical trials are required to support the preliminary in vivo evidence.
Collapse
Affiliation(s)
- Hardy Limeback
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Correspondence:
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| |
Collapse
|
19
|
Butera A, Maiorani C, Gallo S, Pascadopoli M, Quintini M, Lelli M, Tarterini F, Foltran I, Scribante A. Biomimetic Action of Zinc Hydroxyapatite on Remineralization of Enamel and Dentin: A Review. Biomimetics (Basel) 2023; 8:biomimetics8010071. [PMID: 36810402 PMCID: PMC9944842 DOI: 10.3390/biomimetics8010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Biomimetic zinc-carbonate hydroxyapatite technology was developed to realize materials that mimic the natural hydroxyapatite of enamel and dentin and possess good activity in terms of affinity to adhere to these biological tissues. The chemical and physical characteristics of this active ingredient allows the hydroxyapatite itself to be particularly similar to dental hydroxyapatite, enhancing the bond between biomimetic hydroxyapatite and dental hydroxyapatite. The aim of this review is to assess the efficacy of this technology in terms of benefits for enamel and dentin and reduction of dental hypersensitivity. MATERIALS AND METHODS A literature search (Pubmed/MEDLINE and Scopus) of articles from 2003 to 2023 was conducted to analyze studies focused on the use of zinc-hydroxyapatite products. Duplicates were eliminated from the 5065 articles found, leaving 2076 articles. Of these, 30 articles were analyzed based on the use of products with zinc-carbonate hydroxyapatite in these studies. RESULTS 30 articles were included. Most of the studies showed benefits in terms of remineralization and prevention of enamel demineralization in terms of occlusion of the dentinal tubules and reduction of dentinal hypersensitivity. CONCLUSION Oral care products such as toothpaste and mouthwash with biomimetic zinc-carbonate hydroxyapatite were shown to provide benefits according to the aims of this review.
Collapse
Affiliation(s)
- Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.B.); (C.M.)
| | - Carolina Maiorani
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.B.); (C.M.)
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Martina Quintini
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Lelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, 40126 Bologna, Italy
| | - Fabrizio Tarterini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, 40126 Bologna, Italy
| | - Ismaela Foltran
- Incos-Cosmeceutica Industriale, Funo di Argelato, 40050 Bologna, Italy
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
20
|
Limeback H, Enax J, Meyer F. Clinical Evidence of Biomimetic Hydroxyapatite in Oral Care Products for Reducing Dentin Hypersensitivity: An Updated Systematic Review and Meta-Analysis. Biomimetics (Basel) 2023; 8:biomimetics8010023. [PMID: 36648809 PMCID: PMC9844412 DOI: 10.3390/biomimetics8010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
Dentin hypersensitivity (DH) is a very common dental problem that can have a negative impact on the quality of life and can lead to invasive dental procedures. Prevention of DH and control of symptoms are highly desirable. Hydroxyapatite (HAP) has been shown in vitro to block dentinal tubules and in vivo to be a safe and effective additive in oral care products that reduce DH clinically. This study's aim was to conduct a systematic review and meta-analysis of the current evidence that HAP-containing oral care products reduce DH. Databases were searched, and only clinical trials in humans were included; studies conducted in vitro or on animals were not included. Publications in a foreign language were translated and included. We found 44 published clinical trials appropriate for systematic analysis. More than half of the trials had high-quality GRADE scores. HAP significantly reduced dentin hypersensitivity compared to placebo (39.5%; CI 95% [48.93; 30.06]), compared to fluoride (23%; CI 95% [34.18; 11.82]), and with a non-significant tendency compared to other desensitizing agents (10.2%; CI 95% [21.76; -19.26]). In conclusion, the meta-analysis showed that HAP added to oral care products is a more effective agent than fluoride in controlling dentin hypersensitivity and may be superior to other desensitizers.
