1
|
Naveed M, Chan MWH, Aslam S, Wang F, Sajjad A, Ullah A, Saleem N, Haider MS, Arija V. Nutritional composition assessment and antimicrobial activity of Catostylus perezi, jellyfish blooms along the coast of Pakistan: an awareness to avoid food neophobia in Pakistan. Nat Prod Res 2024; 38:3957-3963. [PMID: 37850438 DOI: 10.1080/14786419.2023.2269597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
This study highlighted the nutritional importance of Catostylus perezi (an edible jellyfish) in Pakistan; a society where a large proportion of the population suffers from malnutrition, while C. perezi, a blessing of the sea, is wasted or exported. In the present study, the amino acid and fatty acid profiles of the oral arms and umbrella of C. perezi were determined by HPLC. The total amino acid concentration (ΣAA) in the oral arms was 151.19 mg/100g, while in the umbrella it was 100.17 mg/100g. The ratio of total essential amino acids to total non-essential amino acids (TEAA/TNEAA) was 0.72 in the oral arms, while it was 0.70 in the umbrella. Higher amount of ω-3 with lower ratio of ω-6/ω-3 in oral arms (0.52), rather umbrella (ω-6/ω-3 ratio; 0.62). The antimicrobial activity, MIC, MBC, and MFC of the whole body of the edible jellyfish were determined. On the basis of polarity, different solvents were used, e.g. water, methanol, dichloromethane, chloroform, and n-hexane. Among all the extracts, the water extract gave the highest ZOI against C. xerosis (29 mm), while the n-hexane extract gave the lowest ZOI against S. aureus (MRSA) ATCC 33591 (8.20 mm). The water extract of C. perezi had high potential against C. xerosis with the highest AMI and PAI (1.53 and 153, respectively), while the same extract had the highest TAI against E. coli (81.43 mL/g). For fungi/yeast, the methanolic extract had the highest ZOI (29.70 mm) against S. cerevisiae and the lowest MIC/MFC (2.40 µg/mL) against the same pathogen. The n-Hexane extract gave the lowest ZOI (11.10 mm) against P. variotii and the highest MIC/MFC (31.60 µg/mL) against Penicillium sp. Atomic force microscopy (AFM) was used to analyse the disintegrating effect of the extracts (with the highest antimicrobial effect) on the cells of selected Gram-positive, Gram-negative and yeast species. The amino acid and fatty acid profiles and antimicrobial assessment showed that C. perezi has great nutritional importance, so the use of C. perezi as food is highly recommended for the Pakistani community.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Malik Wajid Hussain Chan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, Pakistan
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Sadar Aslam
- Department of Zoology, University of Baltistan, Skardu, Pakistan
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Anas Sajjad
- Muhammad Institute of Medical and Allied Sciences, Multan, Government College University Faisalabad, Pakistan
| | - Asad Ullah
- Food and Marine Resources Research Center, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Nida Saleem
- Food and Marine Resources Research Center, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Muhammad Samee Haider
- Food and Marine Resources Research Center, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Victoria Arija
- Preventive Medicine and Public Health. Nutrition and Mental Health Research Group (NUTRISAM), Rovira I Virgili University, Tarragona, Spain
- Department of Basic Medical Sciences, Universitat Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Jiang H, Xia W, Pu S, Su Y, Zhu A, Zhao H, Wei H, Liu Y. Characterization and phylogenetic analysis of the complete mitochondrial genome of Cotylorhiza tuberculata assembled using next-generation sequencing. Mitochondrial DNA B Resour 2024; 9:1268-1272. [PMID: 39328354 PMCID: PMC11425685 DOI: 10.1080/23802359.2024.2406928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, the complete mitochondrial genome (mitogenome) of Cotylorhiza tuberculata (Scyphozoa; Rhizostomeae; Cepheidae) was assembled by the next-generation sequencing data. The complete mitogenome spanned 16,590 bp and contained 14 protein-coding genes, two transfer RNA genes, and two ribosomal RNA genes. Total AT% content was 67.7%, comprising A 30.22%, C 16.16%, G 17.05%, and T 36.56%. The gene arrangement exhibited consistency with the known mitogenomes of other jellyfish species. Furthermore, the phylogenetic relationship of C. tuberculata was investigated based on analysis of the 13 common protein-coding genes. Results indicated a close relationship between C. tuberculata and both Cassiopea xamachana and Cassiopea andromeda. These findings provide a valuable reference for advancing understanding of the phylogenetic relationships, taxonomic classification, and phylogeography of jellyfish species.
