1
|
Pérez-Moreno A, Piñero M, Fernández-Montesinos R, Pinaglia-Tobaruela G, Reyes-Peces MV, Mesa-Díaz MDM, Vilches-Pérez JI, Esquivias L, de la Rosa-Fox N, Salido M. Chitosan-Silica Hybrid Biomaterials for Bone Tissue Engineering: A Comparative Study of Xerogels and Aerogels. Gels 2023; 9:gels9050383. [PMID: 37232975 DOI: 10.3390/gels9050383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan (CS) is a natural biopolymer that shows promise as a biomaterial for bone-tissue regeneration. However, because of their limited ability to induce cell differentiation and high degradation rate, among other drawbacks associated with its use, the creation of CS-based biomaterials remains a problem in bone tissue engineering research. Here we aimed to reduce these disadvantages while retaining the benefits of potential CS biomaterial by combining it with silica to provide sufficient additional structural support for bone regeneration. In this work, CS-silica xerogel and aerogel hybrids with 8 wt.% CS content, designated SCS8X and SCS8A, respectively, were prepared by sol-gel method, either by direct solvent evaporation at the atmospheric pressure or by supercritical drying in CO2, respectively. As reported in previous studies, it was confirmed that both types of mesoporous materials exhibited large surface areas (821 m2g-1-858 m2g-1) and outstanding bioactivity, as well as osteoconductive properties. In addition to silica and chitosan, the inclusion of 10 wt.% of tricalcium phosphate (TCP), designated SCS8T10X, was also considered, which stimulates a fast bioactive response of the xerogel surface. The results here obtained also demonstrate that xerogels induced earlier cell differentiation than the aerogels with identical composition. In conclusion, our study shows that the sol-gel synthesis of CS-silica xerogels and aerogels enhances not only their bioactive response, but also osteoconduction and cell differentiation properties. Therefore, these new biomaterials should provide adequate secretion of the osteoid for a fast bone regeneration.
Collapse
Affiliation(s)
- Antonio Pérez-Moreno
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Manuel Piñero
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Cádiz, Spain
| | - Rafael Fernández-Montesinos
- Instituto de Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, 11510 Cádiz, Spain
- Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
| | - Gonzalo Pinaglia-Tobaruela
- Instituto de Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, 11510 Cádiz, Spain
- Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
| | - María V Reyes-Peces
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - María Del Mar Mesa-Díaz
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Cádiz, Spain
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - José Ignacio Vilches-Pérez
- Instituto de Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, 11510 Cádiz, Spain
- Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
| | - Luis Esquivias
- Departamento de Física de la Materia Condensada, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Nicolás de la Rosa-Fox
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Cádiz, Spain
| | - Mercedes Salido
- Instituto de Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, 11510 Cádiz, Spain
- Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
| |
Collapse
|
2
|
Mostafavi AH, Mishra AK, Gallucci F, Kim JH, Ulbricht M, Coclite AM, Hosseini SS. Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques. J Appl Polym Sci 2023. [DOI: 10.1002/app.53720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
| | - Ajay Kumar Mishra
- College of Medicine and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Division of Nanomaterials Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Department of Chemistry Durban University of Technology Durban South Africa
| | - Fausto Gallucci
- Inorganic Membranes and Membrane Reactors, Sustainable Process Engineering, Department of Chemical Engineering and Chemistry Eindhoven University of Technology Eindhoven MB The Netherlands
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul South Korea
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II Universität Duisburg‐Essen Essen Germany
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz Graz University of Technology Graz Austria
| | - Seyed Saeid Hosseini
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
- Department of Chemical Engineering Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
3
|
