1
|
Almeida MM, Gonçalves NPF, Gameiro T, Alves Z, Labrincha JA, Novais RM. 3D-printing bauxite residue/fly ash-containing geopolymers as promising metal sorbents for water treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:35-44. [PMID: 39265430 DOI: 10.1016/j.wasman.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Herein, we demonstrate for the first time the feasibility of employing significant amounts (up to 80 wt%) of unexplored industrial wastes (red mud and biomass fly ash) in the production of highly porous 3D-printed geopolymer lattices envisioned for wastewater treatment applications. This without compromising the mechanical performance of the geopolymers relative to those obtained using commercial precursors. The impact of the fly ash incorporation content in the fresh-state (calorimetric and reological characterization) and hardened-state (porosity and mechanical strength) properties of the produced structures was evaluated. Moreover, the influence of key printing parameters, including nozzle diameter and geometry alignment, on the resulting properties of the lattices was also evaluated. The most promising compositions were then evaluated as lead sorbents under continuous flow. The waste-based 3D-printed lattices showed remarkable adsorption ability reaching >95 % removal efficiency after 2 h. This sustainable strategy is in line with the United Nations sustainable development goals and the transition to a circular economy, reducing the consumption of natural resources and simultaneously contributing to reducing water pollution.
Collapse
Affiliation(s)
- Mariana M Almeida
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Nuno P F Gonçalves
- Dept. of Chemistry/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Gameiro
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Zélia Alves
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João A Labrincha
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui M Novais
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Nartowska E, Podlasek A, Vaverková MD, Koda E, Jakimiuk A, Kowalik R, Kozłowski T. Mobility of Zn and Cu in Bentonites: Implications for Environmental Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2957. [PMID: 38930324 PMCID: PMC11205400 DOI: 10.3390/ma17122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The aim of this study was to evaluate the mobility of copper (Cu) and zinc (Zn) and their impact on the properties of bentonites and unfrozen water content. Limited research in this area necessitates further analysis to prevent the negative effects of metal interactions on bentonite effectiveness. Tests involved American (SWy-3, Stx-1b) and Slovak (BSvk) bentonite samples with Zn or Cu ion exchange. Sequential extraction was performed using the Community Bureau of Reference (BCR) method. Elemental content was analyzed via inductively coupled plasma optical emission spectrometry (ICP-OES). Unfrozen water content was measured using nuclear magnetic resonance (1H-NMR) and differential scanning calorimetry (DSC). Results showed a significant influence of the main cation (Zn or Cu) on ion mobility, with toxic metal concentrations increasing mobility and decreasing residual fractions. Mobile Zn fractions increased with larger particle diameters, lower clay content, and shorter interplanar spacing, while the opposite was observed for Cu. Zn likely accumulated in larger clay pores, while Cu was immobilized in the bentonite complex. The stability of Zn or Cu ions increased with higher clay content or specific surface area. Residual Zn or Cu fractions were highest in uncontaminated bentonites with higher unfrozen water content, suggesting the potential formation of concentrated solutions in sub-zero temperatures, posing a threat to the clay-water environment, especially in cold regions.
Collapse
Affiliation(s)
- Edyta Nartowska
- Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 25-314 Kielce, Poland; (R.K.); (T.K.)
| | - Anna Podlasek
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (A.P.); (M.D.V.); (E.K.); (A.J.)
| | - Magdalena Daria Vaverková
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (A.P.); (M.D.V.); (E.K.); (A.J.)
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Eugeniusz Koda
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (A.P.); (M.D.V.); (E.K.); (A.J.)
| | - Aleksandra Jakimiuk
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (A.P.); (M.D.V.); (E.K.); (A.J.)
| | - Robert Kowalik
- Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 25-314 Kielce, Poland; (R.K.); (T.K.)
| | - Tomasz Kozłowski
- Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 25-314 Kielce, Poland; (R.K.); (T.K.)
| |
Collapse
|
3
|
Clausi M, Savino S, Cangialosi F, Eramo G, Fornaro A, Quatraro L, Pinto D, D'Accolti L. Pollutants abatement in aqueous solutions with geopolymer catalysts: A photo fenton case. CHEMOSPHERE 2023; 344:140333. [PMID: 37813246 DOI: 10.1016/j.chemosphere.2023.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Environmental pollution is a serious threat to human health and the natural environment, and it has aroused widespread concern. One of the most effective processes in the removal of pollutants from wastewater is the Fenton reaction. This process is based on the production of highly reactive •OH radicals due to the rapid reaction between Iron ions and hydrogen peroxide under acidic conditions. The hydroxyl radical has a high oxidation potential of E°(•OH/H2O) = 2.8 V/SHE at acidic pH, so they are extremely reactive and non-selective oxidizing agent towards organic contaminants in wastewater. In order to avoid the drawbacks of a standard Fenton reaction, a photo Fenton reaction has been tested working at neutral pH in water in the removal of refractory pollutants. For the first time, a heterogeneous system was experimented, impregnating porous metakaolin-based geopolymers, obtained by using hydrogen peroxide and vegetable oil in different ratios, as foaming agents, with iron working as photocatalyst. The dirty wastewater as scrubber water (SCRW) and liquid fraction of digestate (LFD) were tested obtaining 40-90% abatement of Total Carbon Content.