Collapse
Affiliation(s)
- Hui Jiang
- College of Life Science, Hainan Normal University, Haikou, China
| | - Wangxiao Xia
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Shaoxia Pu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Yanhua Su
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Anzhu Zhu
- Dongguan Xiangshi Zoo, Dongguan, China
| | - Hongye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Hongjiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Yaowen Liu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Dehghani R, Amrooni A, Hosseinpour-Soleimani F, Mohebbi G, Obeidi N. The Effect of the Persian Gulf Jellyfish (Cassiopea andromeda) Venom on the Expression of P15, P21, P53, DNMT1, and Bcl-2 in Acute Lymphoblastic Leukemia Jurkat Cells. Int J Hematol Oncol Stem Cell Res 2023; 17:177-185. [PMID: 37817966 PMCID: PMC10560648 DOI: 10.18502/ijhoscr.v17i3.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/19/2021] [Indexed: 10/12/2023] Open
Abstract
Background: One of the acute hematologic malignancies is acute lymphoblastic leukemia (ALL), which is formed in B or T lymphocyte stem cells. Regarding the increasing tendency to herbal and marine studies and unclear characteristics of Cassiopea andromeda Venom, this study was performed to determine its effects on Jurkat cells as a model for T-ALL. Materials and Methods: In this experimental study, the cells were treated with a variety of concentrations of Cassiopea andromeda venom at different periods and times. Growth inhibition and toxic effects of Cassiopea andromeda Venom were evaluated by methyl thiazole tetrazolium salt reduction (MTT test). The flow cytometry analysis was carried out using 7-aminoactinomycin D (7AAD) and Annexin V stains to evaluate the venom's effect on apoptotic pathways. Besides, Real-Time PCR was performed to evaluate the relative gene expression. Results: Cassiopea andromeda venom inhibited the growth of Jurkat cells in a concentration and time manner. Jurkat cell growth was inhibited by 48.9% after 72 hours of treatment with 250µg/mL Cassiopea andromeda venom. The venom increased the apoptotic process through the upregulation of p15INK4b and P53 proteins and downregulation of Bcl-2, p21 WAF1/CIP1, and DNMT1 in the Jurkat cell line. Conclusion: Considering the growth inhibitory property of Cassiopea andromeda Venom, we recommend it as a part of combinational medication for treating ALL in animal trials and for other leukemias in vitro studies.
Collapse
Affiliation(s)
- Reza Dehghani
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Amrooni
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Obeidi
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
De Domenico S, De Rinaldis G, Mammone M, Bosch-Belmar M, Piraino S, Leone A. The Zooxanthellate Jellyfish Holobiont Cassiopea andromeda, a Source of Soluble Bioactive Compounds. Mar Drugs 2023; 21:md21050272. [PMID: 37233466 DOI: 10.3390/md21050272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Cassiopea andromeda (Forsskål, 1775), commonly found across the Indo-Pacific Ocean, the Red Sea, and now also in the warmest areas of the Mediterranean Sea, is a scyphozoan jellyfish that hosts autotrophic dinoflagellate symbionts (family Symbiodiniaceae). Besides supplying photosynthates to their host, these microalgae are known to produce bioactive compounds as long-chain unsaturated fatty acids, polyphenols, and pigments, including carotenoids, with antioxidant properties and other beneficial biological activities. By the present study, a fractionation method was applied on the hydroalcoholic extract from two main body parts (oral arms and umbrella) of the jellyfish holobiont to obtain an improved biochemical characterization of the obtained fractions from the two body parts. The composition of each fraction (i.e., proteins, phenols, fatty acids, and pigments) as well as the associated antioxidant activity were analyzed. The oral arms proved richer in zooxanthellae and pigments than the umbrella. The applied fractionation method was effective in separating pigments and fatty acids into a lipophilic fraction from proteins and pigment-protein complexes. Therefore, the C. andromeda-dinoflagellate holobiont might be considered as a promising natural source of multiple bioactive compounds produced through mixotrophic metabolism, which are of interest for a wide range of biotechnological applications.
