1
|
Tsolakis IA, Lyros I, Christopoulou I, Tsolakis AI, Papadopoulos MA. Comparing the accuracy of 3 different liquid crystal display printers for dental model printing. Am J Orthod Dentofacial Orthop 2024; 166:7-14. [PMID: 38647515 DOI: 10.1016/j.ajodo.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION This study aimed to evaluate the accuracy in terms of trueness and precision of 3 different liquid crystal display (LCD) printers with different cost levels. METHODS Three LCD 3-dimensional (3D) printers were categorized into tiers 1-3 on the basis of cost level. The printers' accuracies were assessed in terms of trueness and precision. For this research, 10 standard tessellation language (STL) reference files were used. For trueness, each STL file was printed once with each 3D printer. For precision, 1 randomly chosen STL file was printed 10 times with each 3D printer. After that, a model scanner was used to scan the models, and STL comparisons were performed using reverse engineering software. For the measurements regarding trueness and precision, the Friedman test was used. RESULTS There were significant differences among the 3 printers (P <0.05). The trueness and precision error were lower in models printed with a tier-1 printer than in the remaining 3D printers (P <0.05). The tier-2 and -3 printers presented very similar performance. CONCLUSIONS LCD 3D printers can be accurately used in orthodontics for model printing depending on the specific orthodontic use. The cost of a printer is relevant to the results only for the higher expense of the 3D printer in this study.
Collapse
Affiliation(s)
- Ioannis A Tsolakis
- Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH.
| | - Ioannis Lyros
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Isidora Christopoulou
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos I Tsolakis
- Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH; Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Moschos A Papadopoulos
- Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Slaymaker J, Hirani S, Woolley J. Direct 3D printing aligners - past, present and future possibilities. Br Dent J 2024; 236:401-405. [PMID: 38459321 DOI: 10.1038/s41415-024-7126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 03/10/2024]
Abstract
The aim of this paper is to introduce the general dentist to recent advances in 3D printing technology used in orthodontics. 3D printing is a highly evolving area of dentistry with continual developments. New advances now allow the in-house delivery of printed aligners. Advocates of this new technology suggest the benefits of more prescriptive and controlled tooth movement in comparison to conventional thermoformed appliances. However, there is currently limited evidence on the efficiency of this material and more research needs to be carried out to validate this new technology.
Collapse
Affiliation(s)
| | - Sunil Hirani
- Specialist Orthodontist, Milton Keynes, England, UK
| | - Julian Woolley
- Orthodontic Registrar, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
3
|
Narongdej P, Hassanpour M, Alterman N, Rawlins-Buchanan F, Barjasteh E. Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers (Basel) 2024; 16:371. [PMID: 38337260 DOI: 10.3390/polym16030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Clear aligners have revolutionized orthodontic treatment by offering an esthetically driven treatment modality to patients of all ages. Over the past two decades, aligners have been used to treat malocclusions in millions of patients worldwide. The inception of aligner therapy goes back to the 1940s, yet the protocols to fabricate aligners have been continuously evolved. CAD/CAM driven protocol was the latest approach which drastically changed the scalability of aligner fabrication-i.e., aligner mass production manufacturing. 3D printing technology has been adopted in various sectors including dentistry mostly because of the ability to create complex geometric structures at high accuracy while reducing labor and material costs-for the most part. The integration of 3D printing in dentistry has been across, starting in orthodontics and oral surgery and expanding in periodontics, prosthodontics, and oral implantology. Continuous progress in material development has led to improved mechanical properties, biocompatibility, and overall quality of aligners. Consequently, aligners have become less invasive, more cost-effective, and deliver outcomes comparable to existing treatment options. The promise of 3D printed aligners lies in their ability to treat malocclusions effectively while providing esthetic benefits to patients by remaining virtually invisible throughout the treatment process. Herein, this review aims to provide a comprehensive summary of studies regarding direct-3D printing of clear aligners up to the present, outlining all essential properties required in 3D-printed clear aligners and the challenges that need to be addressed. Additionally, the review proposes implementation methods to further enhance the effectiveness of the treatment outcome.