Collapse
Affiliation(s)
- Marina Clausi
- Earth and Geoenvironmental Sciences Department, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Stefano Savino
- Chemistry Department, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | | | - Giacomo Eramo
- Earth and Geoenvironmental Sciences Department, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Antonio Fornaro
- Lab Service Analytica S.R.L., Via Emilia, 51/C, 40011, Anzola dell'Emilia, Italy
| | - Luca Quatraro
- T & A - Tecnologia e Ambiente srl, 70017, Putignano, BA, Italy
| | - Daniela Pinto
- Earth and Geoenvironmental Sciences Department, University of Bari, Via Orabona 4, 70125, Bari, Italy.
| | - Lucia D'Accolti
- Chemistry Department, University of Bari, Via Orabona 4, 70125, Bari, Italy; CSGI -Center for Colloid and Surface Science Zona Osmannoro, Via della Lastruccia, 3, 50019, Zona Osmannoro, FI, Italy.
| |
Collapse
|
4
|
Hegyi A, Petcu C, Ciobanu AA, Calatan G, Bradu A. Development of Clay-Composite Plasters Integrating Industrial Waste. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4903. [PMID: 37512178 PMCID: PMC10381511 DOI: 10.3390/ma16144903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
This research investigates the feasibility of developing clay composites using natural materials and incorporating waste by-products suitable for plastering diverse support structures. The study identified a versatile composition suitable for a wide range of support materials and explored the potential of revaluing industrial waste and by-products by reintegrating them into the Circular Economy. The experimental investigation outlines the process of evaluating the influence of different raw materials on the performance of the clay composite. The findings confirm that using limestone sludge and fly ash as additives to clay contributes to reducing axial shrinkage and increasing mechanical strengths, respectively. The optimal percentage of additives for the clay used are identified and provided. Using hydraulic lime as a partial substitute for clay reduces the apparent density of dried clay composites, axial shrinkage, and fissures formation while improving adhesion to the substrate. Introducing dextrin into this mix increases the apparent density of the hardened plaster while keeping axial shrinkage below the maximum threshold indicated by the literature. Mechanical strengths improved, and better compatibility in terms of adhesion to the support was achieved, with composition S3 presenting the best results and a smooth, fissure-free plastered surface after drying.
Collapse
Affiliation(s)
- Andreea Hegyi
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Florești, 400524 Cluj-Napoca, Romania
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
| | - Cristian Petcu
- NIRD URBAN-INCERC Bucharest, 266 Șoseaua Pantelimon, 021652 Bucharest, Romania
| | | | - Gabriela Calatan
- Office for Pedological and Agrochemical Studies Cluj-Napoca, 1 Fagului Str., 400483 Cluj-Napoca, Romania
| | - Aurelia Bradu
- NIRD URBAN-INCERC Iaşi Branch, 6 Anton Şesan Street, 700048 Iaşi, Romania
| |
Collapse
|
5
|
Maged A, El-Fattah HA, Kamel RM, Kharbish S, Elgarahy AM. A comprehensive review on sustainable clay-based geopolymers for wastewater treatment: circular economy and future outlook. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:693. [PMID: 37204517 DOI: 10.1007/s10661-023-11303-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
In the present era of significant industrial development, the presence and dispersal of countless water contaminants in water bodies worldwide have rendered them unsuitable for various forms of life. Recently, the awareness of environmental sustainability for wastewater treatment has increased rapidly in quest of meeting the global water demand. Despite numerous conventional adsorbents on deck, exploring low-cost and efficient adsorbents is interesting. Clays and clays-based geopolymers are intensively used as natural, alternative, and promising adsorbents to meet the goals for combating climate change and providing low carbon, heat, and power. In this narrative work, the present review highlights the persistence of some inorganic/organic water pollutants in aquatic bodies. Moreover, it comprehensively summarizes the advancement in the strategies associated with synthesizing clays and their based geopolymers, characterization techniques, and applications in water treatment. Furthermore, the critical challenges, opportunities, and future prospective regarding the circular economy are additionally outlined. This review expounded on the ongoing research studies for leveraging these eco-friendly materials to address water decontamination. The adsorption mechanisms of clays-based geopolymers are successfully presented. Therefore, the present review is believed to deepen insights into wastewater treatment using clays and clays-based geopolymers as a groundbreaking aspect in accord with the waste-to-wealth concept toward broader sustainable development goals.