Collapse
Affiliation(s)
- Stefania De Domenico
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA, Lecce), 73100 Lecce, Italy
- Dipartimento di Scienze e Tecnologie Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA, Lecce), 73100 Lecce, Italy
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche (CNR-NANOTEC), 73100 Lecce, Italy
| | - Marta Mammone
- Dipartimento di Scienze e Tecnologie Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Mar Bosch-Belmar
- Dipartimento Scienze della Terra e del Mare, Università degli Studi di Palermo, 90133 Palermo, Italy
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Ambientali, Università del Salento, 73100 Lecce, Italy
- Research Unit Lecce, Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), S.c.a.r.l., 90133 Palermo, Italy
| | - Antonella Leone
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA, Lecce), 73100 Lecce, Italy
- Research Unit Lecce, Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), S.c.a.r.l., 90133 Palermo, Italy
| |
Collapse
|
5
|
Cadar E, Pesterau AM, Sirbu R, Negreanu-Pirjol BS, Tomescu CL. Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Mar Drugs 2023; 21:md21040201. [PMID: 37103346 PMCID: PMC10142942 DOI: 10.3390/md21040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.
Collapse
|
6
|
Zare A, Afshar A, Khoradmehr A, Baghban N, Mohebbi G, Barmak A, Daneshi A, Bargahi A, Nabipour I, Almasi-Turk S, Arandian A, Zibaii MI, Latifi H, Tamadon A. Chemical Compositions and Experimental and Computational Modeling of the Anticancer Effects of Cnidocyte Venoms of Jellyfish Cassiopea andromeda and Catostylus mosaicus on Human Adenocarcinoma A549 Cells. Mar Drugs 2023; 21:md21030168. [PMID: 36976217 PMCID: PMC10057638 DOI: 10.3390/md21030168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 03/09/2023] Open
Abstract
Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies have displayed the anticancer capabilities of various jellyfish. Hence, we examined the anticancer features of the venom of Cassiopea andromeda and Catostylus mosaicus in an in vitro situation against the human pulmonary adenocarcinoma (A549) cancer cell line. The MTT assay demonstrated that both mentioned venoms have anti-tumoral ability in a dose-dependent manner. Western blot analysis proved that both venoms can increase some pro-apoptotic factors and reduce some anti-apoptotic molecules that lead to the inducing of apoptosis in A549 cells. GC/MS analysis demonstrated some compounds with biological effects, including anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking and molecular dynamic showed the best position of each biologically active component on the different death receptors, which are involved in the process of apoptosis in A549 cells. Ultimately, this study has proven that both venoms of C. andromeda and C. mosaicus have the capability to suppress A549 cells in an in vitro condition and they might be utilized in order to design and develop brand new anticancer agents in the near future.
Collapse
Affiliation(s)
- Afshin Zare
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr 75, Iran
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr 75, Iran
- PerciaVista R&D Co., Shiraz 73, Iran
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Alireza Barmak
- Food Lab, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Adel Daneshi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Afshar Bargahi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Sahar Almasi-Turk
- Department of Anatomical Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 73, Iran
- Correspondence: (S.A.-T.); (A.T.); Tel.: +98-77-3332-0657 (S.A.-T.); +98-21-2842-6122 (A.T.)
| | - Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 11, Iran
| | | | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 11, Iran
- Department of Physics, Shahid Beheshti University, Tehran 11, Iran
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 73, Iran
- Correspondence: (S.A.-T.); (A.T.); Tel.: +98-77-3332-0657 (S.A.-T.); +98-21-2842-6122 (A.T.)
