1
|
Li J, Xia Y, Zhang Z, Zhao X, Wang L, Huang J, She H, Li X, Wang Q. Regulating the Layer Stacking Configuration of CTF-TiO 2 Heterostructure for Improving the Photocatalytic CO 2 Reduction. Inorg Chem 2024; 63:19344-19354. [PMID: 39361911 DOI: 10.1021/acs.inorgchem.4c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, covalent triazine frameworks in eclipsed AA and staggered AB stacking modes are respectively used for the in-situ growth of TiO2, and two heterostructures are obtained. Due to the highly organized stacking of the molecular layer in CTF-AA that strengthens the interlayer interaction, the light absorption and carrier migration of CTF-AA/TiO2 are both enhanced in comparison to those of its component or CTF-AB/TiO2. Correspondently, the photocatalytic CO2 reduction reaction (CO2RR) of CTF-AA/TiO2 proffers 9.19 μmol·g-1·h-1 CH4 and 2.32 μmol·g-1·h-1 CO production, about 9.2 and 4.3 times greater than that of pristine TiO2, respectively. Even though the innate photoresponse of the triazine unit endows CTF-AB/TiO2 with augmented light capturing, its photocatalytic CO2 conversion is relatively insignificant. According to the analyses of the planar-averaged electron density difference and Bader charge, the unproductive CO2 efficiency might be due to the insufficient interfacial electron transfer from TiO2 to CTF-AB. Given that the ΔG (-3.22 eV) of CHO intermediate generation is lower than that of CO desorption (-1.23 eV), the reaction tends to further generate CH4 other than yielding CO. This study could shed fresh light over the reasonable design of effective photocatalytic heterostructures.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yu Xia
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhiting Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaolong Zhao
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lei Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingwei Huang
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Houde She
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinheng Li
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, The State Key Laboratory of Low Carbon, Catalysis and Carbon Dioxide Utilization, Suzhou Base of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qizhao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| |
Collapse
|
2
|
Yuan B, Liu Y, Qian H, Zhu R, Zhang C, Luan W. Synergistic effects of oxygen vacancies and mesoporous structures in amorphous C@TiO 2 for photocatalytic CO 2 reduction. iScience 2024; 27:110377. [PMID: 39055922 PMCID: PMC11269941 DOI: 10.1016/j.isci.2024.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, the theoretical calculations proves that the combination of oxygen vacancy and amorphous carbon films in TiO2 (VO-CT) can effectively reduce the energy bandgap and work function. The minimum Gibbs free energies required for the CO2RR reaction of VO-CT are 0.20 eV, which is lower than pure TiO2. The amorphous c@TiO2 nanomaterials with oxygen vacancy and mesoporous structures (VO-MCT) are prepared with the P123 surfactant as the template and oxalic acid as an inducer. The electron paramagnetic resonance indicates the presence of abundant oxygen vacancy defects in the samples. UV-vis spectra indicate that the mesoporous structure enhances light absorption capacity. The photocatalytic CO2 reduction tests show that the highest conversion rates for CH4 and CO of VO-MCT are 14 μmol g-1 h-1 and 10.66 μmol g-1 h-1, respectively. The electron consumption rate of VO-MCT is 12.43 times higher than that of commercial TiO2 (P200).
Collapse
Affiliation(s)
- Binxia Yuan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Yuhao Liu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Hong Qian
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Rui Zhu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, P.R. China
| | - Chengxi Zhang
- Department of Optoelectronic Information Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Weiling Luan
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Qi G, Ba D, Zhang Y, Jiang X, Chen Z, Yang M, Cao J, Dong W, Zhao J, Li D, Zhang Q. Constructing an Asymmetric Covalent Triazine Framework to Boost the Efficiency and Selectivity of Visible-Light-Driven CO 2 Photoreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402645. [PMID: 38738739 PMCID: PMC11267385 DOI: 10.1002/advs.202402645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Indexed: 05/14/2024]
Abstract
The photocatalytic reduction of CO2 represents an environmentally friendly and sustainable approach for generating valuable chemicals. In this study, a thiophene-modified highly conjugated asymmetric covalent triazine framework (As-CTF-S) is developed for this purpose. Significantly, single-component intramolecular energy transfer can enhance the photogenerated charge separation, leading to the efficient conversion of CO2 to CO during photocatalysis. As a result, without the need for additional photosensitizers or organic sacrificial agents, As-CTF-S demonstrates the highest photocatalytic ability of 353.2 µmol g-1 and achieves a selectivity of ≈99.95% within a 4 h period under visible light irradiation. This study provides molecular insights into the rational control of charge transfer pathways for high-efficiency CO2 photoreduction using single-component organic semiconductor catalysts.