Collapse
Affiliation(s)
- Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Hadeer Abd El-Fattah
- Chemistry Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Rasha M Kamel
- Chemistry Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Sherif Kharbish
- Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt
| | - Ahmed M Elgarahy
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
6
|
Hegyi A, Lăzărescu AV, Ciobanu AA, Ionescu BA, Grebenişan E, Chira M, Florean C, Vermeşan H, Stoian V. Study on the Possibilities of Developing Cementitious or Geopolymer Composite Materials with Specific Performances by Exploiting the Photocatalytic Properties of TiO 2 Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103741. [PMID: 37241366 DOI: 10.3390/ma16103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Starting from the context of the principles of Sustainable Development and Circular Economy concepts, the paper presents a synthesis of research in the field of the development of materials of interest, such as cementitious composites or alkali-activated geopolymers. Based on the reviewed literature, the influence of compositional or technological factors on the physical-mechanical performance, self-healing capacity and biocidal capacity obtained was analyzed. The inclusion of TiO2 nanoparticles in the matrix increase the performances of cementitious composites, producing a self-cleaning capacity and an anti-microbial biocidal mechanism. As an alternative, the self-cleaning capacity can be achieved through geopolymerization, which provides a similar biocidal mechanism. The results of the research carried out indicate the real and growing interest for the development of these materials but also the existence of some elements still controversial or insufficiently analyzed, therefore concluding the need for further research in these areas. The scientific contribution of this study consists of bringing together two apparently distinct research directions in order to identify convergent points, to create a favorable framework for the development of an area of research little addressed so far, namely, the development of innovative building materials by combining improved performance with the possibility of reducing environmental impact, awareness and implementation of the concept of a Circular Economy.
Collapse
Affiliation(s)
- Andreea Hegyi
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | | | | | | | - Elvira Grebenişan
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | - Mihail Chira
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | - Carmen Florean
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
- NIRD URBAN-INCERC Iaşi Branch, 6 Anton Şesan Street, 700048 Iaşi, Romania
| | - Horaţiu Vermeşan
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
| | - Vlad Stoian
- Department of Microbiology, Facutly of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Drabczyk A, Kudłacik-Kramarczyk S, Korniejenko K, Figiela B, Furtos G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093478. [PMID: 37176360 PMCID: PMC10179758 DOI: 10.3390/ma16093478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The demand for geopolymer materials is constantly growing. This, in turn, translates into an increasing number of studies aimed at developing new approaches to the methodology of geopolymer synthesis. The range of potential applications of geopolymers can be increased by improving the properties of the components. Future directions of studies on geopolymer materials aim at developing geopolymers showing excellent mechanical properties but also demonstrating significant improvement in thermal, magnetic, or sorption characteristics. Additionally, the current efforts focus not only on the materials' properties but also on obtaining them as a result of environment-friendly approaches performed in line with circular economy assumptions. Scientists look for smart and economical solutions such that a small amount of the modifier will translate into a significant improvement in functional properties. Thus, special attention is paid to the application of nanomaterials. This article presents selected nanoparticles incorporated into geopolymer matrices, including carbon nanotubes, graphene, nanosilica, and titanium dioxide. The review was prepared employing scientific databases, with particular attention given to studies on geopolymer nanocomposites. The purpose of this review article is to discuss geopolymer nanocomposites in the context of a sustainable development approach. Importantly, the main focus is on the influence of these nanomaterials on the physicochemical properties of geopolymer nanocomposites. Such a combination of geopolymer technology and nanotechnology seems to be promising in terms of preparation of nanocomposites with a variety of potential uses.
Collapse
Affiliation(s)
- Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland
| | - Kinga Korniejenko
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland
| | - Beata Figiela
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland
| | - Gabriel Furtos
- "Raluca Ripan" Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Karuppaiyan J, Mullaimalar A, Jeyalakshmi R. Adsorption of dyestuff by nano copper oxide coated alkali metakaoline geopolymer in monolith and powder forms: Kinetics, isotherms and microstructural analysis. ENVIRONMENTAL RESEARCH 2023; 218:115002. [PMID: 36509117 DOI: 10.1016/j.envres.2022.115002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
To remove contaminants and pollutants from wastewater systems, adsorbents are widely used. Geopolymers offer a convenient alternative as adsorbents in the wastewater treatment system as they are low-cost, environmentally friendly, and safer. A new adsorbent material prepared by coating nano copper oxide on the surface of alkali-activated metakaolin showed a higher ability to remove methylene blue (MB) dye from wastewater, thus making them attractive in dye removal applications. First, nano copper oxide was prepared by sol gel method and metakaolin geopolymer was produced using sodium silicate solution having a Ms value of 1.1 (M). Afterwards, nano copper oxide (MC) was coated on the surface of the geopolymer. The ability of MB dye to bind to both pristine (Mp, MCp) and powder forms (Mpr, MCpr) of the geopolymer was evaluated. X-ray diffraction revealed that the halo found at 27.40°-31.077° (2θvalue) in both samples related to amorphous gel's composition and the major peaks of copper oxide in MCpr were sited at a 2θ value of 35.45° and 38.88°.The dye removal efficiency can be inferred from the increased adsorption capacity of 11.9 mg/g (Mp) and 14.4 mg/g (MCp) for the monolith form and 81.43 mg/g (Mpr) and 87.82 mg/g (MCpr) for the powder form. The adsorption of reused active sites was 73% for Mpr and 83% for MCpr up to the fifth cycle after regeneration by heat treatment at 400 °C. The models that best suited the adsorption data were pseudo-second-order and Freundlich isotherms, which indicated possible chemisorption with intra-particle diffusion. Furthermore, the binding energy is shifted to lower value in XPS spectra due to dye adsorption arising from electrostatic attraction. A higher electron density is formed due to interaction with an equal contribution of silanol Si-O-H and Si-O-Na/Cu(O1s). The adsorbents are effective over a wide pH range and their improved recycling capability increases their applications for a wide range of uses.