Collapse
Affiliation(s)
- Hardy Limeback
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G1G6, Canada
- Correspondence:
| | - Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| |
Collapse
|
21
|
Wang J, Zou D, Li Y, Liu P, Guo C. Drug-induced tooth discoloration: An analysis of the US food and drug administration adverse event reporting system. Front Pharmacol 2023; 14:1161728. [PMID: 37124229 PMCID: PMC10133538 DOI: 10.3389/fphar.2023.1161728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Certain drugs can cause intrinsic or extrinsic tooth discoloration, which is not only a clinical issue but also an esthetic problem. However, limited investigations have focused on drug-induced tooth discoloration. The present work aimed to determine the drugs causing tooth discoloration and to estimate their risks of causing tooth discoloration. Methods: An observational, retrospective, and pharmacovigilance analysis was conducted, in which we extracted adverse event (AE) reports involving tooth discoloration by using the data of the US Food and Drug Administration's Adverse Event Reporting System (FAERS) from the first quarter (Q1) of 2004 to the third quarter (Q3) of 2021. Disproportionality analyses were performed to examine risk signals for tooth discoloration and determine the drugs inducing tooth discoloration. Results: Based on predefined inclusion criteria, 1188 AE reports involving 302 suspected drugs were identified. After data mining, 25 drugs generated positive risk signals for tooth discoloration, of which 10 were anti-infectives for systemic use. The top reported drug was tetracycline (n = 106), followed by salmeterol and fluticasone (n = 68), amoxicillin (n = 60), chlorhexidine (n = 54), and nicotine (n = 52). Cetylpyridinium (PRR = 472.2, ROR = 502.5), tetracycline (PRR = 220.4, ROR = 277), stannous fluoride (PRR = 254.3, ROR = 262.8), hydrogen peroxide (PRR = 240.0, ROR = 247.6), and chlorhexidine (PRR = 107.0, ROR = 108.4) showed stronger associations with tooth discoloration than the remaining drugs. Of 625 AE reports involving 25 drugs with positive risk signals, tooth discoloration was mostly reported in patients aged 45-64 (n = 110) and ≤18 (n = 95), and 29.4% (192/652) of the reports recorded serious outcomes. Conclusion: This study revealed that certain drugs are significantly associated with tooth discoloration. Caution should be exercised when using these drugs, especially during pregnancy and early childhood.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongna Zou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuchao Li
- Department of Medical Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pingping Liu
- Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- *Correspondence: Chenyu Guo, ; Pingping Liu,
| | - Chenyu Guo
- Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
- *Correspondence: Chenyu Guo, ; Pingping Liu,
| |
Collapse
|
22
|
Thr in vitro Effect of Dentifrices With Activated Charcoal on Eroded Teeth. Int Dent J 2022:S0020-6539(22)00257-X. [PMID: 36460521 PMCID: PMC10350599 DOI: 10.1016/j.identj.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/30/2022] Open
Abstract
AIM The objective of this research was to compare the abrasive potential of dentifrices containing activated charcoal with those of a conventional dentifrice on the development of erosive tooth wear (ETW) in vitro. METHODS Enamel and dentin samples were divided into toothpastes (n = 12): group (G)1-Colgate Triple Action (1450 ppm F) (positive control); G2-Colgate Natural Extracts (1450 ppm F); G3-Colgate Luminous White Activated Carbon (1450 ppm F); G4-Oral-B Whitening Therapy Charcoal (1100 ppm F); G5-Oral-B 3D White Mineral Clean (1100 ppm F); G6-Curaprox Black Is White (950 ppm F); and G7-erosion only (no abrasion, negative control). All samples were submitted to erosive pH cycles and G1 to G6 to abrasive challenges (15 seconds) using toothpastes' slurries plus 45 seconds of treatment for 7 days. The final profile was overlaid to the baseline one for the ETW calculation (µm). The data were subjected to analysis of variance/Tukey or Kruskal-Wallis/Dunn tests (P < .05). RESULTS Oral-B 3D White (13.0 ± 1.0, 9.37 [1.36] μm), Oral-B Whitening Therapy (15.1 ± 1.2, 8.58 [1.71] μm), and Colgate Luminous White (13.6 ± 1.0, 7.46 [0.94] μm) toothpastes promoted the greatest enamel and dentin wear. On the other hand, Colgate Triple Action (12.2 ± 1.2, 5.30 [1.26] μm), Colgate Natural Extracts (10.8 ± 1.1, 4.16 [1.11] μm), and Curaprox Black Is White (11.5 ± 1.5, 4.06 [0.92] μm) toothpastes promoted lower wear values, similar to erosion only (4.16 [0.94] μm) in the case of dentin but not enamel (7.1 ± 0.8 μm). CONCLUSIONS Toothpastes containing charcoal combined with pyrophosphate may have a high abrasive effect on eroded tooth surfaces. Many patients influenced by digital marketing use toothpastes containing activated charcoal with the aim of bleaching their teeth. However, care should be taken when using these products, as they may have a high abrasive effect.