Collapse
Affiliation(s)
- Poom Narongdej
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
| | - Mana Hassanpour
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| | - Nicolas Alterman
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| | | | - Ehsan Barjasteh
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
4
|
Paradowska-Stolarz A, Wezgowiec J, Mikulewicz M. Comparison of Two Chosen 3D Printing Resins Designed for Orthodontic Use: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062237. [PMID: 36984116 PMCID: PMC10053969 DOI: 10.3390/ma16062237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 05/31/2023]
Abstract
(1) Background: In recent years, 3D printing has become a highly popular tool for manufacturing in various fields such as aviation, automobiles, plastics, and even medicine, including dentistry. Three-dimensional printing allows dentists to create high-precision models of teeth and jaw structure, and enables them to develop customized tools for patients' treatment. The range of resins used in dentistry is quite large, and this branch is developing rapidly; hence, studies comparing different resins are required. The present study aimed to compare the mechanical properties of two chosen resins used in dentistry. (2) Materials and methods: Ten specimens each of two types of 3D-printable resins (BioMed Amber and IBT, developed by Formlabs) were prepared. The samples were printed on a Formlabs Form 2 3D printer according to ISO standards. Samples for the compression test were rectangular in shape (10 ± 0.2 mm × 10 ± 0.2 mm × 4 ± 0.2 mm), while the samples used for the tensile test were dumbbell shaped (75 mm long, with 10 mm end width and 2 mm thickness). Tensile and compression tests of both materials were performed in accordance with the appropriate ISO standards. (3) Results: The BioMed Amber resin was more resistant to compression and tensile forces, thus implying that the resin could withstand higher stress during stretching, pulling, or pushing. The IBT resin was less resistant to such loads, and failure of this material occurred at lower forces than those for Biomed Amber. An ANOVA test confirmed that the observed differences were statistically significant (p < 0.001). (4) Conclusions: Based on the properties of both materials, the IBT resin could be better used as a tray for placing orthodontic brackets through an indirect bonding technique, while the BioMed Amber resin would be more useful as a surgical guide for placing dental implants and mini-implants. Further potential fields of application of the resins should be investigated.
Collapse
Affiliation(s)
- Anna Paradowska-Stolarz
- Division of Dentofacial Anomalies, Department of Orthodontics and Dentofacial Orthopedics, Wrocław Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Joanna Wezgowiec
- Department of Experimental Dentistry, Wrocław Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Marcin Mikulewicz
- Division of Dentofacial Anomalies, Department of Orthodontics and Dentofacial Orthopedics, Wrocław Medical University, Krakowska 26, 50-425 Wrocław, Poland
| |
Collapse
|
5
|
Strunga M, Urban R, Surovková J, Thurzo A. Artificial Intelligence Systems Assisting in the Assessment of the Course and Retention of Orthodontic Treatment. Healthcare (Basel) 2023; 11:healthcare11050683. [PMID: 36900687 PMCID: PMC10000479 DOI: 10.3390/healthcare11050683] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This scoping review examines the contemporary applications of advanced artificial intelligence (AI) software in orthodontics, focusing on its potential to improve daily working protocols, but also highlighting its limitations. The aim of the review was to evaluate the accuracy and efficiency of current AI-based systems compared to conventional methods in diagnosing, assessing the progress of patients' treatment and follow-up stability. The researchers used various online databases and identified diagnostic software and dental monitoring software as the most studied software in contemporary orthodontics. The former can accurately identify anatomical landmarks used for cephalometric analysis, while the latter enables orthodontists to thoroughly monitor each patient, determine specific desired outcomes, track progress, and warn of potential changes in pre-existing pathology. However, there is limited evidence to assess the stability of treatment outcomes and relapse detection. The study concludes that AI is an effective tool for managing orthodontic treatment from diagnosis to retention, benefiting both patients and clinicians. Patients find the software easy to use and feel better cared for, while clinicians can make diagnoses more easily and assess compliance and damage to braces or aligners more quickly and frequently.
Collapse
|
6
|
Sfondrini MF, Scribante A. New Materials and Techniques for Orthodontics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1924. [PMID: 36903039 PMCID: PMC10003920 DOI: 10.3390/ma16051924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Orthodontics is a specialty of dentistry dealing with the prevention, diagnosis, and treatment of mispositioned jaws and teeth [...].