Collapse
Affiliation(s)
- Guang‐Dong Qi
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Dan Ba
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Yu‐Jie Zhang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Xue‐Qing Jiang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Zihao Chen
- Department of Materials Science and EngineeringDepartment of ChemistryCenter of Super‐Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean EnergyCity University of Hong KongHong KongSAR999077P. R. China
| | - Miao‐Miao Yang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Jia‐Min Cao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Wen‐Wen Dong
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Jun Zhao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Qichun Zhang
- Department of Materials Science and EngineeringDepartment of ChemistryCenter of Super‐Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean EnergyCity University of Hong KongHong KongSAR999077P. R. China
| |
Collapse
|
4
|
Hao L, Luan J. Constructing Direct Z-Scheme Y 2TmSbO 7/GdYBiNbO 7 Heterojunction Photocatalyst with Enhanced Photocatalytic Degradation of Acetochlor under Visible Light Irradiation. Int J Mol Sci 2024; 25:6871. [PMID: 38999979 PMCID: PMC11241117 DOI: 10.3390/ijms25136871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
This study presents a pioneering synthesis of a direct Z-scheme Y2TmSbO7/GdYBiNbO7 heterojunction photocatalyst (YGHP) using an ultrasound-assisted hydrothermal synthesis technique. Additionally, novel photocatalytic nanomaterials, namely Y2TmSbO7 and GdYBiNbO7, were fabricated via the hydrothermal fabrication technique. A comprehensive range of characterization techniques, including X-ray diffractometry, Fourier-transform infrared spectroscopy, Raman spectroscopy, UV-visible spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray energy-dispersive spectroscopy, fluorescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance, was employed to thoroughly investigate the morphological features, composition, chemical, optical, and photoelectric properties of the fabricated samples. The photocatalytic performance of YGHP was assessed in the degradation of the pesticide acetochlor (AC) and the mineralization of total organic carbon (TOC) under visible light exposure, demonstrating eximious removal efficiencies. Specifically, AC and TOC exhibited removal rates of 99.75% and 97.90%, respectively. Comparative analysis revealed that YGHP showcased significantly higher removal efficiencies for AC compared to the Y2TmSbO7, GdYBiNbO7, or N-doped TiO2 photocatalyst, with removal rates being 1.12 times, 1.21 times, or 3.07 times higher, respectively. Similarly, YGHP demonstrated substantially higher removal efficiencies for TOC than the aforementioned photocatalysts, with removal rates 1.15 times, 1.28 times, or 3.51 times higher, respectively. These improvements could be attributed to the Z-scheme charge transfer configuration, which preserved the preferable redox capacities of Y2TmSbO7 and GdYBiNbO7. Furthermore, the stability and durability of YGHP were confirmed, affirming its potential for practical applications. Trapping experiments and electron spin resonance analyses identified active species generated by YGHP, namely •OH, •O2-, and h+, allowing for comprehensive analysis of the degradation mechanisms and pathways of AC. Overall, this investigation advances the development of efficient Z-scheme heterostructural materials and provides valuable insights into formulating sustainable remediation strategies for combatting AC contamination.