| |
Collapse
|
7
|
Riccio G, Martinez KA, Martín J, Reyes F, D’Ambra I, Lauritano C. Jellyfish as an Alternative Source of Bioactive Antiproliferative Compounds. Mar Drugs 2022; 20:md20060350. [PMID: 35736153 PMCID: PMC9227539 DOI: 10.3390/md20060350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Jellyfish are commonly considered a nuisance for their negative effects on human activities (e.g., fisheries, power plants and tourism) and human health. However, jellyfish provide several benefits to humans and are commonly eaten in eastern countries. Additionally, recent studies have suggested that jellyfish may become a source of high-value molecules. In this study, we tested the effects of the methanolic extracts and enriched fractions, obtained by solid-phase extraction fractionation, from the scyphomedusae Pelagia noctiluca, Rhizostoma pulmo, Cotylorhiza tuberculata and the cubomedusa Caryddea marsupialis on different human cancer cell lines in order to evaluate a potential antiproliferative activity. Our results indicated that fraction C from Caryddea marsupialis-(CM) and C. tuberculata oral arms (CTOA) were the most active to reduce cell viability in a dose-dependent manner. LC/MS based dereplication analyses highlighted that both bioactive fractions contained mainly fatty acids and derivatives, with CM additionally containing small peptides (0.7–0.8 kDa), which might contribute to its higher biological activity. The mechanism of action behind the most active fraction was investigated using PCR arrays. Results showed that the fraction C of CM can reduce the expression of genes involved in apoptosis inhibition in melanoma-treated cells, which makes jellyfish a potential new source of antiproliferative drugs to be exploited in the future.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Kevin A. Martinez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (K.A.M.); (J.M.); (F.R.)
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (K.A.M.); (J.M.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (K.A.M.); (J.M.); (F.R.)
| | - Isabella D’Ambra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: ; Tel.: +39-0815833221
| |
Collapse
|
8
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Nutritional Value and Potential Applications of Jellyfish. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2060717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
9
|
Yang F, Ye R, Ma C, Wang Y, Wang Y, Chen J, Yang J, Höfer J, Zhu Y, Xiao L, Zhang J, Xu Y. Toxicity evaluation, toxin screening and its intervention of the jellyfish Phacellophora camtschatica based on a combined transcriptome-proteome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113315. [PMID: 35189521 DOI: 10.1016/j.ecoenv.2022.113315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The application of multi-omics technologies provides a new perspective to solve three main problems including species identification, toxin screening and effective antagonist conformation in the studies of marine toxic jellyfish. METHODS A series of transcriptome-proteome based analysis accompanied with toxicity evaluations were performed for the ornamental jellyfish Phacellophora camtschatica. RESULTS Through combined morphological observation and Cytochrome c oxidase subunit Ⅰ (CO1) molecular alignment, the sample jellyfish was identified as P. camtschatica. A total of 25,747 unigenes and 3058 proteins were obtained from the successfully constructed transcriptome and proteome, in which 6869 (26.68%) and 6618 (25.70%) unigenes, as well as 2536 (82.93%) and 2844 (93.00%) proteins were annotated against the databases of Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), respectively. The jellyfish displayed obvious in vivo lethal effects with significant increases of multi-organ functional indexes as well as in vitro activities. Total of 62 toxins from 120 toxin-related unigenes were screened including 16 metalloproteases, 11 phospholipases and others. Moreover, 11 toxins were further screened by using the erythrocyte model, where the zinc metalloproteinase nas-15-like (1) was the most abundant. Finally, Diltiazem greatly improved the survival rate while EDTA slightly prolonged the survival time in ICR mice. CONCLUSION P. camtschatica is a poisonous jellyfish with diversified toxic components, in which metalloproteinase probably plays an important role in toxicities, and excessive Ca2+ entry may be the main mechanism of systemic lethal toxicity.
Collapse
Affiliation(s)
- Fengling Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Ruiwei Ye
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Chaoqun Ma
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China.
| | - Yichao Wang
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Department of Clinical Laboratory, Taizhou Central Hospital, Taizhou 318000, China.
| | - Yi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Jianmei Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Jishun Yang
- Medical Insurance Center, Navy Medical Center, Navy Medical Center of PLA, Shanghai 200050, China.