Collapse
|
7
|
Alam MK, Abutayyem H, Kanwal B, A. L. Shayeb M. Future of Orthodontics-A Systematic Review and Meta-Analysis on the Emerging Trends in This Field. J Clin Med 2023; 12:532. [PMID: 36675459 PMCID: PMC9861462 DOI: 10.3390/jcm12020532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Technology is rapidly evolving in the modern world, and the accompanying developments due to its influence are shaping each and every aspect of our life, with the field of orthodontics being no exception. This systematic review and meta-analysis aimed to examine such trends in orthodontics and hypothesize which ones would emerge and continue in the near future. After a thorough search of online journals using keywords such as "3D printing," "Aligners," "Artificial intelligence," "Future trends," "Orthodontics," and "Teleorthodontics" across databases of PubMed-MEDLINE, Web of Science, Cochrane, and Scopus, a total of 634 papers were initially recovered. Technological advancements in 3D printing, Computer-aided design and Computer-aided manufacturing (CAD/CAM), biopolymers and Teleorthodontics were the most important categories of development seen across the 17 studies that we selected for our review. All the investigations selected for this systematic review depicted aspects of orthodontics that were influenced by rapid technological changes and could potentially become mainstream in the coming times. However, caution was sought to be observed in the usage/adoption of some of these trends, with social media usage amongst both patients as well as orthodontists being a prime example of this.
Collapse
Affiliation(s)
- Mohammad Khursheed Alam
- Orthodontic Division, Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
- Department of Dental Research Cell, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 72345, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil lnternational University, Dhaka 1216, Bangladesh
| | - Huda Abutayyem
- Center of Medical and Bio-Allied Health Sciences Research, Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bushra Kanwal
- Practicing in Dental Clinic, Al Baha 65511, Saudi Arabia
| | - Maher A. L. Shayeb
- Center of Medical and Bio-Allied Health Sciences Research, Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
8
|
Thurzo A, Gálfiová P, Nováková ZV, Polák Š, Varga I, Strunga M, Urban R, Surovková J, Leško Ľ, Hajdúchová Z, Feranc J, Janek M, Danišovič Ľ. Fabrication and In Vitro Characterization of Novel Hydroxyapatite Scaffolds 3D Printed Using Polyvinyl Alcohol as a Thermoplastic Binder. Int J Mol Sci 2022; 23:ijms232314870. [PMID: 36499194 PMCID: PMC9736063 DOI: 10.3390/ijms232314870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
This paper presents a proof-of-concept study on the biocolonization of 3D-printed hydroxyapatite scaffolds with mesenchymal stem cells (MSCs). Three-dimensional (3D) printed biomimetic bone structure made of calcium deficient hydroxyapatite (CDHA) intended as a future bone graft was made from newly developed composite material for FDM printing. The biopolymer polyvinyl alcohol serves in this material as a thermoplastic binder for 3D molding of the printed object with a passive function and is completely removed during sintering. The study presents the material, the process of fused deposition modeling (FDM) of CDHA scaffolds, and its post-processing at three temperatures (1200, 1300, and 1400 °C), as well it evaluates the cytotoxicity and biocompatibility of scaffolds with MTT and LDH release assays after 14 days. The study also includes a morphological evaluation of cellular colonization with scanning electron microscopy (SEM) in two different filament orientations (rectilinear and gyroid). The results of the MTT assay showed that the tested material was not toxic, and cells were preserved in both orientations, with most cells present on the material fired at 1300 °C. Results of the LDH release assay showed a slight increase in LDH leakage from all samples. Visual evaluation of SEM confirmed the ideal post-processing temperature of the 3D-printed FDM framework for samples fired at 1300 °C and 1400 °C, with a porosity of 0.3 mm between filaments. In conclusion, the presented fabrication and colonization of CDHA scaffolds have great potential to be used in the tissue engineering of bones.
Collapse
Affiliation(s)
- Andrej Thurzo
- Department of Orthodontics, Regenerative and Aesthetic Dentistry, Faculty of Medicine, Comenius University, 81250 Bratislava, Slovakia
- Correspondence: (A.T.); (Ľ.D.)
| | - Paulína Gálfiová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 81104 Bratislava, Slovakia
| | - Zuzana Varchulová Nováková
- Institute of Medical Biology, Genetics and Clinical Genetic, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, 92112 Piešťany, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 81104 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 81104 Bratislava, Slovakia
| | - Martin Strunga
- Department of Orthodontics, Regenerative and Aesthetic Dentistry, Faculty of Medicine, Comenius University, 81250 Bratislava, Slovakia
| | - Renáta Urban
- Department of Orthodontics, Regenerative and Aesthetic Dentistry, Faculty of Medicine, Comenius University, 81250 Bratislava, Slovakia
| | - Jana Surovková
- Department of Orthodontics, Regenerative and Aesthetic Dentistry, Faculty of Medicine, Comenius University, 81250 Bratislava, Slovakia
| | - Ľuboš Leško
- Institute of Medical Biology, Genetics and Clinical Genetic, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Zora Hajdúchová
- Department of Inorganic Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - Jozef Feranc
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - Marian Janek
- Department of Inorganic Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetic, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, 92112 Piešťany, Slovakia
- Correspondence: (A.T.); (Ľ.D.)