Collapse
Affiliation(s)
- Liang Hao
- School of Physics, Changchun Normal University, Changchun 130032, China;
| | - Jingfei Luan
- School of Physics, Changchun Normal University, Changchun 130032, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Hao L, Luan J. The Fabrication and Property Characterization of a Ho 2YSbO 7/Bi 2MoO 6 Heterojunction Photocatalyst and the Application of the Photodegradation of Diuron under Visible Light Irradiation. Int J Mol Sci 2024; 25:4418. [PMID: 38674003 PMCID: PMC11050021 DOI: 10.3390/ijms25084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A novel photocatalytic nanomaterial, Ho2YSbO7, was successfully synthesized for the first time using the solvothermal synthesis technique. In addition, a Ho2YSbO7/Bi2MoO6 heterojunction photocatalyst (HBHP) was prepared via the hydrothermal fabrication technique. Extensive characterizations of the synthesized samples were conducted using various instruments, such as an X-ray diffractometer, a Fourier transform infrared spectrometer, a Raman spectrometer, a UV-visible spectrophotometer, an X-ray photoelectron spectrometer, and a transmission electron microscope, as well as X-ray energy dispersive spectroscopy, photoluminescence spectroscopy, a photocurrent test, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. The photocatalytic activity of the HBHP was evaluated for the degradation of diuron (DRN) and the mineralization of total organic carbon (TOC) under visible light exposure for 152 min. Remarkable removal efficiencies were achieved, with 99.78% for DRN and 97.19% for TOC. Comparative analysis demonstrated that the HBHP exhibited markedly higher removal efficiencies for DRN compared to Ho2YSbO7, Bi2MoO6, or N-doped TiO2 photocatalyst, with removal efficiencies 1.13 times, 1.21 times, or 2.95 times higher, respectively. Similarly, the HBHP demonstrated significantly higher removal efficiencies for TOC compared to Ho2YSbO7, Bi2MoO6, or N-doped TiO2 photocatalyst, with removal efficiencies 1.17 times, 1.25 times, or 3.39 times higher, respectively. Furthermore, the HBHP demonstrated excellent stability and reusability. The mechanisms which could enhance the photocatalytic activity remarkably and the involvement of the major active species were comprehensively discussed, with superoxide radicals identified as the primary active species, followed by hydroxyl radicals and holes. The results of this study contribute to the advancement of efficient heterostructural materials and offer valuable insights into the development of sustainable remediation strategies for addressing DRN contamination.
Collapse
Affiliation(s)
- Liang Hao
- School of Physics, Changchun Normal University, Changchun 130032, China;
| | - Jingfei Luan
- School of Physics, Changchun Normal University, Changchun 130032, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Zhang M, Liang X, Gao Y, Liu Y. C 60- and CdS-Co-Modified Nano-Titanium Dioxide for Highly Efficient Photocatalysis and Hydrogen Production. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1206. [PMID: 38473677 PMCID: PMC10934443 DOI: 10.3390/ma17051206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
The inherent properties of TiO2, including a wide band gap and restricted spectral response range, hinder its commercial application and its ability to harness only 2-3% of solar energy. To address these challenges and unlock TiO2's full potential in photocatalysis, C60- and CdS-co-modified nano-titanium dioxide has been adopted in this work to reduce the band gap, extend the absorption wavelength, and control photogenerated carrier recombination, thereby enhancing TiO2's light-energy-harnessing capabilities and hydrogen evolution capacity. Using the sol-gel method, we successfully synthesized CdS-C60/TiO2 composite nanomaterials, harnessing the unique strengths of CdS and C60. The results showed a remarkable average yield of 34.025 μmol/h for TiO2 co-modified with CdS and C60, representing a substantial 17-fold increase compared to pure CdS. Simultaneously, the average hydrogen generation of C60-modified CdS surged to 5.648 μmol/h, a notable two-fold improvement over pure CdS. This work opens up a new avenue for the substantial improvement of both the photocatalytic degradation efficiency and hydrogen evolution capacity, offering promise of a brighter future in photocatalysis research.
Collapse
Affiliation(s)
- Meifang Zhang
- Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang 330031, China; (M.Z.); (Y.G.)
| | - Xiangfei Liang
- Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang 330031, China; (M.Z.); (Y.G.)
| | - Yang Gao
- Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang 330031, China; (M.Z.); (Y.G.)