Tang Y, Tian J, Li L, Huang L, Shen Q, Guo S, Jiang Y. Biomimetic Biphasic Electrospun Scaffold for Anterior Cruciate Ligament Tissue Engineering. Tissue Eng Regen Med 2021; 18:819-830. [PMID: 34355341 DOI: 10.1007/s13770-021-00376-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/17/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Replacing damaged anterior cruciate ligaments (ACLs) with tissue-engineered artificial ligaments is challenging because ligament scaffolds must have a multiregional structure that can guide stem cell differentiation. Here, we designed a biphasic scaffold and evaluated its effect on human marrow mesenchymal stem cells (MSCs) under dynamic culture conditions as well as rat ACL reconstruction model in vivo. METHODS We designed a novel dual-phase electrospinning strategy wherein the scaffolds comprised randomly arranged phases at the two ends and an aligned phase in the middle. The morphological, mechanical properties and scaffold degradation were investigated. MSCs proliferation, adhesion, morphology and fibroblast markers were evaluated under dynamic culturing. This scaffold were tested if they could induce ligament formation using a rodent model in vivo. RESULTS Compared with other materials, poly(D,L-lactide-co-glycolide)/poly(ε-caprolactone) (PLGA/PCL) with mass ratio of 1:5 showed appropriate mechanical properties and biodegradability that matched ACLs. After 28 days of dynamic culturing, MSCs were fusiform oriented in the aligned phase and randomly arranged in a paving-stone-like morphology in the random phase. The increased expression of fibroblastic markers demonstrated that only the alignment of nanofibers worked with mechanical stimulation to promote effective fibroblast differentiation. This scaffold was a dense collagenous structure, and there was minimal difference in collagen direction in the orientation phase. CONCLUSION Dual-phase electrospun scaffolds had mechanical properties and degradability similar to those of ACLs. They promoted differences in the morphology of MSCs and induced fibroblast differentiation under dynamic culture conditions. Animal experiments showed that ligamentous tissue regenerated well and supported joint stability.
Collapse
Affiliation(s)
- Ya Tang
- Orthopedic Department, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jialiang Tian
- Orthopedic Department, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Long Li
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Lin Huang
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Quan Shen
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Shanzhu Guo
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Yue Jiang
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration. Int J Mol Sci 2021; 22:ijms22158321. [PMID: 34361087 PMCID: PMC8347756 DOI: 10.3390/ijms22158321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Silica/biopolymer hydrogel-based materials constitute very attractive platforms for various emerging biomedical applications, particularly for bone repair. The incorporation of calcium phosphates in the hybrid network allows for designing implants with interesting biological properties. Here, we introduce a synthesis procedure for obtaining silica–chitosan (CS)–tricalcium phosphate (TCP) xerogels, with CS nominal content varying from 4 to 40 wt.% and 10 to 20 wt.% TCP. Samples were obtained using the sol-gel process assisted with ultrasound probe, and the influence of ethanol or water as washing solvents on surface area, micro- and mesopore volume, and average pore size were examined in order to optimize their textural properties. Three washing solutions with different soaking conditions were tested: 1 or 7 days in absolute ethanol and 30 days in distilled water, resulting in E1, E7, and W30 washing series, respectively. Soaked samples were eventually dried by evaporative drying at air ambient pressure, and the formation of interpenetrated hybrid structures was suggested by Fourier transformed infrared (FTIR) spectroscopy. In addition the impact that both washing solvent and TCP content have on the biodegradation, in vitro bioactivity and osteoconduction of xerogels were explored. It was found that calcium and phosphate-containing ethanol-washed xerogels presented in vitro release of calcium (2–12 mg/L) and silicon ions (~60–75 mg/L) after one week of soaking in phosphate-buffered saline (PBS), as revealed by inductive coupled plasma (ICP) spectroscopy analysis. However, only the release of silicon was detected for water-washed samples. Besides, all the samples exhibited in vitro bioactivity in simulated body fluid (SBF), as well as enhanced in vitro cell growth and also significant focal adhesion development and maturation.