| |
Collapse
|
9
|
Thurzo A, Urbanová W, Neuschlová I, Paouris D, Čverha M. Use of optical scanning and 3D printing to fabricate customized appliances for patients with craniofacial disorders. Semin Orthod 2022. [DOI: 10.1053/j.sodo.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Tsolakis IA, Papaioannou W, Papadopoulou E, Dalampira M, Tsolakis AI. Comparison in Terms of Accuracy between DLP and LCD Printing Technology for Dental Model Printing. Dent J (Basel) 2022; 10:dj10100181. [PMID: 36285991 PMCID: PMC9600557 DOI: 10.3390/dj10100181] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background: The aim of this study is to evaluate the accuracy of a Liquid Crystal Display (LCD) 3D printer compared to a Direct Light Processing (DLP) 3D printer for dental model printing. Methods: Two different printers in terms of 3D printing technology were used in this study. One was a DLP 3D printer and one an LCD 3D printer. The accuracy of the printers was evaluated in terms of trueness and precision. Ten STL reference files were used for this study. For trueness, each STL file was printed once with each 3D printer. For precision, one randomly chosen STL file was printed 10 times with each 3D printer. Afterward, the models were scanned with a model scanner, and reverse engineering software was used for the STL comparisons. Results: In terms of trueness, the comparison between the LCD 3D printer and DLP 3D printer was statistically significant, with a p-value = 0.004. For precision, the comparison between the LCD 3D printer and the DLP 3D printer was statistically significant, with a p-value = 0.011. Conclusions: The DLP 3D printer is more accurate in terms of dental model printing than the LCD 3D printer. However, both DLP and LCD printers can accurately be used to print dental models for the fabrication of orthodontic appliances.
Collapse
Affiliation(s)
- Ioannis A. Tsolakis
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence:
| | - William Papaioannou
- Department of Preventive & Community Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Erofili Papadopoulou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodis-Trian University of Athens, 106 79 Athens, Greece
| | | | - Apostolos I. Tsolakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Thurzo A, Šufliarsky B, Urbanová W, Čverha M, Strunga M, Varga I. Pierre Robin Sequence and 3D Printed Personalized Composite Appliances in Interdisciplinary Approach. Polymers (Basel) 2022; 14:polym14183858. [PMID: 36146014 PMCID: PMC9500754 DOI: 10.3390/polym14183858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
This paper introduces a complex novel concept and methodology for the creation of personalized biomedical appliances 3D-printed from certified biocompatible photopolymer resin Dental LT Clear (V2). The explained workflow includes intraoral and CT scanning, patient virtualization, digital appliance design, additive manufacturing, and clinical application with evaluation of the appliance intended for patients with cranio-facial syndromes. The presented concept defines virtual 3D fusion of intraoral optical scan and segmented CT as sufficient and accurate data defining the 3D surface of the face, intraoral and airway morphology necessary for the 3D design of complex personalized intraoral and extraoral parts of the orthopedic appliance. A central aspect of the concept is a feasible utilization of composite resin for biomedical prototyping of the sequence of marginally different appliances necessary to keep the pace with the patient rapid growth. Affordability, noninvasiveness, and practicality of the appliance update process shall be highlighted. The methodology is demonstrated on a particular case of two-year-old infant with Pierre Robin sequence. Materialization by additive manufacturing of this photopolymer provides a highly durable and resistant-to-fracture two-part appliance similar to a Tübingen palatal plate, for example. The paper concludes with the viability of the described method and material upon interdisciplinary clinical evaluation of experts from departments of orthodontics and cleft anomalies, pediatric pneumology and phthisiology, and pediatric otorhinolaryngology.