| | - Yi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
7
|
Liu L, Wang L, Sun D, Sun X, Liu L, Zhao W, Tayebee R, Liu B. ZnO-ZnS Heterostructure as a Potent Photocatalyst in the Preparation of Some Substituted Chromenes and Remarkable Antigastrointestinal Cancer Activity. ACS OMEGA 2023; 8:44276-44286. [PMID: 38027383 PMCID: PMC10666261 DOI: 10.1021/acsomega.3c06952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
The nanosized hybrid material ZnO-ZnS was synthesized using the well-known sol-gel method, as a simple and environmentally friendly procedure. The material was then characterized using various techniques including FESEM, TEM, UV-vis, DRS, EDS, XRD, and FT-IR. The characterization studies revealed the generation of ZnO-ZnS nanoparticles with a mean size of around 25 nm. Moreover, DRS analysis provided a band gap of 3.05 eV for this nanomaterial. The photocatalytic properties of the ZnO-ZnS heterojunction was investigated in the synthesis of some substituted chromenes under mild reaction conditions. The results showed that the prepared nanophotocatalyst exhibits significantly higher activity compared to its individual components (ZnO and ZnS) and provides 73-87% yield with 0.01 g of ZnO-ZnS after 30 min. In addition, the nanophotocatalyst demonstrated a high reusability in the desired condensation reaction. The enhanced photocatalytic activity of ZnO-ZnS can be attributed to the slower recombination of the electron-hole pairs in this semiconductor material. The reactive species OH•, •O2-, and h+ are believed to play important roles in the photocatalytic system. Furthermore, cellular toxicity of ZnO-ZnS nanoparticles was evaluated on HCT-116 human gastrointestinal cancer cell line by MTT assay. The results proved a distinct reduction of cell viability, proofing cytotoxicity of nanoparticles on the cancer cells. This study highlights the potential of the nanoparticles against gastrointestinal cancer.
Collapse
Affiliation(s)
- Liqing Liu
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Longgang Wang
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Dong Sun
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Xu Sun
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Luguang Liu
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| | - Weizhu Zhao
- Department
of Oncology, Binzhou People’s Hospital
affiliated to Shandong First Medical University, Binzhou 256600, Shandong China
| | - Reza Tayebee
- Department
of Chemistry, School of Sciences, Hakim
Sabzevari University, Sabzevar 96179- 76487, Iran
| | - Bing Liu
- Department
of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Science, Jinan 250117, Shandong China
| |
Collapse
|
8
|
Martín-Gómez J, Reca-Expósito S, López-Tenllado FJ, Hidalgo-Carrillo J, Marinas A, Urbano FJ. Synthesis of Fe-TiO 2 and Cu-TiO 2 Based Materials by Olive Leaves Biotemplating-Application to Hydrogen Production from Glycerol Photoreforming. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:664. [PMID: 36839032 PMCID: PMC9966289 DOI: 10.3390/nano13040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen production is mainly based on the use of fossil fuels, but currently, many alternative routes are being developed, among which the photo-reforming of oxygenated organic compounds stands out. Recently, several studies have been carried out in order to develop new techniques to create bio-inspired TiO2 structures. One of these is 'biotemplating', a process that replicates a biological system in an inorganic TiO2-based structure. In this study, olive by-products-olive leaves-are valorized as a biotemplate for the synthesis of new Fe-TiO2- and Cu-TiO2-based photocatalysts with the aim of improving the replication of the leaf structure and enhancing hydrogen photoproduction. In conclusion, the incorporation of iron and copper decreases the band gap and increases the energetic disorder at the band edges. Moreover, it is verified by SEM and TEM that the metals are not found forming particles but are introduced into the formed TiO2 structure. The accuracy of the internal and external structure replication is improved with the incorporation of Fe in the synthesis, while the incorporation of Cu substantially improves the production of hydrogen, which is multiplied 14 times under UV light and 6 times under sunlight, as compared to a pure TiO2 structure.
Collapse
|
9
|
Photocatalysts Pt/TiO2 for CO2 reduction under ultraviolet irradiation. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Effect of Thermal Treatment of Symmetric TiO2 Nanotube Arrays in Argon on Photocatalytic CO2 Conversion. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Symmetric titania nanotube arrays (TiO2 NTs) are a well-known photocatalyst with a large surface area and band edge potentials suitable for redox reactions. Thermal treatment of symmetrical arrays of TiO2 nanotubes in argon was used to change the carbon content of the samples. The influence of the carbon content in the structure of symmetrical TiO2 NTs on their photoelectrochemical properties and photocatalytic activity in the conversion of CO2 into organic fuel precursors has been studied. The structure, chemical, and phase composition of obtained samples were studied by X-ray analysis, Raman spectroscopy, and SEM with energy dispersive analysis. It is established that carbon-related defects in the samples accumulate electrons on the surface required for the CO2 conversion reaction. It has been shown for the first time that varying the carbon content in symmetric TiO2 NTs arrays by annealing at different temperatures in argon makes it possible to control the yield of methane and methanol in CO2 conversion. It is revealed that too high a concentration of carbon dangling bonds promotes the growth of CO2 conversion efficiency but causes instability in this process. The obtained results show a high promise of symmetric carbon-doped TiO2 NTs arrays for the photocatalytic conversion of CO2.