Collapse
|
5
|
Marine Algae Incorporated Polylactide Acid Patch: Novel Candidate for Targeting Osteosarcoma Cells without Impairing the Osteoblastic Proliferation. Polymers (Basel) 2021; 13:polym13060847. [PMID: 33801946 PMCID: PMC8001715 DOI: 10.3390/polym13060847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Biodegradable collagen-based materials have been preferred as scaffolds and grafts for diverse clinical applications in density and orthopedy. Besides the advantages of using such bio-originated materials, the use of collagen matrices increases the risk of infection transmission through the cells or the tissues of the graft/scaffold. In addition, such collagen-based solutions are not counted as economically feasible approaches due to their high production cost. In recent years, incorporation of marine algae in synthetic polymers has been considered as an alternative method for preparation grafts/scaffolds since they represent abundant and cheap source of potential biopolymers. Current work aims to propose a novel composite patch prepared by blending Sargassum vulgare powders (SVP) to polylactide (PLA) as an alternative to the porcine-derived membranes. SVP-PLA composite patches were produced by using a modified solvent casting method. Following detailed material characterization to assess the cytocompatibility, human osteoblasts (HOBs) and osteosarcoma cells (SaOS-2) were seeded on neat PLA and SVP-PLA patches. MTT and BrdU assays indicated a greater cytocompatibility and higher proliferation for HOBs cultured on SVP-PLA composite than for those cultured on neat PLA. SaOS-2 cells cultured on SVP-PLA exhibited a significant decrease in cell proliferation. The composite patch described herein exhibits an antiproliferative effect against SaOS-2 cells without impairing HOBs' adhesion and proliferation.
Collapse
|
6
|
Reichstein W, Sommer L, Veziroglu S, Sayin S, Schröder S, Mishra YK, Saygili Eİ, Karayürek F, Açil Y, Wiltfang J, Gülses A, Faupel F, Aktas OC. Initiated Chemical Vapor Deposition (iCVD) Functionalized Polylactic Acid-Marine Algae Composite Patch for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13020186. [PMID: 33430187 PMCID: PMC7825612 DOI: 10.3390/polym13020186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
The current study aimed to describe the fabrication of a composite patch by incorporating marine algae powders (MAPs) into poly-lactic acid (PLA) for bone tissue engineering. The prepared composite patch was functionalized with the co-polymer, poly (2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) (p(HEMA-co-EGDMA)) via initiated chemical vapor deposition (iCVD) to improve its wettability and overall biocompatibility. The iCVD functionalized MAP–PLA composite patch showed superior cell interaction of human osteoblasts. Following the surface functionalization by p(HEMA-co-EGDMA) via the iCVD technique, a highly hydrophilic patch was achieved without tailoring any morphological and structural properties. Moreover, the iCVD modified composite patch exhibited ideal cell adhesion for human osteoblasts, thus making the proposed patch suitable for potential biomedical applications including bone tissue engineering, especially in the fields of dentistry and orthopedy.
Collapse
Affiliation(s)
- Wiebke Reichstein
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
| | - Levke Sommer
- Department of Oral and Maxillofacial Surgery, Campus Kiel, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany; (L.S.); (Y.A.); (J.W.)
| | - Salih Veziroglu
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
| | - Selin Sayin
- Marine Science and Technology Faculty, Iskenderun Technical University, 31200 Iskenderun/Hatay, Turkey;
| | - Stefan Schröder
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark;
| | - Eyüp İlker Saygili
- Department of Medical Biochemistry, SANKO University, Şehitkamil, 27090 Gaziantep, Turkey;
| | - Fatih Karayürek
- Department of Periodontology, Cankiri Karatekin University, 18100 Cankiri, Turkey;
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, Campus Kiel, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany; (L.S.); (Y.A.); (J.W.)
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, Campus Kiel, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany; (L.S.); (Y.A.); (J.W.)
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, Campus Kiel, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany; (L.S.); (Y.A.); (J.W.)
- Correspondence: (A.G.); (O.C.A.)
| | - Franz Faupel
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
| | - Oral Cenk Aktas
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
- Correspondence: (A.G.); (O.C.A.)