Collapse
Affiliation(s)
- Andrej Thurzo
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-903-110-107
| | - Barbora Šufliarsky
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava and University Hospital, 81372 Bratislava, Slovakia
| | - Wanda Urbanová
- Department of Orthodontics and Cleft Anomalies, Faculty Hospital Kralovske Vinohrady, Dental Clinic 3rd Medical Faculty Charles University, 10034 Prague, Czech Republic
| | - Martin Čverha
- Clinic of Pediatric Otorhinolaryngology of the Medical Faculty Comenius University in Bratislava, 83340 Bratislava, Slovakia
| | - Martin Strunga
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Ivan Varga
- Department of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| |
Collapse
|
12
|
Fountoulaki G, Thurzo A. Change in the Constricted Airway in Patients after Clear Aligner Treatment: A Retrospective Study. Diagnostics (Basel) 2022; 12:2201. [PMID: 36140602 PMCID: PMC9498122 DOI: 10.3390/diagnostics12092201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This retrospective study evaluated changes in the pharyngeal portion of the upper airway in patients with constricted and normal airways treated with clear aligners (Invisalign, Align). Additionally, we assessed the change of tongue position in the oral cavity from a lateral view. Evaluation was performed with specialized software (Invivo 6.0, Anatomage) on pretreatment and post-treatment pairs of cone beam computed tomography imaging (CBCT) data. The level of airway constriction, volume, cross-section minimal area and tongue profile were evaluated. Patients with malocclusion, with pair or initial and finishing CBCT and without significant weight change between the scans, treated with Invisalign clear aligners were distributed into two groups. Group A consisted of fifty-five patients with orthodontic malocclusion and constricted upper airway. Control group B consisted of thirty-one patients with orthodontic malocclusions without any airway constriction. In the group with airway constriction there was a statistically significant increase in volume during therapy (p < 0.001). The surface of the most constricted cross-section of the airway did not change significantly after treatment in any of the groups. The final tongue position was different from the initial position in 62.2% of all clear aligner treatments. The position of the smallest clearance of the airway in the pharynx was similar for both groups localized at the level of 2nd cervical vertebra.
Collapse
Affiliation(s)
- Georgia Fountoulaki
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Andrej Thurzo
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81272 Bratislava, Slovakia
| |
Collapse
|
13
|
Saccomanno S, Saran S, Vanella V, Mastrapasqua RF, Raffaelli L, Levrini L. The Potential of Digital Impression in Orthodontics. Dent J (Basel) 2022; 10:dj10080147. [PMID: 36005245 PMCID: PMC9406442 DOI: 10.3390/dj10080147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Over the past 20 years, there have been many innovations in orthodontic diagnosis and therapy. Among the innovations, there is the taking of dental impressions (DIs). Dental impressions are the negative imprint of hard and soft tissues of one or both arches, and they allow a plaster model to be formed, i.e., a positive reproduction. Traditional dental impressions can be made of different materials, such as alginate, while digital impression is captured by an intra-oral scanner. Digital impression, despite the evident advantages, has not yet replaced the conventional impression. The aim of this study is to evaluate which dental impressions are the most used by dentists. For this purpose, we considered 120 questionnaires sent electronically to patients of different dental private practices from different countries, where the dentists can use both techniques. The results highlighted that the kind of impression adopted is very much influenced by the type of therapy and orthodontic devices used in the treatment. We can conclude that, despite the advent of digital technology, conventional impressions are still used for fixed devices, while digital impressions are more adopted for orthodontic customized devices and therapies with clear aligners, that are very widespread among adult patients.