Collapse
|
11
|
A Parametric Study of the Crystal Phases on Au/TiO2 Photocatalysts for CO2 Gas-Phase Reduction in the Presence of Water. Catalysts 2022. [DOI: 10.3390/catal12121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Au/TiO2 photocatalysts were studied, characterized, and compared for CO2 photocatalytic gas-phase reduction. The impact of the nature of the TiO2 support was studied. It was shown that the surface area/porosity/TiO2 crystal phase/density of specific exposed facets and oxygen vacancies were the key factors determining CH4 productivity under solar-light activation. A 0.84 wt.% Au/TiO2 SG (Sol Gel) calcined at 400 °C exhibited the best performance, leading to a continuous mean CH4 production rate of 50 μmol.h−1.g−1 over 5 h, associated with an electronic selectivity of 85%. This high activity was mainly attributed to the large surface area and accessible microporous volume, high density of exposed TiO2 (101) anatase facets, and oxygen vacancies acting as reactive defects sites for CO2 adsorption/activation/dissociation and charge carrier transport.
Collapse
|
12
|
Enesca A, Cazan C. Polymer Composite-Based Materials with Photocatalytic Applications in Wastewater Organic Pollutant Removal: A Mini Review. Polymers (Basel) 2022; 14:3291. [PMID: 36015545 PMCID: PMC9415733 DOI: 10.3390/polym14163291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The development of new technologies using nanomaterials has allowed scientists to design advanced processes with many applications in environmental protection, energy production and storage, and medicinal bio-mediated processes. Due to their significant potential applications in different branches of science, the development of new polymer composites represents a priority, especially for nano-technological processes. Interest in polymeric composites was outlined by the synthesis of a large number of nano- or mezzo-scale materials with targeted functional properties for polymer matrix hybridization. The present mini review explores some of the most representative and recent papers reporting the photocatalytic activity of polymer composites toward different organic compounds (dyes, pharmaceutically active molecules, phenol, etc.). The polymer composites were divided based on their composition and photocatalytic activity. TiO2- and ZnO-based polymeric composites have been described here in light of their photocatalytic activity toward different pollutants, such as rhodamine B, phenol, or methyl orange. Polymeric composites based on WO3, Fe2O3, or Bi2MoO6 were also described. The influence of different polymeric composites and photocatalytic parameters (light spectra and intensity, pollutant molecule and concentration, irradiation time, and photocatalyst dosage) on the overall photocatalytic efficiency indicates that semiconductor (TiO2, ZnO, etc.) insertion in the polymeric matrix can tune the photocatalytic activity without compromising the structural integrity. Future perspectives and limitations are outlined considering the systematic and targeted description of the reported results. Adopting green route synthesis and application can add economic and scientific value to the knowledgebase by promoting technological development based on photocatalytic designs.
Collapse
Affiliation(s)
- Alexandru Enesca
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Eroilor 29 Street, 35000 Brasov, Romania
| | | |
Collapse
|
13
|
Broadening the Action Spectrum of TiO2-Based Photocatalysts to Visible Region by Substituting Platinum with Copper. NANOMATERIALS 2022; 12:nano12091584. [PMID: 35564293 PMCID: PMC9105519 DOI: 10.3390/nano12091584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
In this study, TiO2-based photocatalysts modified with Pt and Cu/CuOx were synthesized and studied in the photocatalytic reduction of CO2. The morphology and chemical states of synthesized photocatalysts were studied using UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. A series of light-emitting diodes (LEDs) with maximum intensity in the range of 365–450 nm was used to determine the action spectrum of photocatalysts. It is shown for, the first time, that the pre-calcination of TiO2 at 700 °C and the use of Cu/CuOx instead of Pt allow one to design a highly efficient photocatalyst for CO2 transformation shifting the working range to the visible light (425 nm). Cu/CuOx/TiO2 (calcined at 700 °C) shows a rate of CH4 formation of 1.2 ± 0.1 µmol h−1 g−1 and an overall CO2 reduction rate of 11 ± 1 µmol h−1 g−1 (at 425 nm).
Collapse
|