1
|
Zakaria ND, Salih IL, Hamzah HH, Sönmez T, Omar MH, Nor NM, Razak KA, Balakrishnan V. Electrochemical and imaging evaluations of electrochemically activated screen-printed gold electrodes. Analyst 2024; 149:5401-5410. [PMID: 39373774 DOI: 10.1039/d4an00990h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Sulfuric acid is commonly used to electrochemically activate gold electrodes in a variety of electrochemical applications. This work provides the first evaluations of the electrochemical behaviors and a 3D image of an activated screen-printed gold electrode (SPGE, purchased commercially) through electrochemical and imaging analyses. The activated SPGE surface appears rougher than the unactivated SPGE surface when viewed through microtopography images using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Nevertheless, the roughened microscopy structure does not exhibit any substantial changes in roughness factor for the activated SPGE, as indicated by capacitive current analyses. The significant improvement in electrochemical responsiveness of the activated SPGE is mainly attributed to the presence of surface pores created in the microscopic structure as a result of gold oxide layer formation. The presence of surface pores on the activated surface has significantly improved its conductivity by 10-fold. As a result, electron transfer kinetics and mass transports of the activated SPGE are greatly improved. The results presented in this work indicate that the surface of the activated SPGE greatly increased its intrinsic surface pores, and conductivity of the electrode surface and uncovered the electrocatalytic active sites. This significantly improves the activated SPGE's performance in electrochemical applications such as oxygen reduction reaction (ORR). An activated SPGE considerably enhanced limiting current density as well as ∼172 mV versus Ag shifted onset potential to more positive potentials compared to unactivated SPGE.
Collapse
Affiliation(s)
- Nor Dyana Zakaria
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
| | - Ibrahim Luqman Salih
- Department of Pharmacy, Raparin Technical and Vocational Institute, Rania, Sulaymaniyah, Kurdistan Region 46012, Iraq
| | - Hairul Hisham Hamzah
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, England, UK.
- School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
| | - Turgut Sönmez
- Department of Chemistry, Karabuk University, 78050 Karabuk, Turkey
| | - Muhamad Huzaifah Omar
- School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
| | - Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300, Nibong Tebal, Penang, Malaysia
| | - Khairunisak Abdul Razak
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300, Nibong Tebal, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
| |
Collapse
|
2
|
Ham JH, Park JS, Oh MK, Kim JH. Reusable Wrinkled Nanoporous Silver Film Fabricated by Plasma Treatment for Surface-Enhanced Raman Scattering Applications. ACS OMEGA 2023; 8:47146-47152. [PMID: 38107931 PMCID: PMC10720294 DOI: 10.1021/acsomega.3c07167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
A nanoporous silver film (npAgF), a promising structure for surface-enhanced Raman spectroscopy (SERS), can be fabricated by using successive O2 and Ar plasma treatments on a planar silver film. The common dealloying method for producing an npAgF involves annealing at high temperatures to produce an alloy film, as well as harsh etching using corrosive chemicals. By contrast, the plasma-based method can be applied directly to various functional substrates to produce more sophisticated npAgF structures. Herein, we report a facile fabrication method for a wrinkled npAgF (w-npAgF) for SERS applications using a thermally contractible polystyrene substrate. The w-npAgF had 3D wrinkles of the nanoporous structure and showed approximately 8 times higher SERS enhancement than did the flat npAgF. Moreover, the w-npAgF could be reused for multiple SERS measurements of different molecules by mild O2 and Ar plasma treatments after each use, in which the O2 plasma effectively removed the adsorbed organic molecules and the Ar plasma reduced silver oxide to pristine silver for subsequent SERS measurements. The wrinkled nanoporous structure was maintained after multiple mild plasma treatments for reuse. The simplicity of plasma-based fabrication and high sensitivity of w-npAgFs are promising features for the green production of low-cost and reusable 3D SERS substrates.
Collapse
Affiliation(s)
- Jin-Hyun Ham
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Jung Su Park
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Myoung-Kyu Oh
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| |
Collapse
|
3
|
Artmann E, Schmider T, Jacob T, Engstfeld AK. Facet-Dependent Formation and Adhesion of Au Oxide and Nanoporous Au on Poly-Oriented Au Single Crystals. Chemphyschem 2023; 24:e202300428. [PMID: 37435757 DOI: 10.1002/cphc.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Nanoporous Au (NPG) has different properties compared to bulk Au, making it an interesting material for numerous applications. To modify the structure of NPG films for specific applications, e. g., the porosity, thickness, and homogeneity of the films, a fundamental understanding of the structure formation is essential. Here, we focus on NPG prepared via electrochemical reduction from Au oxide formed during high voltage (HV) electrolysis on poly-oriented Au single crystal (Au POSC) electrodes. These POSCs consist of a metal bead, with faces with different crystallographic orientations and allow screening of the influence of crystallographic orientation on the structure formation for different facets in one experiment. The HV electrolysis is performed between 100 ms and 30 s at 300 V and 540 V. The amount of Au oxide formed is determined by electrochemical measurements and the structural properties are investigated by scanning electron and optical microscopy. We show that the formation of Au oxide is mostly independent of the crystallographic orientation, except for thick layers, while the macroscopic structure of the NPG films depends on experimental parameters such as the Au oxide precursor thickness and the crystallographic orientation of the substrate. Possible reasons for the frequently observed exfoliation of the NPG films are discussed.