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Yina Zhu
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Jing Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Yinghe Xu
- Department of Intensive Care Unit, Taizhou Central Hospital, Taizhou 318000, China.
| |
Collapse
|
10
|
Tyrosinase Inhibitory and Antioxidant Activity of Enzymatic Protein Hydrolysate from Jellyfish ( Lobonema smithii). Foods 2022; 11:foods11040615. [PMID: 35206090 PMCID: PMC8871577 DOI: 10.3390/foods11040615] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
The optimization of antioxidant and anti-tyrosinase activity during jellyfish hydrolysate preparation was studied using a response surface methodology (RSM) with a face-centered composite design. The influence of the hydrolysis duration and the enzyme concentration on the IC50 of the DPPH and ABTS radical scavenging activity, ferric-reducing antioxidant power (FRAP), the degree of hydrolysis (DH), yield, and the IC50 value of tyrosinase inhibitory activity were determined. The optimum conditions for the production of jellyfish hydrolysate using alcalase (JFAH), flavourzyme (JFFH), or papain (JFPH) were achieved at hydrolysis times of 360, 345, or 360 min, respectively, and at an enzyme concentration of 5.0%. JFFH had the highest antioxidant and tyrosinase inhibitory activity. JFAH, JFFH, and JFPH concentrations of 2.5 mg/mL resulted in HaCaT cells (IC80) having a survival rate of 80%. The amino acid profile of JFFH contained about 43% hydrophobic and 57% hydrophilic amino acids, comprising Gly, Cys, Glx, Asx, which were dominant. The isolation of a peptide fraction from JFFH was carried out using ultrafiltration membranes (10, 3, and 1 kDa) and gel filtration chromatography. Fraction-III (1-3 kDa) showed the highest antioxidative and tyrosinase inhibitory activity.
Collapse
|
11
|
Stabili L, Rizzo L, Caprioli R, Leone A, Piraino S. Jellyfish Bioprospecting in the Mediterranean Sea: Antioxidant and Lysozyme-Like Activities from Aurelia coerulea (Cnidaria, Scyphozoa) Extracts. Mar Drugs 2021; 19:md19110619. [PMID: 34822490 PMCID: PMC8625557 DOI: 10.3390/md19110619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
Marine invertebrates represent a vast, untapped source of bioactive compounds. Cnidarians are represented by nearly 10,000 species that contain a complex mixture of venoms, collagen, and other bioactive compounds, including enzymes, oligosaccharides, fatty acids, and lipophilic molecules. Due to their high abundance in coastal waters, several jellyfish taxa may be regarded as candidate targets for the discovery of novel lead molecules and biomaterials and as a potential source of food/feed ingredients. The moon jellyfish Aurelia coerulea is one of the most common jellyfish worldwide and is particularly abundant in sheltered coastal lagoons and marinas of the Mediterranean Sea, where it first appeared—as an alien species—in the last century, when Pacific oyster cultivation began. In the present study, the antioxidant and lysozyme antibacterial activities associated with extracts from different medusa compartments—namely the umbrella, oral arms, and secreted mucus—were investigated. Extracts from the oral arms of A. coerulea displayed significant antioxidant activity. Similarly, lysozyme-like activity was the highest in extracts from oral arms. These findings suggest that A. coerulea outbreaks may be used in the search for novel cytolytic and cytotoxic products against marine bacteria. The geographically wide occurrence and the seasonally high abundance of A. coerulea populations in coastal waters envisage and stimulate the search for biotechnological applications of jellyfish biomasses in the pharmaceutical, nutritional, and nutraceutical sectors.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (R.C.); (S.P.)
- Institute of Water Research, National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.)
| | - Lucia Rizzo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.)
| | - Rosa Caprioli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (R.C.); (S.P.)
| | - Antonella Leone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via Prov.le Lecce Monteroni, 72100 Lecce, Italy;
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Roma, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (R.C.); (S.P.)