Collapse
|
23
|
Al-Saud LM, Alolyet LM, Alenezi DS. The Effects of Selected Mouthwashes on the Surface Microhardness of a Single-shade Universal Resin Composite: In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2022. [DOI: 10.1177/23202068221129020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aim: To investigate the effects of selected alcohol-free mouthwashes with different formulations (zinc-hydroxyapatite, hydrogen peroxide, and sodium fluoride) on the surface microhardness of a single-shade universal resin composite. Materials and Methods: Forty disc-shaped specimens (8 × 2 mm) from the universal resin composite (Omnichroma®), and a nano-hybrid composite (Tetric® N-Ceram) were prepared. After polymerization, baseline surface microhardness values were recorded using Vickers microhardness tester. The samples from each material were randomly assigned to 4 groups ( n = 10) and immersed in 20 ml of the mouthwashes: Biorepair®, Listerine®, Colgate® Optic White, and distilled water (control). The samples were kept in the immersion solutions for 24 hours, and post-immersion microhardness values were recorded. Data were analyzed with one-way ANOVA and paired sample t-tests at p < .05. Results: Significant reduction in microhardness was observed in all resin composite groups after immersion in the mouthwashes compared to baseline values ( p < .0001). The highest microhardness reduction in Omnichroma® group was observed after immersion in Colgate® Optic White; and Tetric® N-Ceram group after immersion in Listerine® mouthwash. For both materials, the least reduction in microhardness was observed after immersion in Biorepair®. Microhardness values for Omnichroma were significantly higher than Tetric® N-Ceram ( p < .0001). However, Omnichroma exhibited a significantly greater reduction in microhardness after immersion in the tested mouthwashes. Conclusion: In vitro simulated use of the investigated mouthwashes negatively affected the surface microhardness of both tested resin composites. The observed effects were both mouthwash and material dependent.
Collapse
Affiliation(s)
- Loulwa M. Al-Saud
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Lina M. Alolyet
- College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
24
|
Effect of Currently Available Nanoparticle Synthesis Routes on Their Biocompatibility with Fibroblast Cell Lines. Molecules 2022; 27:molecules27206972. [PMID: 36296564 PMCID: PMC9612073 DOI: 10.3390/molecules27206972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nanotechnology has acquired significance in dental applications, but its safety regarding human health is still questionable due to the chemicals utilized during various synthesis procedures. Titanium nanoparticles were produced by three novel routes, including Bacillus subtilis, Cassia fistula and hydrothermal heating, and then characterized for shape, phase state, size, surface roughness, elemental composition, texture and morphology by SEM, TEM, XRD, AFM, DRS, DLS and FTIR. These novel titanium nanoparticles were tested for cytotoxicity through the MTT assay. L929 mouse fibroblast cells were used to test the cytotoxicity of the prepared titanium nanoparticles. Cell suspension of 10% DMEM with 1 × 104 cells was seeded in a 96-well plate and incubated. Titanium nanoparticles were used in a 1 mg/mL concentration. Control (water) and titanium nanoparticles stock solutions were prepared with 28 microliters of MTT dye and poured into each well, incubated at 37 °C for 2 h. Readings were recorded on day 1, day 15, day 31, day 41 and day 51. The results concluded that titanium nanoparticles produced by Bacillus subtilis remained non-cytotoxic because cell viability was >90%. Titanium nanoparticles produced by Cassia fistula revealed mild cytotoxicity on day 1, day 15 and day 31 because cell viability was 60−90%, while moderate cytotoxicity was found at day 41 and day 51, as cell viability was 30−60%. Titanium nanoparticles produced by hydrothermal heating depicted mild cytotoxicity on day 1 and day 15; moderate cytotoxicity on day 31; and severe cytotoxicity on day 41 and day 51 because cell viability was less than 30% (p < 0.001). The current study concluded that novel titanium nanoparticles prepared by Bacillus subtilis were the safest, more sustainable and most biocompatible for future restorative nano-dentistry purposes.