Collapse
Affiliation(s)
- Evelyn Artmann
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | - Tobias Schmider
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | | |
Collapse
|
4
|
Artmann E, Forschner L, Schüttler KM, Al-Shakran M, Jacob T, Engstfeld AK. Nanoporous Au Formation on Au Substrates via High Voltage Electrolysis. Chemphyschem 2023; 24:e202200645. [PMID: 36328970 DOI: 10.1002/cphc.202200645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Nanoporous Au (NPG) films have promising properties, making them suitable for various applications in (electro)catalysis or (bio)sensing. Tuning the structural properties, such as the pore size or the surface-to-volume ratio, often requires complex starting materials such as alloys, multiple synthesis steps, lengthy preparation procedures or a combination of these factors. Here we present an approach that circumvents these difficulties, enabling for a rapid and controlled preparation of NPG films starting from a bare Au electrode. In a first approach a Au oxide film is prepared by high voltage (HV) electrolysis in a KOH solution, which is then reduced either electrochemically or in the presence of H2 O2 . The resulting NPG structures and their electrochemically active surface areas strongly depend on the reduction procedure, the concentration and temperature of the H2 O2 -containing KOH solution, as well as the applied voltage and temperature during HV electrolysis. Secondly, the NPG film can be prepared directly by applying voltages that result in anodic contact glow discharge electrolysis (aCGDE). By carefully adjusting the corresponding parameters, the surface area of the final NPG film can be specifically controlled. The structural properties of the electrodes are investigated by means of XPS, SEM and electrochemical methods.
Collapse
Affiliation(s)
- Evelyn Artmann
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | - Lukas Forschner
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | | | | | - Timo Jacob
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | | |
Collapse
|
5
|
Kwon H, Barad HN, Silva Olaya AR, Alarcón-Correa M, Hahn K, Richter G, Wittstock G, Fischer P. Dry Synthesis of Pure and Ultrathin Nanoporous Metallic Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5620-5627. [PMID: 36690332 PMCID: PMC9906609 DOI: 10.1021/acsami.2c19584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Nanoporous metals possess unique properties attributed to their high surface area and interconnected nanoscale ligaments. They are mostly fabricated by wet synthetic methods that are not universal to various metals and not free from impurities due to solution-based etching processes. Here, we demonstrate that the plasma treatment of metal nanoparticles formed by physical vapor deposition is a general route to form such films with many metals including the non-noble ones. The resultant nanoporous metallic films are free of impurities and possess highly curved ligaments and nanopores. The metal films are ultrathin, yet remarkably robust and very well connected, and thus are highly promising for various applications such as transparent conducting electrodes.
Collapse
Affiliation(s)
- Hyunah Kwon
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany
- Max
Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Hannah-Noa Barad
- Department
of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002 Israel
| | - Alex Ricardo Silva Olaya
- School
of Mathematics and Science, Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Mariana Alarcón-Correa
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany
- Max
Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Kersten Hahn
- Max
Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Gunther Richter
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Gunther Wittstock
- School
of Mathematics and Science, Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Peer Fischer
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany
- Max
Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Localized plasmonic sensor for direct identifying lung and colon cancer from the blood. Biosens Bioelectron 2022; 211:114372. [DOI: 10.1016/j.bios.2022.114372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
|
7
|
Wyss RM, Parzefall M, Schlichting KP, Gruber CM, Busschaert S, Lightner CR, Lörtscher E, Novotny L, Heeg S. Freestanding and Permeable Nanoporous Gold Membranes for Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16558-16567. [PMID: 35353489 DOI: 10.1021/acsami.2c02608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) demands reliable, high-enhancement substrates in order to be used in different fields of application. Here we introduce freestanding porous gold membranes (PAuM) as easy-to-produce, scalable, mechanically stable, and effective SERS substrates. We fabricate large-scale sub-30 nm thick PAuM that form freestanding membranes with varying morphologies depending on the nominal gold thickness. These PAuM are mechanically stable for pressures up to more than 3 bar and exhibit surface-enhanced Raman scattering with local enhancement factors from 104 to 105, which we demonstrate by wavelength-dependent and spatially resolved Raman measurements using graphene as a local Raman probe. Numerical simulations reveal that the enhancement arises from individual, nanoscale pores in the membrane acting as optical slot antennas. Our PAuM are mechanically stable, provide robust SERS enhancement for excitation power densities up to 106 W cm-2, and may find use as a building block in SERS-based sensing applications.