Collapse
Affiliation(s)
- Janani Karuppaiyan
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| | - A Mullaimalar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| | - R Jeyalakshmi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
9
|
Luhar I, Luhar S, Abdullah MMAB, Sandu AV, Vizureanu P, Razak RA, Burduhos-Nergis DD, Imjai T. Solidification/Stabilization Technology for Radioactive Wastes Using Cement: An Appraisal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:954. [PMID: 36769959 PMCID: PMC9917680 DOI: 10.3390/ma16030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Across the world, any activity associated with the nuclear fuel cycle such as nuclear facility operation and decommissioning that produces radioactive materials generates ultramodern civilian radioactive waste, which is quite hazardous to human health and the ecosystem. Therefore, the development of effectual and commanding management is the need of the hour to make certain the sustainability of the nuclear industries. During the management process of waste, its immobilization is one of the key activities conducted with a view to producing a durable waste form which can perform with sustainability for longer time frames. The cementation of radioactive waste is a widespread move towards its encapsulation, solidification, and finally disposal. Conventionally, Portland cement (PC) is expansively employed as an encapsulant material for storage, transportation and, more significantly, as a radiation safeguard to vigorous several radioactive waste streams. Cement solidification/stabilization (S/S) is the most widely employed treatment technique for radioactive wastes due to its superb structural strength and shielding effects. On the other hand, the eye-catching pros of cement such as the higher mechanical strength of the resulting solidified waste form, trouble-free operation and cost-effectiveness have attracted researchers to employ it most commonly for the immobilization of radionuclides. In the interest to boost the solidified waste performances, such as their mechanical properties, durability, and reduction in the leaching of radionuclides, vast attempts have been made in the past to enhance the cementation technology. Additionally, special types of cement were developed based on Portland cement to solidify these perilous radioactive wastes. The present paper reviews not only the solidification/stabilization technology of radioactive wastes using cement but also addresses the challenges that stand in the path of the design of durable cementitious waste forms for these problematical functioning wastes. In addition, the manuscript presents a review of modern cement technologies for the S/S of radioactive waste, taking into consideration the engineering attributes and chemistry of pure cement, cement incorporated with SCM, calcium sulpho-aluminate-based cement, magnesium-based cement, along with their applications in the S/S of hazardous radioactive wastes.
Collapse
Affiliation(s)
- Ismail Luhar
- Department of Civil Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Rajasthan 333001, India
| | - Salmabanu Luhar
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia
| | | | - Andrei Victor Sandu
- Faculty of Material Science and Engineering, Gheorghe Asachi Technical University of Iasi, 41 D. Mangeron St., 700050 Iasi, Romania
- Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
- National Institute for Research and Development for Environmental Protection INCDPM, 294 Splaiul Independentei, 060031 Bucharest, Romania
| | - Petrica Vizureanu
- Faculty of Material Science and Engineering, Gheorghe Asachi Technical University of Iasi, 41 D. Mangeron St., 700050 Iasi, Romania
- Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
| | - Rafiza Abdul Razak
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia
| | - Dumitru Doru Burduhos-Nergis
- Faculty of Material Science and Engineering, Gheorghe Asachi Technical University of Iasi, 41 D. Mangeron St., 700050 Iasi, Romania
| | - Thanongsak Imjai
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia
- School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
10
|
Photocatalytic activity of ZnO-PbS nanoscale toward Allura Red AC in an aqueous solution: Characterization and mechanism study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Salazar PA, Fernández CL, Luna-Galiano Y, Sánchez RV, Fernández-Pereira C. Physical, Mechanical and Radiological Characteristics of a Fly Ash Geopolymer Incorporating Titanium Dioxide Waste as Passive Fire Insulating Material in Steel Structures. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238493. [PMID: 36499995 PMCID: PMC9737161 DOI: 10.3390/ma15238493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/12/2023]
Abstract
This research analyzes whether a titanium dioxide waste (TiO2 waste) can be used as a source material for geopolymers with good fire resistance properties. Samples with different proportions were prepared, replacing fly ashes with titanium dioxide waste on geopolymers (0, 20, 30, 40 and 100% w/w). The activating solution has a Na2O/SiO2 molar ratio of 0.98. Physical (bulk density, moisture content and water absorption) and mechanical (superficial hardness and compressive strength) characteristics have been evaluated. In addition, their thermal behavior at high temperatures (fire resistance, compressive strength at elevated temperature and absorbed energy) has also been evaluated to see if they can be used as fire insulating materials. This work also studies the radiological activity of geopolymer materials. The replacement of FA with WTiO2 increases the bulk density due to its higher specific bulk density. The highest compressive strength values were obtained with a TiO2 waste content between 30 and 40% w/w. The compressive strength decreases at high temperatures, especially when more TiO2 waste is added. When the amount of TiO2 waste is increased, so is the plateau of evaporation, and this, in turn, increases the resistance to fire. Geopolymers containing FA and TiO2 waste do not present radiological problems, although, when the TiO2 waste is increased, the activity index of the geopolymer also rises.