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Roma, Italy
| |
Collapse
|
12
|
De Rinaldis G, Leone A, De Domenico S, Bosch-Belmar M, Slizyte R, Milisenda G, Santucci A, Albano C, Piraino S. Biochemical Characterization of Cassiopea andromeda (Forsskål, 1775), Another Red Sea Jellyfish in the Western Mediterranean Sea. Mar Drugs 2021; 19:md19090498. [PMID: 34564160 PMCID: PMC8472248 DOI: 10.3390/md19090498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing frequency of native jellyfish proliferations and massive appearance of non-indigenous jellyfish species recently concur to impact Mediterranean coastal ecosystems and human activities at sea. Nonetheless, jellyfish biomass may represent an exploitable novel resource to coastal communities, with reference to its potential use in the pharmaceutical, nutritional, and nutraceutical Blue Growth sectors. The zooxanthellate jellyfish Cassiopea andromeda, Forsskål, 1775 (Cnidaria, Rhizostomeae) entered the Levant Sea through the Suez Canal and spread towards the Western Mediterranean to reach Malta, Tunisia, and recently also the Italian coasts. Here we report on the biochemical characterization and antioxidant activity of C. andromeda specimens with a discussion on their relative biological activities. The biochemical characterization of the aqueous (PBS) and hydroalcoholic (80% ethanol) soluble components of C. andromeda were performed for whole jellyfish, as well as separately for umbrella and oral arms. The insoluble components were hydrolyzed by sequential enzymatic digestion with pepsin and collagenase. The composition and antioxidant activity of the insoluble and enzymatically digestible fractions were not affected by the pre-extraction types, resulting into collagen- and non-collagen-derived peptides with antioxidant activity. Both soluble compounds and hydrolyzed fractions were characterized for the content of proteins, phenolic compounds, and lipids. The presence of compounds coming from the endosymbiont zooxanthellae was also detected. The notable yield and the considerable antioxidant activity detected make this species worthy of further study for its potential biotechnological sustainable exploitation.
Collapse
Affiliation(s)
- Gianluca De Rinaldis
- Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; (G.D.R.); (S.D.D.); (C.A.)
- Department of Biotechnology Chemistry and Pharmacy (DBCF), Università Degli Studi Di Siena, Via A. Moro, 53100 Siena, Italy;
| | - Antonella Leone
- Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; (G.D.R.); (S.D.D.); (C.A.)
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa, Local Unit of Lecce), Via Monteroni, 73100 Lecce, Italy;
- Correspondence: ; Tel.: +39-0832-422615
| | - Stefania De Domenico
- Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; (G.D.R.); (S.D.D.); (C.A.)
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Mar Bosch-Belmar
- Laboratory of Ecology, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, 90128 Palermo, Italy;
| | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway;
| | - Giacomo Milisenda
- Centro Interdipartimentale della Sicilia, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo, 90142 Palermo, Italy;
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy (DBCF), Università Degli Studi Di Siena, Via A. Moro, 53100 Siena, Italy;
| | - Clara Albano
- Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; (G.D.R.); (S.D.D.); (C.A.)
| | - Stefano Piraino
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa, Local Unit of Lecce), Via Monteroni, 73100 Lecce, Italy;
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
13
|
Tawfik MM, Eissa N, Althobaiti F, Fayad E, Abu Almaaty AH. Nomad Jellyfish Rhopilema nomadica Venom Induces Apoptotic Cell Death and Cell Cycle Arrest in Human Hepatocellular Carcinoma HepG2 Cells. Molecules 2021; 26:molecules26175185. [PMID: 34500621 PMCID: PMC8434601 DOI: 10.3390/molecules26175185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Jellyfish venom is a rich source of bioactive proteins and peptides with various biological activities including antioxidant, antimicrobial and antitumor effects. However, the anti-proliferative activity of the crude extract of Rhopilema nomadica jellyfish venom has not been examined yet. The present study aimed at the investigation of the in vitro effect of R. nomadica venom on liver cancer cells (HepG2), breast cancer cells (MDA-MB231), human normal fibroblast (HFB4), and human normal lung cells (WI-38) proliferation by using MTT assay. The apoptotic cell death in HepG2 cells was investigated using Annexin V-FITC/PI double staining-based flow cytometry analysis, western blot analysis, and DNA fragmentation assays. R. nomadica venom displayed significant dose-dependent cytotoxicity on HepG2 cells after 48 h of treatment with IC50 value of 50 μg/mL and higher toxicity (3:5-fold change) against MDA-MB231, HFB4, and WI-38 cells. R. nomadica venom showed a prominent increase of apoptosis as revealed by cell cycle arrest at G2/M phase, upregulation of p53, BAX, and caspase-3 proteins, and the down-regulation of anti-apoptotic Bcl-2 protein and DNA fragmentation. These findings suggest that R. nomadica venom induces apoptosis in hepatocellular carcinoma cells. To the best of the authors' knowledge, this is the first scientific evidence demonstrating the induction of apoptosis and cell cycle arrest of R. nomadica jellyfish venom.