Collapse
Affiliation(s)
- Roman M Wyss
- Soft Materials Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland
| | | | - Karl-Philipp Schlichting
- Laboratory of Thermodynamics in Emerging Technologies Department of Mechanical and Process Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | | | | | - Carin Rae Lightner
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | | | - Lukas Novotny
- Photonics Laboratory, ETH Zürich, Zürich CH-8093, Switzerland
| | - Sebastian Heeg
- Photonics Laboratory, ETH Zürich, Zürich CH-8093, Switzerland
- Department of Physics, Humboldt Universität zu Berlin, 12489Berlin, Germany
| |
Collapse
|
8
|
Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Personal biosensors and bioelectronics have been demonstrated for use in out-of-clinic biomedical devices. Such modern devices have the potential to transform traditional clinical analysis into a new approach, allowing patients or users to screen their own health or warning of diseases. Researchers aim to explore the opportunities of easy-to-wear and easy-to-carry sensors that would empower users to detect biomarkers, electrolytes, or pathogens at home in a rapid and easy way. This mobility would open the door for early diagnosis and personalized healthcare management to a wide audience. In this review, we focus on the recent progress made in modern electrochemical sensors, which holds promising potential to support point-of-care technologies. Key original research articles covered in this review are mainly experimental reports published from 2018 to 2020. Strategies for the detection of metabolites, ions, and viruses are updated in this article. The relevant challenges and opportunities of applying nanomaterials to support the fabrication of new electrochemical biosensors are also discussed. Finally, perspectives regarding potential benefits and current challenges of the technology are included. The growing area of personal biosensors is expected to push their application closer to a new phase of biomedical advancement.
Collapse
|
9
|
Bollella P. Porous Gold: A New Frontier for Enzyme-Based Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E722. [PMID: 32290306 PMCID: PMC7221854 DOI: 10.3390/nano10040722] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022]
Abstract
Porous gold (PG) layers modified electrodes have emerged as valuable enzyme support to realize multiple enzyme-based bioelectrochemical devices like biosensors, enzymatic fuel cells (EFCs), smart drug delivery devices triggered by enzyme catalyzed reactions, etc. PG films can be synthesized by using different methods such as dealloying, electrochemical (e.g., templated electrochemical deposition, self-templated electrochemical deposition, etc.) self-assembly and sputter deposition. This review aims to summarize the recent findings about PG synthesis and electrosynthesis, its characterization and application for enzyme-based electrodes used for biosensors and enzymatic fuel cells (EFCs) development.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, 13699-5810 NY, USA
| |
Collapse
|
10
|
Love Wave Surface Acoustic Wave Sensor with Laser-Deposited Nanoporous Gold Sensitive Layer. SENSORS 2019; 19:s19204492. [PMID: 31623258 PMCID: PMC6833045 DOI: 10.3390/s19204492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
Abstract
Laser-deposited gold immobilization layers with different porosities were incorporated into Love Wave Surface Acoustic Wave sensors (LW-SAWs). Acetylcholinesterase (AChE) enzyme was immobilized onto three gold interfaces with different morphologies, and the sensor response to chloroform was measured. The response of the sensors to various chloroform concentrations indicates that their sensing properties (sensitivity, limit of detection) are considerably improved when the gold layers are porous, in comparison to a conventional dense gold layer. The results obtained can be used to improve properties of SAW-based biosensors by controlling the nanostructure of the gold immobilization layer, in combination with other enzymes and proteins, since the design of the present sensor is the same as that for a Love Wave biosensor.
Collapse
|
11
|
Fabrication of Porous Gold Film Using Graphene Oxide as a Sacrificial Layer. MATERIALS 2019; 12:ma12142305. [PMID: 31323903 PMCID: PMC6678361 DOI: 10.3390/ma12142305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
Abstract
An original and simple fabrication process to produce thin porous metal films on selected substrates is reported. The fabrication process includes the deposition of a thin layer of gold on a substrate, spin coating of a graphene oxide dispersion, etching the gold film through the graphene oxide layer, and removing the graphene oxide layer. The porosity of the thin gold film is controlled by varying the etching time, the thickness of the gold film, and the concentration of the graphene oxide dispersion. Images by scanning electron and metallurgical microscopes show a continuous gold film with random porosity formed on the substrate with a porosity size ranging between hundreds of nanometers to tens of micrometers. This general approach enables the fabrication of porous metal films using conventional microfabrication techniques. The proposed process is implemented to fabricate electrodes with patterned porosity that are used in a microfluidic system to manipulate living cells under dielectrophoresis. Porous electrodes are found to enhance the magnitude and spatial distribution of the dielectrophoretic force.