| |
Collapse
|
7
|
Perez-Moreno A, Reyes-Peces MDLV, de los Santos DM, Pinaglia-Tobaruela G, de la Orden E, Vilches-Pérez JI, Salido M, Piñero M, de la Rosa-Fox N. Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior. Polymers (Basel) 2020; 12:E2802. [PMID: 33256226 PMCID: PMC7760707 DOI: 10.3390/polym12122802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Silica (SiO2)/chitosan (CS) composite aerogels are bioactive when they are submerged in simulated body fluid (SBF), causing the formation of bone-like hydroxyapatite (HAp) layer. Silica-based hybrid aerogels improve the elastic behavior, and the combined CS modifies the network entanglement as a crosslinking biopolymer. Tetraethoxysilane (TEOS)/CS is used as network precursors by employing a sol-gel method assisted with high power ultrasound (600 W). Upon gelation and aging, gels are dried in supercritical CO2 to obtain monoliths. Thermograms provide information about the condensation of the remaining hydroxyl groups (400-700 °C). This step permits the evaluation of the hydroxyl group's content of 2 to 5 OH nm-2. The formed Si-OH groups act as the inductor of apatite crystal nucleation in SBF. The N2 physisorption isotherms show a hysteresis loop of type H3, characteristic to good interconnected porosity, which facilitates both the bioactivity and the adhesion of osteoblasts cells. After two weeks of immersion in SBF, a layer of HAp microcrystals develops on the surface with a stoichiometric Ca/P molar ratio of 1.67 with spherulite morphology and uniform sizes of 6 μm. This fact asserts the bioactive behavior of these hybrid aerogels. Osteoblasts are cultured on the selected samples and immunolabeled for cytoskeletal and focal adhesion expression related to scaffold nanostructure and composition. The initial osteoconductive response observes points to a great potential of tissue engineering for the designed composite aerogels.
Collapse
Affiliation(s)
- Antonio Perez-Moreno
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain; (M.d.l.V.R.-P.); (E.d.l.O.); (J.I.V.-P.); (M.S.); (M.P.); (N.d.l.R.-F.)
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), University of Cadiz, 11510 Cádiz, Spain
- Department of Condensed Matter Physics, Faculty of Science, University of Cadiz, 11510 Cádiz, Spain
| | - María de las Virtudes Reyes-Peces
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain; (M.d.l.V.R.-P.); (E.d.l.O.); (J.I.V.-P.); (M.S.); (M.P.); (N.d.l.R.-F.)
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), University of Cadiz, 11510 Cádiz, Spain
- Department of Condensed Matter Physics, Faculty of Science, University of Cadiz, 11510 Cádiz, Spain
| | | | | | - Emilio de la Orden
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain; (M.d.l.V.R.-P.); (E.d.l.O.); (J.I.V.-P.); (M.S.); (M.P.); (N.d.l.R.-F.)
- Department of Histology, SCIBM, Faculty of Medicine, University of Cadiz, 11004 Cádiz, Spain;
| | - José Ignacio Vilches-Pérez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain; (M.d.l.V.R.-P.); (E.d.l.O.); (J.I.V.-P.); (M.S.); (M.P.); (N.d.l.R.-F.)
- Department of Histology, SCIBM, Faculty of Medicine, University of Cadiz, 11004 Cádiz, Spain;
| | - Mercedes Salido
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain; (M.d.l.V.R.-P.); (E.d.l.O.); (J.I.V.-P.); (M.S.); (M.P.); (N.d.l.R.-F.)
- Department of Histology, SCIBM, Faculty of Medicine, University of Cadiz, 11004 Cádiz, Spain;
| | - Manuel Piñero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain; (M.d.l.V.R.-P.); (E.d.l.O.); (J.I.V.-P.); (M.S.); (M.P.); (N.d.l.R.-F.)
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), University of Cadiz, 11510 Cádiz, Spain
- Department of Condensed Matter Physics, Faculty of Science, University of Cadiz, 11510 Cádiz, Spain
| | - Nicolás de la Rosa-Fox
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain; (M.d.l.V.R.-P.); (E.d.l.O.); (J.I.V.-P.); (M.S.); (M.P.); (N.d.l.R.-F.)