Collapse
|
12
|
Hemmatpour P, Nezamzadeh-Ejhieh A. A Z-scheme CdS/BiVO 4 photocatalysis towards Eriochrome black T: An experimental design and mechanism study. CHEMOSPHERE 2022; 307:135925. [PMID: 35952786 DOI: 10.1016/j.chemosphere.2022.135925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The synergistic photocatalytic activity was obtained when CdS and BiVO4 nanoparticles (NPs) were coupled. The samples were characterized by XRD, FTIR, SEM-EDX, and UV-DRS techniques, and their pHpzc was also estimated. The crystallite size of the coupled sample was estimated at 37.3 and 12.5 nm by the Scherrer and Williamson-Hall equations, respectively. The band gaps and the potential positions of VB and CB levels of the semiconductors used were determined. The highest boosted photocatalytic activity was obtained when the CdS: BiVO4 mole ratio was 1:1. RSM studied the simultaneous interactions between the selected variables, and the model F-value of 110.61> F0.05, 14, 13 = 2.4 accompanied by the LOF F-value of 5.20 < F0.05, 10, 3 = 8.79 confirm the model significance. The correlation coefficients of R2 = 0.9861, the adjusted R2 = 0.9710, and the predicted R2 = 0.9417, also establish a satisfactory model for processing the experimental data. In the scavenging agent study, photodegradation mechanisms were suggested; among them, the direct Z-scheme mechanism is more favorable for illustrating the EBT-photodegradation by the binary CdS-BiVO4 photocatalyst. The proposed system, especially the direct Z-scheme mechanism, is suitable as a potential hydrogen production system.
Collapse
Affiliation(s)
- Pooneh Hemmatpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box, 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box, 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
13
|
Bilici S, Carvalheiras J, Labrincha JA, Novais RM. Evaluation of the Nature and Concentration of the Surfactant on the Properties of Red Mud/Metakaolin Porous Geopolymers Foamed with Aluminium. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7486. [PMID: 36363075 PMCID: PMC9657241 DOI: 10.3390/ma15217486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The chemical foaming technique is possibly the most common method of producing porous geopolymers. Despite this, to date, the role of the content and type of surfactant on the pore size distribution of porous geopolymers is not fully perceived, as constant surfactant dosages are usually employed. In addition, the comparison of literature studies is challenging since a distinct mixture of designs is employed. This investigation intends to provide additional insights on the topic, focusing on synthesizing red mud/metakaolin geopolymer foams and envisioning their use in thermal insulating applications. Various mixtures were prepared using three commercially available surfactants, namely Hostapur OSB, sodium dodecyl sulfate (SDS), and Triton X114. The content of the surfactant (0.025, 0.05, and 0.075 wt.%) and the amount of the foaming agent (aluminum powder, Al; 0.05, 0.075, and 0.10 wt.%) was modified, keeping the binder composition constant and the physical properties of the produced geopolymers were characterized. Results show that the combination between sodium dodecyl sulfate (0.025 wt.%) and aluminum (0.10 wt.%) leads to the strongest reduction in the foam density, the lowest value here reported being -400 kg/m3. On the other hand, samples produced with Hostapur OSB have much higher open porosity (up to 47.7%) and water absorption (up to 80.4%) values, showing that this surfactant leads to a pore network with higher connectivity. In addition, the microstructure of the foams, particularly pore morphology (size and shape) and connectivity between the produced pores are highly dependent on the type of surfactant, sodium dodecyl sulfate generating coarser pore size distribution with round, but mostly closed pores, while a narrower pore size distribution coupled with smaller size pores is seen with the Hostapur. These results suggest the feasibility of tuning the foams' properties (porosity and mechanical performance) according to the application by the proper combination of the type of surfactant and their concentration, enabling their use as thermal and acoustic insulators or as filters/membranes in wastewater treatment systems.