Collapse
|
12
|
Minimally Invasive Glucose Monitoring Using a Highly Porous Gold Microneedles-Based Biosensor: Characterization and Application in Artificial Interstitial Fluid. Catalysts 2019. [DOI: 10.3390/catal9070580] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this paper, we present the first highly porous gold (h-PG) microneedles-based second-generation biosensor for minimally invasive monitoring of glucose in artificial interstitial fluid (ISF). A highly porous microneedles-based electrode was prepared by a simple electrochemical self-templating method that involves two steps, gold electrodeposition and hydrogen bubbling at the electrode, which were realized by applying a potential of −2 V versus a saturated calomel electrode (SCE). The highly porous gold surface of the microneedles was modified by immobilization of 6-(ferrocenyl)hexanethiol (FcSH) as a redox mediator and subsequently by immobilization of a flavin adenine dinucleotide glucose dehydrogenase (FAD-GDH) enzyme using a drop-casting method. The microneedles-based FcSH/FAD-GDH biosensor allows for the detection of glucose in artificial interstitial fluid with an extended linear range (0.1–10 mM), high sensitivity (50.86 µA cm−2 mM−1), stability (20% signal loss after 30 days), selectivity (only ascorbic acid showed a response about 10% of glucose signal), and a short response time (3 s). These properties were favourably compared to other microneedles-based glucose biosensors reported in the literature. Finally, the microneedle-arrays-based second-generation biosensor for glucose detection was tested in artificial interstitial fluid opportunely spiked with different concentrations of glucose (simulating healthy physiological conditions while fasting and after lunch) and by placing the electrode into a simulated chitosan/agarose hydrogel skin model embedded in the artificial ISF (continuous glucose monitoring). The obtained current signals had a lag-time of about 2 min compared to the experiments in solution, but they fit perfectly into the linearity range of the biosensor (0.1–10 mM). These promising results show that the proposed h-PG microneedles-based sensor could be used as a wearable, disposable, user-friendly, and automated diagnostic tool for diabetes patients.
Collapse
|
13
|
Lee T, Park SY, Jang H, Kim GH, Lee Y, Park C, Mohammadniaei M, Lee MH, Min J. Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:511-519. [DOI: 10.1016/j.msec.2019.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
|
14
|
Pei Y, Hu M, Tang X, Huang W, Li Z, Chen S, Xia Y. Ultrafast one-pot anodic preparation of Co 3O 4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide. Anal Chim Acta 2019; 1059:49-58. [PMID: 30876632 DOI: 10.1016/j.aca.2019.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 02/02/2023]
Abstract
For fabrication of composite electrode, one-pot strategy is highly attractive for convenience and efficiency. Here, a self-supporting Co3O4/nanoporous gold (NPG) composite electrode was one-pot prepared via one-step in situ anodization of a smooth gold electrode in a CoCl2 solution within 100 s. It worked as a bifunctional electrocatalyst for glucose oxidation and H2O2 reduction in NaOH solution. Under optimized conditions, the electrocatalytic oxidation of glucose exhibits a wide linear range from 2 μM to 2.11 mM with a limit of detection as low as 0.085 μM (S/N = 3) and an ultrahigh sensitivity of 4470.4 μA mM-1 cm-2. Detection of glucose in human serum samples are also realized with results comparable to those from local hospital. The electrocatalytic reduction of H2O2 shows a linear response range from 20 μM to 19.1 mM and a high sensitivity of 1338.7 μA mM-1 cm-2. The present results demonstrate that the facilely prepared Co3O4/NPG is a promising nonenzymatic sensor for rapid amperometric detection of glucose and H2O2 with ultrasensitivity, high selectivity, satisfactory reproducibility, good stability and long duration.
Collapse
Affiliation(s)
- Yuanjiao Pei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Ming Hu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Xueyong Tang
- The Second Affiliated Hospital of Hunan University of TCM, Changsha, 410005, China
| | - Wei Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Zelin Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yue Xia
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
15
|
Cao Q, Feng J, Lu H, Zhang H, Zhang F, Zeng H. Surface-enhanced Raman scattering using nanoporous gold on suspended silicon nitride waveguides. OPTICS EXPRESS 2018; 26:24614-24620. [PMID: 30469574 DOI: 10.1364/oe.26.024614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A hybrid integration of nanoporous gold with silicon nitride waveguide has been realized for surface-enhanced Raman spectroscopy (SERS) at 633-nm wavelength. The SERS signal is excited through 580-nm-thick T-shape suspended waveguides and collected through an objective lens. Raman spectra for different mesa width at either transverse electric (TE) or transverse magnetic (TM) mode are measured and compared. The localized surface plasmon resonance of the nanoporous gold can result in a waveguide and polarization-dependent SERS enhancement. The presented miniaturized SERS chips can work from visible to near-infrared wavelength and a wide application prospect could be expected.