Collapse
Affiliation(s)
- Sabina Saccomanno
- Department of Health, Life and Environmental Science, University of L’Aquila, Piazza Salvatore Tommasi, 67100 L’Aquila, Italy
- Correspondence:
| | - Stefano Saran
- Department of Human Sciences, Innovation and Territory, School of Dentistry, Postgraduate of Orthodontics, University of Insubria, 21100 Varese, Italy
| | - Valeria Vanella
- Dental School, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | - Luca Raffaelli
- Dental School, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Luca Levrini
- Department of Human Sciences, Innovation and Territory, School of Dentistry, Postgraduate of Orthodontics, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
14
|
Dimitrova M, Chuchulska B, Zlatev S, Kazakova R. Colour Stability of 3D-Printed and Prefabricated Denture Teeth after Immersion in Different Colouring Agents-An In Vitro Study. Polymers (Basel) 2022; 14:3125. [PMID: 35956640 PMCID: PMC9371044 DOI: 10.3390/polym14153125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
This study investigated the colour stability of three dimensional (3D)-printed and conventional denture teeth after immersion in different colourants. A total of 60 artificial maxillary central incisors were selected from three types of materials: 3D-printed dental resin (NextDent, 3D Systems, Soesterberg, The Netherlands), prefabricated acrylic teeth in Ivostar Shade (Ivoclar Vivadent, Schaan, Liechtenstein), and SpofaDent Plus in shade A2 (SpofaDental, Jičín, Czechia). These were immersed in four types of colourants at room temperature (23 °C ± 1 °C), including artificial saliva (pH = 6.8) as a control group, coffee, red wine, and Coca-Cola (n = 5). The temperature and the pH of the colouring agents were maintained throughout all immersion periods. After 7 days (T1), 14 days (T2), and 21 days (T3), the ∆E values were measured with a SpectroShade Micro (SpectroShade, Oxnard, CA, USA) spectrophotometer. Their means were then calculated and compared by two-way ANOVA. The independent factors, immersion time and different staining solutions, as well as the interaction between these factors, significantly influenced ΔE. The highest and the lowest mean ∆Es were recorded for prefabricated teeth in red wine, and 3D-printed teeth in artificial saliva, respectively. All the specimens demonstrated an increased colour change at T1 compared to T3, and the difference in mean ∆E was statistically significant.
Collapse
Affiliation(s)
- Mariya Dimitrova
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (B.C.); (S.Z.); (R.K.)
| | - Bozhana Chuchulska
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (B.C.); (S.Z.); (R.K.)
| | - Stefan Zlatev
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (B.C.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Rada Kazakova
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (B.C.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
15
|
Bilinska M, Kristensen KD, Dalstra M. Cantilevers: Multi-Tool in Orthodontic Treatment. Dent J (Basel) 2022; 10:dj10070135. [PMID: 35877409 PMCID: PMC9323712 DOI: 10.3390/dj10070135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
This review aims to discuss and illustrate various uses of cantilevers to solve multiple clinical issues and prove their versatility. Cantilevers are commonly used in the segmented arch technique, and they can be designed to solve various clinical problems with highly predictable results. Its design and shape can modify the various combinations of vertical and horizontal forces. The novel trend is to combine cantilevers with skeletal anchorage. Cantilevers offer a very simple and statically determined force system. The advantage is the control over side effects, which normally occur on the anchor teeth and the occlusion. The disadvantages include possible side effects on the anchorage unit, when the anchorage is poorly controlled. The review highlights the clear benefits of cantilever use in complex corrections of single teeth, segments, and entire arch with a diminished effect on the dentition, also with the use of skeletal anchorage. With their simple and easily tailored design, these springs can be called an orthodontic multi-tool.
Collapse
|
16
|
Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare (Basel) 2022; 10:healthcare10071269. [PMID: 35885796 PMCID: PMC9320442 DOI: 10.3390/healthcare10071269] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
This literature research had two main objectives. The first objective was to quantify how frequently artificial intelligence (AI) was utilized in dental literature from 2011 until 2021. The second objective was to distinguish the focus of such publications; in particular, dental field and topic. The main inclusion criterium was an original article or review in English focused on dental utilization of AI. All other types of publications or non-dental or non-AI-focused were excluded. The information sources were Web of Science, PubMed, Scopus, and Google Scholar, queried on 19 April 2022. The search string was “artificial intelligence” AND (dental OR dentistry OR tooth OR teeth OR dentofacial OR maxillofacial OR orofacial OR orthodontics OR endodontics OR periodontics OR prosthodontics). Following the removal of duplicates, all remaining publications were returned by searches and were screened by three independent operators to minimize the risk of bias. The analysis of 2011–2021 publications identified 4413 records, from which 1497 were finally selected and calculated according to the year of publication. The results confirmed a historically unprecedented boom in AI dental publications, with an average increase of 21.6% per year over the last decade and a 34.9% increase per year over the last 5 years. In the achievement of the second objective, qualitative assessment of dental AI publications since 2021 identified 1717 records, with 497 papers finally selected. The results of this assessment indicated the relative proportions of focal topics, as follows: radiology 26.36%, orthodontics 18.31%, general scope 17.10%, restorative 12.09%, surgery 11.87% and education 5.63%. The review confirms that the current use of artificial intelligence in dentistry is concentrated mainly around the evaluation of digital diagnostic methods, especially radiology; however, its implementation is expected to gradually penetrate all parts of the profession.