Collapse
Affiliation(s)
- Senem Bilici
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Civil Engineering, Yildiz Technical University, 34220 Istanbul, Türkiye
- Department of Construction Technology, Istanbul Aydin University, 34295 Istanbul, Türkiye
| | - João Carvalheiras
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João A. Labrincha
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui M. Novais
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Matsimbe J, Dinka M, Olukanni D, Musonda I. A Bibliometric Analysis of Research Trends in Geopolymer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6979. [PMID: 36234318 PMCID: PMC9572593 DOI: 10.3390/ma15196979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Geopolymer is an inorganic material formed through the chemical reaction of an aluminosilicate precursor and an alkaline or acidic activating solution. It is seen as a green new alternative binder to ordinary Portland cement (OPC) for sustainable infrastructure development. The strength of the unary or blended geopolymer product is dependent on the composition and properties of the polymeric gel influenced by the ratios of Al2O3/SiO2, CaO/SiO2, CaO/(SiO2 + Al2O3), Na2SiO3/NaOH, SiO2/Na2O, and liquid/binder (L/B). Essential scientific inquiry has been progressively addressed by utilizing expert assessment and research metrics. The network visualization of bibliometric co-occurrence and co-citations is of particular significance. The present study aims to highlight the trends and progress of the most influential publication sources, keywords, authors, articles, and countries in geopolymer research in the last 10 years. Bibliometric data were retrieved through Scopus and visualized in VOSviewer to create bibliometric networks. The yearly distribution and growth trends (April 2011-2022) of geopolymer, geopolymer mortar, and geopolymer concrete before (after) applying inclusion criteria were from 754 to 9887 (5186), 47 to 1374 (866), and 145 to 3721 (2253), respectively, attributed to the discoveries in more precursor materials such as laterite and the growing interest in fire and heat-resistant structures, water and wastewater treatment, cement and concrete, and brick manufacturing. The top three journals in terms of prestige for geopolymer publications were the Journal of Hazardous Materials with an impact factor equal to 14.224 and h-index equal to 307, Cement and Concrete Research with an impact factor equal to 11.958 and h-index equal to 239, and the Journal of Cleaner Production with an impact factor equal to 11.072 and h-index equal to 232. The top three journals in terms of average citation per document were Cement and Concrete Research (135.75), Materials and Design (75), and Cement and Concrete Composites (68.35). Keywords such as "geopolymers", "inorganic polymer", "geopolymer", "compressive strength", "fly ash", and "geopolymer concrete" had the highest occurrences in publications. John Provis-University of Sheffield, Prinya Chindaprasirt-Khon Kaen University, and Jay Sanjayan-Swinburne University of Technology had the highest total citations of 6377, 5626, and 4311, respectively. The highest number of publications were from China, India, Australia, the United States of America, and Malaysia. The bibliometric findings from this study can act as a tool for academicians and policymakers to exchange research expertise, collaborate on novel geopolymer research, and create innovative joint ventures.
Collapse
Affiliation(s)
- Jabulani Matsimbe
- Department of Civil Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2006, South Africa
- Centre for Applied Research and Innovation in the Built Environment (CARINBE), Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa
- Department of Mining Engineering, Malawi University of Business and Applied Sciences, P/Bag 303, Chichiri, Blantyre 3, Malawi
| | - Megersa Dinka
- Department of Civil Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2006, South Africa
| | - David Olukanni
- Department of Civil Engineering, Covenant University, 10 Idiroko Road, Ota 112104, Ogun State, Nigeria
| | - Innocent Musonda
- Centre for Applied Research and Innovation in the Built Environment (CARINBE), Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa
| |
Collapse
|
15
|
Matsimbe J, Dinka M, Olukanni D, Musonda I. Geopolymer: A Systematic Review of Methodologies. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196852. [PMID: 36234194 PMCID: PMC9571997 DOI: 10.3390/ma15196852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 05/24/2023]
Abstract
The geopolymer concept has gained wide international attention during the last two decades and is now seen as a potential alternative to ordinary Portland cement; however, before full implementation in the national and international standards, the geopolymer concept requires clarity on the commonly used definitions and mix design methodologies. The lack of a common definition and methodology has led to inconsistency and confusion across disciplines. This review aims to clarify the most existing geopolymer definitions and the diverse procedures on geopolymer methodologies to attain a good understanding of both the unary and binary geopolymer systems. This review puts into perspective the most crucial facets to facilitate the sustainable development and adoption of geopolymer design standards. A systematic review protocol was developed based on the Preferred Reporting of Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and applied to the Scopus database to retrieve articles. Geopolymer is a product of a polycondensation reaction that yields a three-dimensional tecto-aluminosilicate matrix. Compared to unary geopolymer systems, binary geopolymer systems contain complex hydrated gel structures and polymerized networks that influence workability, strength, and durability. The optimum utilization of high calcium industrial by-products such as ground granulated blast furnace slag, Class-C fly ash, and phosphogypsum in unary or binary geopolymer systems give C-S-H or C-A-S-H gels with dense polymerized networks that enhance strength gains and setting times. As there is no geopolymer mix design standard, most geopolymer mix designs apply the trial-and-error approach, and a few apply the Taguchi approach, particle packing fraction method, and response surface methodology. The adopted mix designs require the optimization of certain mixture variables whilst keeping constant other nominal material factors. The production of NaOH gives less CO2 emission compared to Na2SiO3, which requires higher calcination temperatures for Na2CO3 and SiO2. However, their usage is considered unsustainable due to their caustic nature, high energy demand, and cost. Besides the blending of fly ash with other industrial by-products, phosphogypsum also has the potential for use as an ingredient in blended geopolymer systems. The parameters identified in this review can help foster the robust adoption of geopolymer as a potential "go-to" alternative to ordinary Portland cement for construction. Furthermore, the proposed future research areas will help address the various innovation gaps observed in current literature with a view of the environment and society.
Collapse
Affiliation(s)
- Jabulani Matsimbe
- Department of Civil Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2006, South Africa
- Centre for Applied Research and Innovation in the Built Environment (CARINBE), Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa
- Department of Mining Engineering, Malawi University of Business and Applied Sciences, P/Bag 303, Chichiri, Blantyre 3, Malawi
| | - Megersa Dinka
- Department of Civil Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2006, South Africa
| | - David Olukanni
- Department of Civil Engineering, Covenant University, 10 Idiroko Road, Ota 112104, Ogun State, Nigeria
| | - Innocent Musonda
- Centre for Applied Research and Innovation in the Built Environment (CARINBE), Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa
| |
Collapse
|
16
|
Vahabirad S, Nezamzadeh-Ejhieh A, Mirmohammadi M. The coupled BiOI/(BiO)2CO3 catalyst: Brief characterization, and study of its photocatalytic kinetics. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Vizureanu P. Future Trends in Advanced Materials and Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6554. [PMID: 36233886 PMCID: PMC9572364 DOI: 10.3390/ma15196554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The main objective of this Special Issue was to publish original high-quality research papers covering the most recent advances in materials properties, as well as comprehensive reviews addressing the relevant state-of-the-art topics in the area of materials processing, with relevant practical applications [...].