Collapse
|
16
|
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. Highly Sensitive Membraneless Fructose Biosensor Based on Fructose Dehydrogenase Immobilized onto Aryl Thiol Modified Highly Porous Gold Electrode: Characterization and Application in Food Samples. Anal Chem 2018; 90:12131-12136. [PMID: 30148350 DOI: 10.1021/acs.analchem.8b03093] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this paper we present a new method to electrodeposit highly porous gold (h-PG) onto a polycrystalline solid gold electrode without any template. The electrodeposition is carried out by first cycling the electrode potential between +0.8 and 0 V in 10 mM HAuCl4 with 2.5 M NH4Cl and then applying a negative potential for the production of hydrogen bubbles at the electrode surface. After that the modified electrode was characterized in sulfuric acid to estimate the real surface area ( Areal) to be close to 24 cm2, which is roughly 300 times higher compared to the bare gold electrodes (0.08 cm2). The electrode was further incubated overnight with three different thiols (4-mercaptobenzoic acid (4-MBA), 4-mercaptophenol (4-MPh), and 4-aminothiophenol (4-APh)) in order to produce differently charged self-assembled monolayers (SAMs) on the electrode surface. Finally a fructose dehydrogenase (FDH) solution was drop-cast onto the electrodes. All the modified electrodes were investigated by cyclic voltammetry both under nonturnover and turnover conditions. The FDH/4-MPh/h-PG exhibited two couples of redox peaks for the heme c1 and heme c2 of the cytochrome domain of FDH and as well as a well pronounced catalytic current density (about 1000 μA cm-2 in the presence of 10 mM fructose) due to the presence of -OH groups on the electrode surface, which stabilize and orientate the enzyme layer on the electrode surface. The FDH/4-MPh/h-PG based electrode showed the best analytical performance with an excellent stability (90% retained activity over 90 days), a detection limit of 0.3 μM fructose, a linear range between 0.05 and 5 mM, and a sensitivity of 175 ± 15 μA cm-2 mM-1. These properties were favorably compared with other fructose biosensors reported in the literature. The biosensor was successively tested to quantify the fructose content in food and beverage samples. No significant interference present in the sample matrixes was observed.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies , Sapienza University of Rome Piazzale Aldo Moro 5 , 00185 , Rome , Italy
| | - Yuya Hibino
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo , Kyoto 606-8502 , Japan
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo , Kyoto 606-8502 , Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry , Lund University , P.O. Box 124, 221 00 , Lund , Sweden
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies , Sapienza University of Rome Piazzale Aldo Moro 5 , 00185 , Rome , Italy
| |
Collapse
|
17
|
Sakai K, Kitazumi Y, Shirai O, Kano K. Nanostructured Porous Electrodes by the Anodization of Gold for an Application as Scaffolds in Direct-electron-transfer-type Bioelectrocatalysis. ANAL SCI 2018; 34:1317-1322. [PMID: 30101833 DOI: 10.2116/analsci.18p302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, nanostructured porous gold electrodes were prepared by the anodization of gold in the presence of oxalic acid or glucose as a reductant, and applied as scaffolds for direct electron transfer (DET)-type bioelectrocatalysis. Gold cations generated in the anodization seem to be reduced by the reductant to construct a porous gold structure. The DET-type performance of the electrode was examined using two DET-type model enzymes, bilirubin oxidase (BOD) and peroxidase (POD), for the four-electron reduction of dioxygen and the two-electron reduction of peroxide, respectively. BOD and POD on the anodized porous gold electrodes exhibited well-defined sigmoidal steady-state waves corresponding to DET-type bioelectrocatalysis. Scanning electron microscopy images revealed sponge-like pores on the electrodes. The anodized porous gold electrodes demonstrate promise as scaffolds for DET-type bioelectrocatalysis.
Collapse
Affiliation(s)
- Kento Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
18
|
Michelakaki I, Boukos N, Dragatogiannis DA, Stathopoulos S, Charitidis CA, Tsoukalas D. Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1868-1880. [PMID: 30013881 PMCID: PMC6036986 DOI: 10.3762/bjnano.9.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/22/2018] [Indexed: 05/31/2023]
Abstract
In this work we study the fabrication and characterization of hafnium nanoparticles and hafnium nanoparticle thin films. Hafnium nanoparticles were grown in vacuum by magnetron-sputtering inert-gas condensation. The as deposited nanoparticles have a hexagonal close-packed crystal structure, they possess truncated hexagonal biprism shape and are prone to surface oxidation when exposed to ambient air forming core-shell Hf/HfO2 structures. Hafnium nanoparticle thin films were formed through energetic nanoparticle deposition. This technique allows for the control of the energy of charged nanoparticles during vacuum deposition. The structural and nanomechanical properties of the nanoparticle thin films were investigated as a function of the kinetic energy of the nanoparticles. The results reveal that by proper adjustment of the nanoparticle energy, hexagonal close-packed porous nanoparticle thin films with good mechanical properties can be formed, without any additional treatment. It is shown that these films can be patterned on the substrate in sub-micrometer dimensions using conventional lithography while their porosity can be well controlled. The fabrication and experimental characterization of hafnium nanoparticles is reported for the first time in the literature.