Collapse
|
17
|
Thurzo A, Urbanová W, Waczulíková I, Kurilová V, Mriňáková B, Kosnáčová H, Gális B, Varga I, Matajs M, Novák B. Dental Care and Education Facing Highly Transmissible SARS-CoV-2 Variants: Prospective Biosafety Setting: Prospective, Single-Arm, Single-Center Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7693. [PMID: 35805347 PMCID: PMC9266032 DOI: 10.3390/ijerph19137693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022]
Abstract
With the arrival of the highly transmissible Omicron variants (BA.4 and BA.5), dentistry faces another seasonal challenge to preserve the biosafety of dental care and education. With the aim of protecting patients, students, teachers and healthcare professionals, this paper introduces a prospective sustainable biosafety setting for everyday dental care and education. The setting developed by dental clinicians, epidemiologists, and teachers of dentistry consists of a combination of modern technologies focused on the air-borne part of the viral pathway. The introduced biosafety setting has been clinically evaluated after 18 months of application in the real clinical environment. The protocol has three fundamental pillars: (1) UVC air disinfection; (2) air saturation with certified virucidal essences with nebulizing diffusers; (3) complementary solutions including telehealth and 3D printing. A pseudonymous online smart form was used as the evaluation method. The protocol operates on the premise that everybody is a hypothetical asymptomatic carrier. The results of a clinical evaluation of 115 patient feedbacks imply that no virus transmission from patient to patient or from doctor to nurse was observed or reported using this protocol, and vice versa, although nine patients retrospectively admitted that the clinic visit is likely to be infectious. Despite these promising results, a larger clinical sample and exposition to the current mutated strains are needed for reliable conclusions about protocol virucidal efficiency in current dental environments.
Collapse
Affiliation(s)
- Andrej Thurzo
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia;
| | - Wanda Urbanová
- Department of Orthodontics and Cleft Anomalies, Dental Clinic 3rd Medical Faculty Charles University, Faculty Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic;
| | - Iveta Waczulíková
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia;
| | - Veronika Kurilová
- Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia;
| | - Bela Mriňáková
- 1st Department of Oncology, Medical Faculty, Comenius University, St. Elisabeth Cancer Institute, 81250 Bratislava, Slovakia;
| | - Helena Kosnáčová
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81272 Bratislava, Slovakia;
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia
| | - Branislav Gális
- Department of Oral and Maxillofacial Surgery, Medical Faculty, Comenius University, University Hospital Bratislava, 81499 Bratislava, Slovakia;
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia;
| | - Marek Matajs
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia;
| | - Bohuslav Novák
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia;
| |
Collapse
|
18
|
How to Create and 3D Print a Model of the Skull and Orbit for Craniomaxillofacial Surgeons. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three-dimensional (3D) anatomical models are used in many ways in cranio-maxillo-facial (CMF) surgery, including being used to press-fit plates, mold splints, and for student teaching. Their use has many advantages, including the possibility of lowering operative time and allowing for more precise reconstructions with personalized plates, meshes, and splints. This can now be done in-house to speed up model availability for trauma surgery as well. Three-dimensional printers and software are quickly evolving—printers now are easily accessible, and the models are inexpensive to print. However, for a surgeon with no IT training, 3D printing even a simple anatomic model may be a challenge. The purpose of this article is to offer simple, step-by-step video tutorials demonstrating the process of extracting a CMF model from a patient CT scan, doing basic manipulation to the model, and then printing it in-house with a prosumer grade 3D printer. It is our hope that this user-friendly article will allow more surgeons and scientists to use 3D printing and its advantages.
Collapse
|
19
|
A Semi-Automated 3D-Printed Chainmail Design Algorithm with Preprogrammed Directional Functions for Hand Exoskeleton. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The problem of computerising the design and development of 3D-printed chainmail with programmed directional functions provides a basis for further research, including the automation of medical devices. The scope of the present research was focused on computational optimisation of the selection of materials and shapes for 3D printing, including the design of medical devices, which constitutes a significant scientific, technical, and clinical problem. The aim of this article was to solve the scientific problem of automated or semi-automated efficient and practical design of 3D-printed chainmail with programmed directional functions (variable stiffness/elasticity depending on the direction). We demonstrate for the first time that 3D-printed particles can be arranged into single-layer chainmail with a tunable one- or two-directional bending modulus for use in a medical hand exoskeleton. In the present work, we accomplished this in two ways: based on traditional programming and based on machine learning. This paper presents the novel results of our research, including 3D printouts, providing routes toward the wider implementation of adaptive chainmails. Our research resulted in an automated or semi-automated efficient and practical 3D printed chainmail design with programmed directional functions for a wrist exoskeleton with variable stiffness/flexibility, depending on the direction. We also compared two methodologies of planning and construction: the use of traditional software and machine-learning-based software, with the latter being more efficient for more complex chainmail designs.