Collapse
|
25
|
Kranz S, Heyder M, Mueller S, Guellmar A, Krafft C, Nietzsche S, Tschirpke C, Herold V, Sigusch B, Reise M. Remineralization of Artificially Demineralized Human Enamel and Dentin Samples by Zinc-Carbonate Hydroxyapatite Nanocrystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7173. [PMID: 36295240 PMCID: PMC9610234 DOI: 10.3390/ma15207173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: Decalcified enamel and dentin surfaces can be regenerated with non-fluoride-containing biomimetic systems. This study aimed to investigate the effect of a zinc carbonate-hydroxyapatite-containing dentifrice on artificially demineralized enamel and dentin surfaces. (2) Methods: Human enamel and dentin discs were prepared and subjected to surface demineralization with 30% orthophosphoric acid for 60 s. Subsequently, in the test group (n = 20), the discs were treated three times a day for 3 min with a zinc carbonate-hydroxyapatite-containing toothpaste (biorepair®). Afterwards, all samples were gently rinsed with PBS (5 s) and stored in artificial saliva until next use. Samples from the control group (n = 20) received no dentifrice-treatment and were stored in artificial saliva, exclusively. After 15 days of daily treatment, specimens were subjected to Raman spectroscopy, energy-dispersive X-ray micro-analysis (EDX), white-light interferometry, and profilometry. (3) Results: Raman spectroscopy and white-light interferometry revealed no significant differences compared to the untreated controls. EDX analysis showed calcium phosphate and silicon dioxide precipitations on treated dentin samples. In addition, treated dentin surfaces showed significant reduced roughness values. (4) Conclusions: Treatment with biorepair® did not affect enamel surfaces as proposed. Minor mineral precipitation and a reduction in surface roughness were detected among dentin surfaces only.
Collapse
Affiliation(s)
- Stefan Kranz
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - Markus Heyder
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - Stephan Mueller
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - André Guellmar
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
| | - Sandor Nietzsche
- Center of Electron Microscopy, Jena University Hospital, Friedrich-Schiller University, 07743 Jena, Germany
| | - Caroline Tschirpke
- Otto Schott Institute of Materials Research, Friedrich-Schiller University, 07743 Jena, Germany
| | - Volker Herold
- Otto Schott Institute of Materials Research, Friedrich-Schiller University, 07743 Jena, Germany
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| | - Markus Reise
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany
| |
Collapse
|
26
|
Guntermann L, Rohrbach A, Schäfer E, Dammaschke T. Remineralization and protection from demineralization: effects of a hydroxyapatite-containing, a fluoride-containing and a fluoride- and hydroxyapatite-free toothpaste on human enamel in vitro. Head Face Med 2022; 18:26. [PMID: 35831871 PMCID: PMC9278013 DOI: 10.1186/s13005-022-00330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background The aim was to evaluate the remineralization potential as well as the extent of protection against renewed demineralization of enamel by hydroxyapatite-containing toothpaste (Karex) in comparison to fluoride-containing (Elmex) and fluoride- and hydroxyapatite-free toothpaste (Ajona) as control. Methods Fifty-seven enamel samples were obtained from 19 human teeth. Five demarcated surfaces were created on each tooth (S0—S4). Four of the surfaces (S1—S4) were exposed to lactic acid (pH 3) for 8 h (demineralization). S0 was left untreated as control. S1 was solely treated with acid. After demineralization, S2 was exposed to Karex for 2 min, of which 15 s were brushing. S3 was treated with Elmex and S4 with Ajona, accordingly. Then, the samples were evaluated using a scanning electron microscope and ImageJ image analysis software to determine the percentage of demineralization. Afterwards, S2-S4 were again exposed to lactic acid for 2 h, and subjected to pixel analysis another time. Data were statistically analysed using ANOVA with post-hoc Scheffé test and the Kurskal-Wallis test. Results The surfaces treated with Elmex showed the lowest percentage of demineralization (mean 5.01 ± 0.98%) (p < 0.01). Thus, Elmex remineralized more effectively compared to Ajona (8.89 ± 1.41%) and Karex (9.85 ± 1.63%) (p < 0.01). Furthermore, Elmex showed the lowest percentage of demineralized enamel after new demineralization (median 6.29%), followed by Ajona (11.92%) and Karex (13.46%) (p < 0.001). Conclusion In terms of remineralization and protection against renewed demineralization, a hydroxyapatite-containing toothpaste (Karex) appears to be inferior to a fluoride-containing toothpaste (Elmex) and a fluoride- and hydroxyapatite-free toothpaste (Ajona). Hence, the recommendation to use Karex to protect against demineralization should be critically questioned.