Collapse
Affiliation(s)
- Irini Michelakaki
- Department of Physics, National Technical University of Athens, Heroon Politechniou 9, Zographou - Athens, 15780, Greece
| | - Nikos Boukos
- Institute of Nanosciences and Nanotechnology, National Centre for Scientific Research Demokritos, Patriarchou Grigoriou E’ & Neapoleos Str., Aghia Paraskevi - Athens, 15310, Greece
| | - Dimitrios A Dragatogiannis
- School of Chemical Engineering, National Technical University of Athens, Heroon Politechniou 9, Zographou - Athens, 15780, Greece
| | - Spyros Stathopoulos
- Department of Physics, National Technical University of Athens, Heroon Politechniou 9, Zographou - Athens, 15780, Greece
| | - Costas A Charitidis
- School of Chemical Engineering, National Technical University of Athens, Heroon Politechniou 9, Zographou - Athens, 15780, Greece
| | - Dimitris Tsoukalas
- Department of Physics, National Technical University of Athens, Heroon Politechniou 9, Zographou - Athens, 15780, Greece
| |
Collapse
|
19
|
Manikandan VS, Liu Z, Chen A. Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Vigonski S, Jansson V, Vlassov S, Polyakov B, Baibuz E, Oras S, Aabloo A, Djurabekova F, Zadin V. Au nanowire junction breakup through surface atom diffusion. NANOTECHNOLOGY 2018; 29:015704. [PMID: 29130886 DOI: 10.1088/1361-6528/aa9a1b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.
Collapse
Affiliation(s)
- Simon Vigonski
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia. Helsinki Institute of Physics and Department of Physics, PO Box 43 (Pehr Kalms gata 2), FI-00014, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tastekova EA, Polyakov AY, Goldt AE, Sidorov AV, Oshmyanskaya AA, Sukhorukova IV, Shtansky DV, Grünert W, Grigorieva AV. Facile chemical routes to mesoporous silver substrates for SERS analysis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:880-889. [PMID: 29600149 PMCID: PMC5870146 DOI: 10.3762/bjnano.9.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Mesoporous silver nanoparticles were easily synthesized through the bulk reduction of crystalline silver(I) oxide and used for the preparation of highly porous surface-enhanced Raman scattering (SERS)-active substrates. An analogous procedure was successfully performed for the production of mesoporous silver films by chemical reduction of oxidized silver films. The sponge-like silver blocks with high surface area and the in-situ-prepared mesoporous silver films are efficient as both analyte adsorbents and Raman signal enhancement mediators. The efficiency of silver reduction was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The developed substrates were applied for SERS detection of rhodamine 6G (enhancement factor of about 1-5 × 105) and an anti-ischemic mildronate drug (meldonium; enhancement factor of ≈102) that is known for its ability to increase the endurance performance of athletes.
Collapse
Affiliation(s)
- Elina A Tastekova
- Lomonosov Moscow State University, Leninskie gory 1, bld. 73, Moscow, 119991, Russia
| | - Alexander Yu Polyakov
- Lomonosov Moscow State University, Leninskie gory 1, bld. 73, Moscow, 119991, Russia
| | - Anastasia E Goldt
- Lomonosov Moscow State University, Leninskie gory 1, bld. 73, Moscow, 119991, Russia
- Kurnakov Institute for General and Inorganic Chemistry of RAS, Leninsky prospect 31, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Nobel str 3, Skolkovo, 143026, Russia
| | - Alexander V Sidorov
- Lomonosov Moscow State University, Leninskie gory 1, bld. 73, Moscow, 119991, Russia
| | | | - Irina V Sukhorukova
- National University of Science and Technology “MISiS”, Leninsky prospect 4, Moscow 119049, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology “MISiS”, Leninsky prospect 4, Moscow 119049, Russia
| | - Wolgang Grünert
- Department of Chemistry and Biochemistry, Ruhr-University at Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | | |
Collapse
|
22
|
Nanoporous gold electrode prepared from gold compact disk as the anode for the microbial fuel cell. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1260-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Electrodeposited honeycomb-like dendritic porous gold surface: An efficient platform for enzyme-free hydrogen peroxide sensor at low overpotential. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Wannapob R, Vagin MY, Liu Y, Thavarungkul P, Kanatharana P, Turner APF, Mak WC. Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by Intermicroparticle Network. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33368-33376. [PMID: 28846378 DOI: 10.1021/acsami.7b12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Printable organic bioelectronics provide a fast and cost-effective approach for the fabrication of novel biodevices, while the general challenge is to achieve optimized reaction kinetics at multiphase boundaries between biomolecules and electrodes. Here, we present an entirely new concept based on a modular approach for the construction of heterostructured bioelectronic interfaces by using tailored functional "biological microparticles" combined with "transducer microparticles" as modular building blocks. This approach offers high versatility for the design and fabrication of bioelectrodes with a variety of forms of interparticle spatial organization, from layered-structures to more advance bulk heterostructured architectures. The heterostructured biocatalytic electrodes delivered twice the reaction rate and a six-fold increase in the effective diffusion kinetics in response to a catalytic model using glucose as the substrate, together with the advantage of shortened diffusion paths for reactants between multiple interparticle junctions and large active particle surface. The consequent benefits of this improved performance combined with the simple means of mass production are of major significance for the emerging printed electronics industry.