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), University of Cadiz, 11510 Cádiz, Spain
- Department of Condensed Matter Physics, Faculty of Science, University of Cadiz, 11510 Cádiz, Spain
| |
Collapse
|
8
|
do Monte FA, Awad KR, Ahuja N, Kim HK, Aswath P, Brotto M, Varanasi VG. Amorphous Silicon Oxynitrophosphide-Coated Implants Boost Angiogenic Activity of Endothelial Cells. Tissue Eng Part A 2020; 26:15-27. [PMID: 31044666 PMCID: PMC6983748 DOI: 10.1089/ten.tea.2019.0051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
Lack of osteointegration is a major cause of aseptic loosening and failure of implants used in bone replacement. Implants coated with angiogenic biomaterials can improve osteointegration and potentially reduce these complications. Silicon- and phosphorus-based materials have been shown to upregulate expression of angiogenic factors and improve endothelial cell functions. In the present study, we hypothesize that implants coated with amorphous silica-based coatings in the form of silicon oxynitrophosphide (SiONP) by using plasma-enhanced chemical vapor deposition (PECVD) technique could enhance human umbilical vein endothelial cell angiogenic properties in vitro. The tested groups were: glass coverslip (GCS), tissue culture plate, SiON, SiONP1 (O: 7.3 at %), and SiONP2 (O: 14.2 at %) implants. The SiONP2 composition demonstrated 3.5-fold more fibronectin deposition than the GCS (p < 0.001). The SiONP2 group also presented a significant improvement in the capillary tubule length and thickness compared with the other groups (p < 0.01). At 24 h, we observed at least a twofold upregulation of vascular endothelial growth factor A, hypoxia-inducible factor-1α, angiopoietin-1, and nesprin-2, more evident in the SiONP1 and SiONP2 groups. In conclusion, the studied amorphous silica-coated implants, especially the SiONP2 composition, could enhance the endothelial cell angiogenic properties in vitro and may induce faster osteointegration and healing. Impact Statement In this study, we report for the first time the significant enhancement of human umbilical vein endothelial cell angiogenic properties (in vitro) by the amorphous silica-based coatings in the form of silicon oxynitrophosphide (SiONP). The SiONP2 demonstrated 3.5-fold more fibronectin deposition than the glass coverslip and presented a significant improvement in the capillary tubule length and thickness. At 24 h, SiONP reported twofold upregulation of vascular endothelial growth factor A, hypoxia-inducible factor-1α, angiopoietin-1, and nesprin-2. The studied amorphous silica-coated implants enhance the endothelial cell angiogenic properties in vitro and may induce faster osteointegration and healing.
Collapse
Affiliation(s)
- Felipe A. do Monte
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
| | - Kamal R. Awad
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Neelam Ahuja
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Harry K.W. Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Pranesh Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Venu G. Varanasi
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
9
|
Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109796. [DOI: 10.1016/j.msec.2019.109796] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/01/2019] [Accepted: 05/25/2019] [Indexed: 11/21/2022]
|
10
|
Rasoulianboroujeni M, Fahimipour F, Shah P, Khoshroo K, Tahriri M, Eslami H, Yadegari A, Dashtimoghadam E, Tayebi L. Development of 3D-printed PLGA/TiO 2 nanocomposite scaffolds for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:105-113. [PMID: 30606516 PMCID: PMC6388694 DOI: 10.1016/j.msec.2018.10.077] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/01/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023]
Abstract
Porous scaffolds were 3D-printed using poly lactic-co-glycolic acid (PLGA)/TiO2 composite (10:1 weight ratio) for bone tissue engineering applications. Addition of TiO2 nanoparticles improved the compressive modulus of scaffolds. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed an increase in both glass transition temperature and thermal decomposition onset of the composite compared to pure PLGA. Furthermore, addition of TiO2 was found to enhance the wettability of the surface evidenced by reducing the contact angle from 90.5 ± 3.2 to 79.8 ± 2.4 which is in favor of cellular attachment and activity. The obtained results revealed that PLGA/TiO2 scaffolds significantly improved osteoblast proliferation compared to pure PLGA (p < 0.05). Furthermore, osteoblasts cultured on PLGA/TiO2 nanocomposite showed significantly higher ALP activity and improved calcium secretion compared to pure PLGA scaffolds (p < 0.05).