Collapse
|
20
|
Zoabi A, Redenski I, Oren D, Kasem A, Zigron A, Daoud S, Moskovich L, Kablan F, Srouji S. 3D Printing and Virtual Surgical Planning in Oral and Maxillofacial Surgery. J Clin Med 2022; 11:jcm11092385. [PMID: 35566511 PMCID: PMC9104292 DOI: 10.3390/jcm11092385] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Compared to traditional manufacturing methods, additive manufacturing and 3D printing stand out in their ability to rapidly fabricate complex structures and precise geometries. The growing need for products with different designs, purposes and materials led to the development of 3D printing, serving as a driving force for the 4th industrial revolution and digitization of manufacturing. 3D printing has had a global impact on healthcare, with patient-customized implants now replacing generic implantable medical devices. This revolution has had a particularly significant impact on oral and maxillofacial surgery, where surgeons rely on precision medicine in everyday practice. Trauma, orthognathic surgery and total joint replacement therapy represent several examples of treatments improved by 3D technologies. The widespread and rapid implementation of 3D technologies in clinical settings has led to the development of point-of-care treatment facilities with in-house infrastructure, enabling surgical teams to participate in the 3D design and manufacturing of devices. 3D technologies have had a tremendous impact on clinical outcomes and on the way clinicians approach treatment planning. The current review offers our perspective on the implementation of 3D-based technologies in the field of oral and maxillofacial surgery, while indicating major clinical applications. Moreover, the current report outlines the 3D printing point-of-care concept in the field of oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Adeeb Zoabi
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Idan Redenski
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Daniel Oren
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Adi Kasem
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Asaf Zigron
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Shadi Daoud
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Liad Moskovich
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Fares Kablan
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Samer Srouji
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Correspondence:
| |
Collapse
|
21
|
Tsolakis IA, Palomo JM, Matthaios S, Tsolakis AI. Dental and Skeletal Side Effects of Oral Appliances Used for the Treatment of Obstructive Sleep Apnea and Snoring in Adult Patients—A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:jpm12030483. [PMID: 35330482 PMCID: PMC8949347 DOI: 10.3390/jpm12030483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Mandibular advancement devices for obstructive sleep apnea treatment are becoming increasingly popular among patients who do not prefer CPAP devices or surgery. Our study aims to evaluate the literature regarding potential dental and skeletal side effects caused by mandibular advancement appliances used for adult OSA treatment. Methods: Electronic databases were searched for published and unpublished literature along with the reference lists of the eligible studies. Randomized clinical trials and non-randomized trials assessing dental and skeletal changes by comparing cephalometric radiographs were selected. Study selection, data extraction, and risk of bias assessment were performed individually and in duplicate. Fourteen articles were finally selected (two randomized clinical trials and 12 non-randomized trials). Results: The results suggest that mandibular advancement devices used for OSA treatment increase the lower incisor proclination by 1.54 ± 0.16°, decrease overjet by 0.89 ± 0.04 mm and overbite by 0.68 ± 0.04 mm, rotate the mandible downward and forward, and increase the SNA angle by to 0.06 ± 0.03°. The meta-analysis revealed high statistical heterogeneity. Conclusions: The MADs affect the lower incisor proclination, overjet, overbite, the rotation of the mandible and the SNA angle. More randomized clinical trials providing high-quality evidence are needed to support those findings.
Collapse
Affiliation(s)
- Ioannis A. Tsolakis
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence:
| | - Juan Martin Palomo
- Department of Orthodontics, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106, USA; (J.M.P.); (S.M.)
| | - Stefanos Matthaios
- Department of Orthodontics, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106, USA; (J.M.P.); (S.M.)
| | - Apostolos I. Tsolakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian, University of Athens, 157 72 Athens, Greece;
| |
Collapse
|