Collapse
Affiliation(s)
- Petrica Vizureanu
- Faculty of Material Science and Engineering, Gheorghe Asachi Technical University of Iasi, 41 D. Mangeron St., 700050 Iasi, Romania;
- Materials Science and Engineering Department, Technical Sciences Academy of Romania, Bulevardul Dacia 26, 030167 București, Romania
| |
Collapse
|
18
|
Yang K, Bu H, Zhang Y, Yu H, Huang S, Ke L, Hong P. Efficacy of simultaneous hexavalent chromium biosorption and nitrogen removal by the aerobic denitrifying bacterium Pseudomonas stutzeri YC-34 from chromium-rich wastewater. Front Microbiol 2022; 13:961815. [PMID: 35992714 PMCID: PMC9389319 DOI: 10.3389/fmicb.2022.961815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
The impact of high concentrations of heavy metals and the loss of functional microorganisms usually affect the nitrogen removal process in wastewater treatment systems. In the study, a unique auto-aggregating aerobic denitrifier (Pseudomonas stutzeri strain YC-34) was isolated with potential applications for Cr(VI) biosorption and reduction. The nitrogen removal efficiency and denitrification pathway of the strain were determined by measuring the concentration changes of inorganic nitrogen during the culture of the strain and amplifying key denitrification functional genes. The changes in auto-aggregation index, hydrophobicity index, and extracellular polymeric substances (EPS) characteristic index were used to evaluate the auto-aggregation capacity of the strain. Further studies on the biosorption ability and mechanism of cadmium in the process of denitrification were carried out. The changes in tolerance and adsorption index of cadmium were measured and the micro-characteristic changes on the cell surface were analyzed. The strain exhibited excellent denitrification ability, achieving 90.58% nitrogen removal efficiency with 54 mg/L nitrate-nitrogen as the initial nitrogen source and no accumulation of ammonia and nitrite-nitrogen. Thirty percentage of the initial nitrate-nitrogen was converted to N2, and only a small amount of N2O was produced. The successful amplification of the denitrification functional genes, norS, norB, norR, and nosZ, further suggested a complete denitrification pathway from nitrate to nitrogen. Furthermore, the strain showed efficient aggregation capacity, with the auto-aggregation and hydrophobicity indices reaching 78.4 and 75.5%, respectively. A large amount of protein-containing EPS was produced. In addition, the strain effectively removed 48.75, 46.67, 44.53, and 39.84% of Cr(VI) with the initial concentrations of 3, 5, 7, and 10 mg/L, respectively, from the nitrogen-containing synthetic wastewater. It also could reduce Cr(VI) to the less toxic Cr(III). FTIR measurements and characteristic peak deconvolution analysis demonstrated that the strain had a robust hydrogen-bonded structure with strong intermolecular forces under the stress of high Cr(VI) concentrations. The current results confirm that the novel denitrifier can simultaneously remove nitrogen and chromium and has potential applications in advanced wastewater treatment for the removal of multiple pollutants from sewage.
Collapse
|
19
|
Abstract
The discovery of an innovative category of inorganic geopolymer composites has generated extensive scientific attention and the kaleidoscopic development of their applications. The escalating concerns over global warming owing to emissions of carbon dioxide (CO2), a primary greenhouse gas, from the ordinary Portland cement industry, may hopefully be mitigated by the development of geopolymer construction composites with a lower carbon footprint. The current manuscript comprehensively reviews the rheological, strength and durability properties of geopolymer composites, along with shedding light on their recent key advancements viz., micro-structures, state-of-the-art applications such as the immobilization of toxic or radioactive wastes, digital geopolymer concrete, 3D-printed fly ash-based geopolymers, hot-pressed and foam geopolymers, etc. They have a crystal-clear role to play in offering a sustainable prospect to the construction industry, as part of the accessible toolkit of building materials—binders, cements, mortars, concretes, etc. Consequently, the present scientometric review manuscript is grist for the mill and aims to contribute as a single key note document assessing exhaustive research findings for establishing the viability of fly ash-based geopolymer composites as the most promising, durable, sustainable, affordable, user and eco-benevolent building materials for the future.