Collapse
Affiliation(s)
| | - Arno Rohrbach
- Institute of Mineralogy, Westphalian Wilhelms-University, Corrensstr. 24, 48149, Münster, Germany
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, Westphalian Wilhelms-University, Waldeyerstr. 30, 48149, Münster, Germany
| | - Till Dammaschke
- Department of Periodontology and Operative Dentistry, Westphalian Wilhelms-University, Waldeyerstr. 30, 48149, Münster, Germany.
| |
Collapse
|
27
|
Teng C, Tong Z, He Q, Zhu H, Wang L, Zhang X, Wei W. Mesenchymal Stem Cells–Hydrogel Microspheres System for Bone Regeneration in Calvarial Defects. Gels 2022; 8:gels8050275. [PMID: 35621573 PMCID: PMC9141522 DOI: 10.3390/gels8050275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
The repair of large bone defects in clinic is a challenge and urgently needs to be solved. Tissue engineering is a promising therapeutic strategy for bone defect repair. In this study, hydrogel microspheres (HMs) were fabricated to act as carriers for bone marrow mesenchymal stem cells (BMSCs) to adhere and proliferate. The HMs were produced by a microfluidic system based on light-induced gelatin of gelatin methacrylate (GelMA). The HMs were demonstrated to be biocompatible and non-cytotoxic to stem cells. More importantly, the HMs promoted the osteogenic differentiation of stem cells. In vivo, the ability of bone regeneration was studied by way of implanting a BMSC/HM system in the cranial defect of rats for 8 weeks. The results confirmed that the BMSC/HM system can induce superior bone regeneration compared with both the HMs alone group and the untreated control group. This study provides a simple and effective research idea for bone defect repair, and the subsequent optimization study of HMs will provide a carrier material with application prospects for tissue engineering in the future.
Collapse
Affiliation(s)
- Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Qiulin He
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Lu Wang
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China;
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (X.Z.); (W.W.)
| | - Wei Wei
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
- Correspondence: (X.Z.); (W.W.)
| |
Collapse
|
28
|
Meyer F, Enax J, Amaechi BT, Limeback H, Fabritius HO, Ganss B, Pawinska M, Paszynska E. Hydroxyapatite as Remineralization Agent for Children's Dental Care. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.859560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Children are prone to develop dental caries. This is supported by epidemiological data confirming early childhood caries (ECC) as a highly prevalent disease affecting more than every second child worldwide. ECC is known to result from an imbalance between re- and demineralization where demineralization dominates due to frequent acid production by cariogenic bacteria present in oral biofilms. The application of oral care formulations containing remineralizing agents helps to prevent dental caries. As young children are sensitive and usually swallow (intended or unintended) a majority of toothpaste or other oral care products during daily dental care, all ingredients, especially the actives, should be non-toxic. Biomimetic hydroxyapatite [HAP; Ca5(PO4)3(OH)] is known to have favorable remineralizing properties combined with an excellent biocompatibility, i.e., it is safe if accidently swallowed. Several clinical trials as well as in situ and in vitro studies have shown that HAP remineralizes enamel and dentin. Remineralization occurs due to deposition of HAP particles on tooth surfaces forming mineral-mineral bridges with enamel crystals, but also indirectly through calcium and phosphate ions release as well as HAP's buffering properties in acidic environments (i.e., in plaque). HAP induces a homogenous remineralization throughout the subsurface enamel lesions. This review summarizes the current evidence showing HAP as an effective remineralizing agent in oral care products for children. Additional studies showing also further beneficial effects of HAP such as the reduction of biofilm formation and the relief of hypersensitivity in children with molar incisor hypomineralization (MIH). It can be concluded that HAP is an effective and safe remineralizing agent for child dental care.