Collapse
Affiliation(s)
- Rodtichoti Wannapob
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | - Mikhail Yu Vagin
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 602 21 Norrköping, Sweden
| | - Yu Liu
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
- College of Life and Science, Sichuan Agricultural University , Yaan 625014, People's Republic of China
| | | | | | - Anthony P F Turner
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| |
Collapse
|
25
|
An amperometric H 2O 2 biosensor based on hemoglobin nanoparticles immobilized on to a gold electrode. Biosci Rep 2017; 37:BSR20170194. [PMID: 28550154 PMCID: PMC5518533 DOI: 10.1042/bsr20170194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 01/10/2023] Open
Abstract
The nanoparticles (NPs) of hemoglobin (Hb) were prepared by desolvation method and characterized by transmission electron microscopy (TEM), UV spectroscopy and Fourier-transform IR (FTIR) spectroscopy. An amperometric H2O2 biosensor was constructed by immobilizing HbNPs covalently on to a polycrystalline Au electrode (AuE). HbNPs/AuE were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) before and after immobilization of HbNPs. The HbNPs/AuE showed optimum response within 2.5 s at pH 6.5 in 0.1 M sodium phosphate buffer (PB) containing 100 μM H2O2 at 30°C, when operated at –0.2 V against Ag/AgCl. The HbNPs/AuE exhibited Vmax of 5.161 ± 0.1 μA cm−2 with apparent Michaelis-Menten constant (Km) of 0.1 ± 0.01 mM. The biosensor showed lower detection limit (1.0 μM), high sensitivity (129 ± 0.25 μA cm−2 mM−1) and wider linear range (1.0–1200 μM) for H2O2 as compared with earlier biosensors. The analytical recoveries of added H2O2 in serum (0.5 and 1.0 μM) were 97.77 and 98.01% respectively, within and between batch coefficients of variation (CV) were 3.16 and 3.36% respectively. There was a good correlation between sera H2O2 values obtained by standard enzymic colorimetric method and the present biosensor (correlation coefficient, R2 =0.99). The biosensor measured H2O2 level in sera of apparently healthy subjects and persons suffering from diabetes type II. The HbNPs/AuE lost 10% of its initial activity after 90 days of regular use, when stored dry at 4°C.
Collapse
|
26
|
Sanzò G, Taurino I, Puppo F, Antiochia R, Gorton L, Favero G, Mazzei F, Carrara S, De Micheli G. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H 2O 2 detection at low potential. Methods 2017; 129:89-95. [PMID: 28600228 DOI: 10.1016/j.ymeth.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/13/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022] Open
Abstract
In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm2. The good value of Kmapp (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis.
Collapse
Affiliation(s)
- Gabriella Sanzò
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Irene Taurino
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesca Puppo
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riccarda Antiochia
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, P.O. Box 124, 221 00 Lund, Sweden
| | - Gabriele Favero
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Franco Mazzei
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Sandro Carrara
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni De Micheli
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Nanoporous Microsphere Assembly of Iodine-Functionalised Silver Nanoparticles as a Novel Mini-Substrate for Enriching and Sensing. Sci Rep 2017; 7:46640. [PMID: 28422171 PMCID: PMC5395945 DOI: 10.1038/srep46640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
Herein, debris particulates of nanoporous silver (np-Ag) were synthesised by a dealloying method, and their integration behaviour and surface-enhanced Raman scattering (SERS) properties during iodine functionalisation were examined. It was found that the dealloyed np-Ag debris particulates gradually assembled to form rigid nanoporous microspheres comprising Ag nano-ligaments due to mechanical collisions during iodine treatment. High-resolution transmission electron microscopy and X-ray photoelectron microscopy clearly showed the iodide surface of np-Ag, which was dotted with iodine or iodide 'nanoislands'. The exceptional, and unexpected, integration and surface structures result in a highly enhanced localised surface plasmon resonance. Furthermore, the robust nanoporous microspheres can be employed individually as as-produced miniaturised electrodes to electrically enrich target molecules at parts-per-trillion levels, so as to achieve charge selectivity and superior detectability compared with the ordinary SERS effect.