Collapse
Affiliation(s)
| | - F Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - P Shah
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - K Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - M Tahriri
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - H Eslami
- Department of Biomedical Engineering, Haeri University, Yazd, Iran
| | - A Yadegari
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - E Dashtimoghadam
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - L Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
11
|
Torres-Lagares D, Castellanos-Cosano L, Serrera-Figallo MÁ, García-García FJ, López-Santos C, Barranco A, Rodríguez-Gonzalez Elipe A, Rivera-Jiménez C, Gutiérrez-Pérez JL. In Vitro and in Vivo Study of Poly(Lactic⁻co⁻Glycolic) (PLGA) Membranes Treated with Oxygen Plasma and Coated with Nanostructured Hydroxyapatite Ultrathin Films for Guided Bone Regeneration Processes. Polymers (Basel) 2017; 9:polym9090410. [PMID: 30965714 PMCID: PMC6418600 DOI: 10.3390/polym9090410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
The novelty of this study is the addition of an ultrathin layer of nanostructured hydroxyapatite (HA) on oxygen plasma modified poly(lactic–co–glycolic) (PLGA) membranes (PO2) in order to evaluate the efficiency of this novel material in bone regeneration. Methods: Two groups of regenerative membranes were prepared: PLGA (control) and PLGA/PO2/HA (experimental). These membranes were subjected to cell cultures and then used to cover bone defects prepared on the skulls of eight experimental rabbits. Results: Cell morphology and adhesion of the osteoblasts to the membranes showed that the osteoblasts bound to PLGA were smaller and with a lower number of adhered cells than the osteoblasts bound to the PLGA/PO2/HA membrane (p < 0.05). The PLGA/PO2/HA membrane had a higher percentage of viable cells bound than the control membrane (p < 0.05). Both micro-CT and histological evaluation confirmed that PLGA/PO2/HA membranes enhance bone regeneration. A statistically significant difference in the percentage of osteoid area in relation to the total area between both groups was found. Conclusions: The incorporation of nanometric layers of nanostructured HA into PLGA membranes modified with PO2 might be considered for the regeneration of bone defects. PLGA/PO2/HA membranes promote higher osteosynthetic activity, new bone formation, and mineralisation than the PLGA control group.
Collapse
Affiliation(s)
| | | | | | - Francisco J García-García
- Institute of Materials Science of Seville (CSIC-University of Seville), Américo Vespucio Street n 49, 41092 Seville, Spain.
| | - Carmen López-Santos
- Institute of Materials Science of Seville (CSIC-University of Seville), Américo Vespucio Street n 49, 41092 Seville, Spain.
| | - Angel Barranco
- Institute of Materials Science of Seville (CSIC-University of Seville), Américo Vespucio Street n 49, 41092 Seville, Spain.
| | | | | | | |
Collapse
|
12
|
Castillo-Dalí G, Castillo-Oyagüe R, Terriza A, Saffar JL, Batista-Cruzado A, Lynch CD, Sloan AJ, Gutiérrez-Pérez JL, Torres-Lagares D. 'Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'. J Dent 2016; 47:71-9. [PMID: 26850906 DOI: 10.1016/j.jdent.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/22/2016] [Accepted: 01/31/2016] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Guided bone regeneration (GBR) processes are frequently necessary to achieve appropriate substrates before the restoration of edentulous areas. This study aimed to evaluate the bone regeneration reliability of a new poly-lactic-co-glycolic acid (PLGA) membrane after treatment with oxygen plasma (PO2) and titanium dioxide (TiO2) composite nanoparticles. METHODS Circumferential bone defects (diameter: 10mm; depth: 3mm) were created on the parietal bones of eight experimentation rabbits and were randomly covered with control membranes (Group 1: PLGA) or experimental membranes (Group 2: PLGA/PO2/TiO2). The animals were euthanized two months afterwards, and a morphologic study was then performed under microscope using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone formed in the grown defects, concentration of osteoclasts, and intensity of osteosynthetic activity were assessed. Comparisons among the groups and with the original bone tissue were made using the Kruskal-Wallis test. The level of significance was set in advance at a=0.05. RESULTS The experimental group recorded higher values for new bone formation, mineralised bone length, and osteoclast concentration; this group also registered the highest osteosynthetic activity. Bone layers in advanced formation stages and low proportions of immature tissue were observed in the study group. CONCLUSIONS The functionalised membranes showed the best efficacy for bone regeneration. CLINICAL SIGNIFICANCE The addition of TiO2 nanoparticles onto PLGA/PO2 membranes for GBR processes may be a promising technique to restore bone dimensions and anatomic contours as a prerequisite to well-supported and natural-appearing prosthetic rehabilitations.