Collapse
|
20
|
A Scientometric Review on Mapping Research Knowledge for 3D Printing Concrete. MATERIALS 2022; 15:ma15144796. [PMID: 35888263 PMCID: PMC9319931 DOI: 10.3390/ma15144796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
The scientometric analysis is statistical scrutiny of books, papers, and other publications to assess the "output" of individuals/research teams, organizations, and nations, to identify national and worldwide networks, and to map the creation of new (multi-disciplinary) scientific and technological fields that would be beneficial for the new researchers in the particular field. A scientometric review of 3D printing concrete is carried out in this study to explore the different literature aspects. There are limitations in conventional and typical review studies regarding the capacity of such studies to link various elements of the literature accurately and comprehensively. Some major problematic phases in advanced level research are: co-occurrence, science mapping, and co-citation. The sources with maximum articles, the highly creative researchers/authors known for citations and publications, keywords co-occurrences, and actively involved domains in 3D printing concrete research are explored during the analysis. VOS viewer application analyses bibliometric datasets with 953 research publications were extracted from the Scopus database. The current study would benefit academics for joint venture development and sharing new strategies and ideas due to the graphical and statistical depiction of contributing regions/countries and researchers.
Collapse
|
21
|
Unravelling the Affinity of Alkali-Activated Fly Ash Cubic Foams towards Heavy Metals Sorption. MATERIALS 2022; 15:ma15041453. [PMID: 35207992 PMCID: PMC8877568 DOI: 10.3390/ma15041453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022]
Abstract
In this work, alkali-activated fly ash-derived foams were produced at room temperature by direct foaming using aluminum powder. The 1 cm3 foams (cubes) were then evaluated as adsorbents to extract heavy metals from aqueous solutions. The foams' selectivity towards lead, cadmium, zinc, and copper ions was evaluated in single, binary, and multicomponent ionic solutions. In the single ion assays, the foams showed much higher affinity towards lead, compared to the other heavy metals; at 10 ppm, the removal efficiency reached 91.9% for lead, 83.2% for cadmium, 74.6% for copper, and 64.6% for zinc. The greater selectivity for lead was also seen in the binary tests. The results showed that the presence of zinc is detrimental to cadmium and copper sorption, while for lead it mainly affects the sorption rate, but not the ultimate removal efficiency. In the multicomponent assays, the removal efficiency for all the heavy metals was lower than the values seen in the single ion tests. However, the superior affinity for lead was preserved. This study decreases the existing knowledge gap regarding the potential of alkali-activated materials to act as heavy metals adsorbents under different scenarios.
Collapse
|
22
|
Gao W. Porous Biomass Carbon Derived from Clivia miniata Leaves via NaOH Activation for Removal of Dye. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1285. [PMID: 35207834 PMCID: PMC8880077 DOI: 10.3390/ma15041285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Clivia miniata (CM), is an important ornamental plant and has been widely cultivated all over the world. However, there are no reports on Clivia miniata-based porous biomass carbon (CMBC). In this study, for the first time, CM leaves were used to generate porous biomass carbon via NaOH activation. The structures and surface characteristics were determined using scanning electron microscopy, N2 adsorption/desorption, TGA, FT-IR, X-ray diffraction, Raman and X-ray photoelectron spectra tests. CMBC has a large SSA (2716 m2/g) and a total pore volume of 1.95 cm3/g. To test the adsorption performance via adsorption experiments, the cationic and synthetic dye, malachite green (MG), was utilized as the adsorption model. The CMBC had a greatest adsorption capacity of 2622.9 mg/g at a pH value of 8 and had a fastest adsorption capacity of 1161.7 mg/g in the first 5 min. To explain MG adsorption into CMBC, the Freundlich isotherm and the pseudo-second-order kinetic model were used. The adsorption mechanism of MG was also investigated. After 10 cycles, the adsorption efficiency of CMBC to MG could still reach 85.3%. In summary, CMBC has excellent potential in dyeing wastewater pollution treatment.
Collapse
Affiliation(s)
- Wei Gao
- College of Landscape Architecture, Changchun University, Changchun 130000, China
| |
Collapse
|
23
|
Valorisation of Waste Glasses for the Development of Geopolymer Mortar—Properties and Applications: An Appraisal. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The current review paper studies the most noteworthy points in the fabrication of inorganic, eco-benign geopolymer mortar stressing the valorisation of Waste of Glasses (WG) about its properties and applications. Only a few studies are so far accessible on the topic, and therefore, more advanced studies in this respect will be valuable to construction industries and the research scientist, too. Mostly, the centre of attention on its valorisation with WG points a finger to its attitude to embrace the “conversion of wastes into best” strategy. Up until now, their character is neither well understood nor as embraced as OPC mortars. That is why this article reviews its confined literature with an aim to comprehend the valorisation of WG incorporation with geopolymer mortar, and it also reviews studies on its properties and applications, establishing it as a forthcoming constructive, productive, cost-effective, and sustainable large-scale construction material. The recommendations of this paper will be helpful for potential researchers on the topic. However, there are some challenges, such as curing impediments, occasionally practical antagonises of use, a restrained chain of supply, and a precondition for a sharp-eyed command of mixing design for preparing it for use in roadways to replace OPC counterparts in industry. When fabricated by employing abundantly available precursors, activators, and WG up to the standard superior control of varied properties, chiefly strength, durability, and the low-carbon footprints of alkali activators, GP mortars supplemented with WG are ground-breaking approaches to part of the prospect toolbox of sustainable and reasonably inexpensive construction materials. Finally, the paper identifies research work challenges, endorsement of utilisation, and most essentially the features of its properties and pertinent discussions for this promising new kind of valorised construction material.
Collapse
|