Collapse
|
28
|
Leonardo S, Garibo D, Fernández-Tejedor M, O'Sullivan CK, Campàs M. Addressed immobilization of biofunctionalized diatoms on electrodes by gold electrodeposition. Biofabrication 2017; 9:015027. [DOI: 10.1088/1758-5090/aa6400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- S Leonardo
- IRTA, Carretera de Poble Nou, km 5.5, E-43540 Sant Carles de la Ràpita, Spain
| | | | | | | | | |
Collapse
|
29
|
Yang M, Zhang L, Chen B, Wang Z, Chen C, Zeng H. Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering. NANOTECHNOLOGY 2017; 28:055301. [PMID: 28008872 DOI: 10.1088/1361-6528/28/5/055301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Raman spectra are considered as signatures of matter and have been widely used to identify several classes of materials. The development of mobile spectrometers further extends applications of Raman spectroscopy, and both indoor/outdoor and in vivo/in vitro measurements have been evaluated on site. However, the finite detection level restricts its application in high density matters. Here we report a facile silver nanoparticle decorated nanoporous gold (NanoAg@NPG) substrate, which can provide high enhancement of the Raman signal from nearby molecules by 785 nm photoexcitation. This enhancement is attributed to the abundant Raman-active nanogaps constructed by adjacent nanoparticles and also by the NPG ligaments and adhered nanoparticles. This NanoAg@NPG substrate shows great potential as a reproducible and quantifiable near infrared surface-enhanced Raman scattering probe for various targets, since it performs well in the so-called biological window which can avoid autofluorescence and absorption either from targets or surroundings in the visible optical region.
Collapse
Affiliation(s)
- Min Yang
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Sanzó G, Taurino I, Antiochia R, Gorton L, Favero G, Mazzei F, De Micheli G, Carrara S. Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry 2016; 112:125-31. [DOI: 10.1016/j.bioelechem.2016.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 11/30/2022]
|
31
|
Roth SV. A deep look into the spray coating process in real-time-the crucial role of x-rays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:403003. [PMID: 27537198 DOI: 10.1088/0953-8984/28/40/403003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.
Collapse
Affiliation(s)
- Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany. Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
32
|
Kim YH, Kim GH, Kim AY, Han YH, Chung MA, Jung SD. In vitroextracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays. J Neural Eng 2015; 12:066029. [DOI: 10.1088/1741-2560/12/6/066029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Roth SV, Santoro G, Risch JFH, Yu S, Schwartzkopf M, Boese T, Döhrmann R, Zhang P, Besner B, Bremer P, Rukser D, Rübhausen MA, Terrill NJ, Staniec PA, Yao Y, Metwalli E, Müller-Buschbaum P. Patterned Diblock Co-Polymer Thin Films as Templates for Advanced Anisotropic Metal Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12470-7. [PMID: 25635697 DOI: 10.1021/am507727f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We demonstrate glancing-angle deposition of gold on a nanostructured diblock copolymer, namely polystyrene-block-poly(methyl methacrylate) thin film. Exploiting the selective wetting of gold on the polystyrene block, we are able to fabricate directional hierarchical structures. We prove the asymmetric growth of the gold nanoparticles and are able to extract the different growth laws by in situ scattering methods. The optical anisotropy of these hierarchical hybrid materials is further probed by angular resolved spectroscopic methods. This approach enables us to tailor functional hierarchical layers in nanodevices, such as nanoantennae arrays, organic photovoltaics, and sensor electronics.
Collapse
Affiliation(s)
- Stephan V Roth
- †Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Gonzalo Santoro
- †Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Johannes F H Risch
- †Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Shun Yu
- †Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | | | - Torsten Boese
- †Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Ralph Döhrmann
- †Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Peng Zhang
- †Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Bastian Besner
- ‡Institut für Nanostruktur- und Festkörperforschung, Center for Free-Electron Laser Science, Advanced Study Group-APOG, University of Hamburg, Luruper Chaussee 149, 22761 D Hamburg, Germany
| | - Philipp Bremer
- ‡Institut für Nanostruktur- und Festkörperforschung, Center for Free-Electron Laser Science, Advanced Study Group-APOG, University of Hamburg, Luruper Chaussee 149, 22761 D Hamburg, Germany
| | - Dieter Rukser
- ‡Institut für Nanostruktur- und Festkörperforschung, Center for Free-Electron Laser Science, Advanced Study Group-APOG, University of Hamburg, Luruper Chaussee 149, 22761 D Hamburg, Germany
| | - Michael A Rübhausen
- ‡Institut für Nanostruktur- und Festkörperforschung, Center for Free-Electron Laser Science, Advanced Study Group-APOG, University of Hamburg, Luruper Chaussee 149, 22761 D Hamburg, Germany
| | - Nick J Terrill
- §Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Paul A Staniec
- §Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Yuan Yao
- ⊥Lehrstuhl für Funktionelle Materialien, TU München, James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Ezzeldin Metwalli
- ⊥Lehrstuhl für Funktionelle Materialien, TU München, James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Peter Müller-Buschbaum
- ⊥Lehrstuhl für Funktionelle Materialien, TU München, James-Franck-Strasse 1, D-85748 Garching, Germany
| |
Collapse
|
34
|
Marconi D, Colniţă A, Turcu I. The Influence of Deposition Rate on the Structure and Morphology of Gold/Silicon(111) Growth by Molecular Beam Epitaxy. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1022823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|