Collapse
Affiliation(s)
- Mohamed M. Tawfik
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt; (N.E.); (A.H.A.A.)
- Correspondence: (M.M.T.); (E.F.)
| | - Nourhan Eissa
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt; (N.E.); (A.H.A.A.)
| | - Fayez Althobaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (M.M.T.); (E.F.)
| | - Ali H. Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt; (N.E.); (A.H.A.A.)
| |
Collapse
|
14
|
Lecci RM, D’Antuono I, Cardinali A, Garbetta A, Linsalata V, Logrieco AF, Leone A. Antioxidant and Pro-Oxidant Capacities as Mechanisms of Photoprotection of Olive Polyphenols on UVA-Damaged Human Keratinocytes. Molecules 2021; 26:molecules26082153. [PMID: 33917980 PMCID: PMC8068360 DOI: 10.3390/molecules26082153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.
Collapse
Affiliation(s)
- Raffaella Marina Lecci
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA, Lecce), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Isabella D’Antuono
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Angela Cardinali
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
- Correspondence: (A.C.); (A.L.); Tel.: +39-080-5929303 (A.C.); +39-0832-422615 (A.L.); Fax: +39-0832-422620 (A.L.)
| | - Antonella Garbetta
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Vito Linsalata
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Antonio F. Logrieco
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Antonella Leone
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA, Lecce), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
- Correspondence: (A.C.); (A.L.); Tel.: +39-080-5929303 (A.C.); +39-0832-422615 (A.L.); Fax: +39-0832-422620 (A.L.)
| |
Collapse
|
15
|
Jayathilake JMNJ, Gunathilake KVK. Cnidarian toxins: recent evidences for potential therapeutic uses. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1837268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- J. M. N. J. Jayathilake
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - K. V. K. Gunathilake
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
16
|
Stabili L, Rizzo L, Basso L, Marzano M, Fosso B, Pesole G, Piraino S. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar Drugs 2020; 18:md18090437. [PMID: 32839397 PMCID: PMC7551628 DOI: 10.3390/md18090437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- Institute of Water Research of the National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lucia Rizzo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
17
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Functional and Bioactive Properties of Gelatin Extracted from Aquatic Bioresources – A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1747486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
18
|
Torri L, Tuccillo F, Bonelli S, Piraino S, Leone A. The attitudes of Italian consumers towards jellyfish as novel food. Food Qual Prefer 2020. [DOI: 10.1016/j.foodqual.2019.103782] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Identification of Safety and Quality Parameters for Preparation of Jellyfish Based Novel Food Products. Foods 2019; 8:foods8070263. [PMID: 31319563 PMCID: PMC6678107 DOI: 10.3390/foods8070263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Edible jellyfish are mainly consumed and marketed in Southeastern Countries, generally produced by a multi-phase drying process, using mixtures of salt and alum. Recently, jellyfish have become very attractive also for Western food markets. They are novel food in Europe and no recognized handling/processing steps have been set up yet. Moreover, no specific food safety and quality parameters are available. In this study, we identified a set of safety and quality parameters for jellyfish, based on standards and process hygiene criteria used in Europe for other products. These assays were tested on three different jellyfish preparations that can be used as raw materials for subsequent food processing. All jellyfish samples revealed the absence of pathogens (Salmonella spp. and Listeria monocytogenes), Enterobacteriaceae and Pseudomonas spp., even if a limited presence of Staphylococci was observed. No biogenic amine histamine was detected and negligible levels of total volatile basic nitrogen (TVB-N) were revealed. Total bacterium, yeast and mold counts were negligible or undetectable by conventional accredited methods, and conversely the results were higher when optimized saline conditions were used. This study, for the first time, established a set of quality and safety parameters necessary for first-operations and subsequent processing of jellyfish as novel food. Highlights: Jellyfish can represent a novel food in Europe. Identification of safety and quality parameters for jellyfish food products. Saline conditions are essential for improving safety and quality assessment of jellyfish as food.