Collapse
|
29
|
Schestakow A, Pütz N, Guth MS, Eisenmenger TA, Dudek J, Hannig M. Influence of a hydroxyapatite suspension on 48-h dental biofilm formation in-situ. Arch Oral Biol 2022; 136:105388. [DOI: 10.1016/j.archoralbio.2022.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
|
30
|
Application of Selected Biomaterials and Stem Cells in the Regeneration of Hard Dental Tissue in Paediatric Dentistry-Based on the Current Literature. NANOMATERIALS 2021; 11:nano11123374. [PMID: 34947723 PMCID: PMC8709498 DOI: 10.3390/nano11123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
Currently, the development of the use of biomaterials and their application in medicine is causing rapid changes in the fields of regenerative dentistry. Each year, new research studies allow for the discovery of additional possibilities of dental tissue restoration. The structure and functions of teeth are complex. They consist of several diverse tissues that need to act together to ensure the tooth’s function and durability. The integrity of a tooth’s enamel, dentin, cementum, and pulp tissue allows for successful mastication. Biomaterials that are needed in dentistry must withstand excessive loading forces, be biocompatible with the hosts’ tissues, and stable in the oral cavity environment. Moreover, each tooth’s tissue, as well as aesthetic qualities in most cases, should closely resemble the natural dental tissues. This is why tissue regeneration in dentistry is such a challenge. This scientific research focuses on paediatric dentistry, its classification of caries, and the use of biomaterials in rebuilding hard dental tissues. There are several methods described in the study, including classical conservative methods such as caries infiltration or stainless-steel crowns. Several clinical cases are present, allowing a reader to better understand the described methods. Although the biomaterials mentioned in this work are artificial, there is currently ongoing research regarding clinical stem cell applications, which have a high potential for becoming one of the most common techniques of lost dental-tissue regeneration in the near future. The current state of stem cell development is mentioned, as well as the various methods of its possible application in dentistry.
Collapse
|
31
|
Teng NC, Pandey A, Hsu WH, Huang CS, Lee WF, Lee TH, Yang TCK, Yang TS, Yang JC. Rehardening and the Protective Effect of Gamma-Polyglutamic Acid/Nano-Hydroxyapatite Paste on Surface-Etched Enamel. Polymers (Basel) 2021; 13:4268. [PMID: 34883772 PMCID: PMC8659594 DOI: 10.3390/polym13234268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Many revolutionary approaches are on the way pertaining to the high occurrence of tooth decay, which is an enduring challenge in the field of preventive dentistry. However, an ideal dental care material has yet to be fully developed. With this aim, this research reports a dramatic enhancement in the rehardening potential of surface-etched enamels through a plausible synergistic effect of the novel combination of γ-polyglutamic acid (γ-PGA) and nano-hydroxyapatite (nano-HAp) paste, within the limitations of the study. The percentage of recovery of the surface microhardness (SMHR%) and the surface parameters for 9 wt% γ-PGA/nano-HAp paste on acid-etched enamel were investigated with a Vickers microhardness tester and an atomic force microscope, respectively. This in vitro study demonstrates that γ-PGA/nano-HAp treatment could increase the SMHR% of etched enamel to 39.59 ± 6.69% in 30 min. To test the hypothesis of the rehardening mechanism and the preventive effect of the γ-PGA/nano-HAp paste, the surface parameters of mean peak spacing (Rsm) and mean arithmetic surface roughness (Ra) were both measured and compared to the specimens subjected to demineralization and/or remineralization. After the treatment of γ-PGA/nano-HAp on the etched surface, the reduction in Rsm from 999 ± 120 nm to 700 ± 80 nm suggests the possible mechanism of void-filling within a short treatment time of 10 min. Furthermore, ΔRa-I, the roughness change due to etching before remineralization, was 23.15 ± 3.23 nm, while ΔRa-II, the roughness change after remineralization, was 11.99 ± 3.90 nm. This statistically significant reduction in roughness change (p < 0.05) implies a protective effect against the demineralization process. The as-developed novel γ-PGA/nano-HAp paste possesses a high efficacy towards tooth microhardness rehardening, and a protective effect against acid etching.
Collapse
Affiliation(s)
- Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Aditi Pandey
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
| | - Wei-Hsin Hsu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; (W.-H.H.); (T.C.-K.Y.)
| | - Ching-Shuan Huang
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Tzu-Hsin Lee
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; (W.-H.H.); (T.C.-K.Y.)
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11052, Taiwan
- Research Center of Digital Oral Science and Technology, Taipei Medical University, Taipei 11052, Taiwan
| |
Collapse
|