Collapse
Affiliation(s)
- Gabriel Castillo-Dalí
- Department of Stomatology, Faculty of Dentistry, University of Seville (US), C/Avicena, s/n, 41009 Seville, Spain
| | - Raquel Castillo-Oyagüe
- Department of Buccofacial Prostheses, Faculty of Dentistry, Complutense University of Madrid (UCM), Pza. Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Antonia Terriza
- Institute of Materials Sciences, Advanced Center of Scientific Research (CSIC), Avda. Américo Vespuccio, no. 49, Isla de la Cartuja, 41092 Seville, Spain
| | - Jean-Louis Saffar
- Faculté de Chirurgie Dentaire, Université Paris V- Descartes, rue Maurice Arnoux, no. 1, 92120 Montrouge, Paris, France
| | - Antonio Batista-Cruzado
- Faculté de Chirurgie Dentaire, Université Paris V- Descartes, rue Maurice Arnoux, no. 1, 92120 Montrouge, Paris, France
| | - Christopher D Lynch
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, CF14 4XY, Cardiff, Wales, UK
| | - Alastair J Sloan
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, CF14 4XY, Cardiff, Wales, UK
| | - José-Luis Gutiérrez-Pérez
- Department of Stomatology, Faculty of Dentistry, University of Seville (US), C/Avicena, s/n, 41009 Seville, Spain
| | - Daniel Torres-Lagares
- Department of Stomatology, Faculty of Dentistry, University of Seville (US), C/Avicena, s/n, 41009 Seville, Spain
| |
Collapse
|
13
|
Liu C, Chan KW, Shen J, Wong HM, Kwok Yeung KW, Tjong SC. Melt-compounded polylactic acid composite hybrids with hydroxyapatite nanorods and silver nanoparticles: biodegradation, antibacterial ability, bioactivity and cytotoxicity. RSC Adv 2015. [DOI: 10.1039/c5ra14155a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PLA/18% nHA–2% Ag and PLA/18% nHA–6% Ag nanocomposites showing zone of inhibition againstE. coli.
Collapse
Affiliation(s)
- Chen Liu
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- China
| | - Kai Wang Chan
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- China
| | - Jie Shen
- Department of Orthopedics and Traumatology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- China
| | - Hoi Man Wong
- Department of Orthopedics and Traumatology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopedics and Traumatology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- China
| | - Sie Chin Tjong
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|
14
|
A Novel Exploration of a Combination of Gambogic Acid with TiO₂ Nanofibers: The Photodynamic Effect for HepG2 Cell Proliferation. MATERIALS 2014; 7:6865-6878. [PMID: 28788218 PMCID: PMC5456129 DOI: 10.3390/ma7096865] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/17/2023]
Abstract
As a good photosensitizer, TiO₂ nanomaterials show potential biomedical applications, such as drug carriers or enhancers in photodynamic therapy. In this contribution, novel nanocomposites through the blending of TiO₂ nanofibers with the active compound, gambogic acid (GA), were explored, and the results showed that GA could inhibit cancer cell proliferation in a time-dependent and dose-dependent manner, inducing apoptosis and cell cycle arrest at the G0/G1 phase in HepG2 cells. It is evident that after the GA-TiO₂ nanocomposites were cultured with the cancer cells, the cooperation effect could effectively enhance the cytotoxicity of GA for HepG2 cells. Meanwhile, if activated by UV irradiation, under the presence of GA-TiO₂ nanocomposites, this would lead to significant apoptosis and necrosis for HepG2 cells with a photodynamic therapy (PDT) effect. Associated with the controlled drug-release from these nanocomposites, TiO₂ nanofibers could readily cut down the drug consumption in HepG2 cells and reduce the side-effect for the normal cells and tissue, which may be further utilized in the therapeutic alliance for cancer therapy.
Collapse
|