Collapse
|
20
|
Pro-Apoptotic Effect of Grape Seed Extract on MCF-7 Involves Transient Increase of Gap Junction Intercellular Communication and Cx43 Up-Regulation: A Mechanism of Chemoprevention. Int J Mol Sci 2019; 20:ijms20133244. [PMID: 31269652 PMCID: PMC6651466 DOI: 10.3390/ijms20133244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests dietary antioxidants reduce the risk of several cancers. Grape seeds extracts (GSE) are a rich source of polyphenols known to have antioxidant, chemopreventive and anticancer properties. Herein, we investigated the in vitro effects and putative action mechanisms of a grape seed extract (GSE) on human breast cancer cells (MCF-7). The effects of GSE were evaluated on cell proliferation, apoptosis and gap-junction-mediated cell-cell communications (GJIC), as basal mechanism involved in the promotion stage of carcinogenesis. GSE (0.05-100 μg/mL) caused a significant dose- and time-dependent inhibition of MCF-7 viability and induced apoptotic cell death, as detected by Annexin-V/Propidium Iodide. Concurrently, GSE induced transient but significant enhancement of GJIC in non-communicating MCF-7 cells, as demonstrated by the scrape-loading/dye-transfer (SL/DT) assay and an early and dose-dependent re-localization of the connexin-43 (Cx43) proteins on plasma membranes, as assayed by immunocytochemistry. Finally, real-time-PCR has evidenced a significant increase in cx43 mRNA expression. The results support the hypothesis that the proliferation inhibition and pro-apoptotic effect of GSE against this breast cancer cell model are mediated by the GJIC improvement via re-localization of Cx43 proteins and up-regulation of cx43 gene, and provide further insight into the action mechanisms underlying the health-promoting action of dietary components.
Collapse
|
21
|
Costa R, Capillo G, Albergamo A, Li Volsi R, Bartolomeo G, Bua G, Ferracane A, Savoca S, Gervasi T, Rando R, Dugo G, Spanò N. A Multi-screening Evaluation of the Nutritional and Nutraceutical Potential of the Mediterranean Jellyfish Pelagia noctiluca. Mar Drugs 2019; 17:E172. [PMID: 30884901 PMCID: PMC6470882 DOI: 10.3390/md17030172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
The phylum Cnidaria is one of the most important contributors in providing abundance of bio- and chemodiversity. In this study, a comprehensive chemical investigation on the nutritional and nutraceutical properties of Mediterranean jellyfish Pelagia noctiluca was carried out. Also, compositional differences between male and female organisms, as well as between their main anatomical parts, namely bell and oral arms, were explored in an attempt to select the best potential sources of nutrients and/or nutraceuticals from jellyfish. With the exception of higher energy densities and total phenolic contents observed in females than males, no statistically significant differences related to the specimen's sex were highlighted for the other compound classes. Rather, the distribution of the investigated chemical classes varied depending on the jellyfish's body parts. In fact, crude proteins were more abundant in oral arms than bells; saturated fatty acids were more concentrated in bells than oral arms, whereas polyunsaturated fatty acids were distributed in the exact opposite way. On the other hand, major elements and trace elements demonstrated an opposite behavior, being the latter most accumulated in oral arms than bells. Additionally, important nutraceuticals, such as eicosapentaenoic and docosahexaenoic acids, and antioxidant minerals, were determined. Overall, obtained data suggest the potential employment of the Mediterranean P. noctiluca for the development of natural aquafeed and food supplements.
Collapse
Affiliation(s)
- Rosaria Costa
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Gioele Capillo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Ambrogina Albergamo
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Rosalia Li Volsi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Giovanni Bartolomeo
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Giuseppe Bua
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Antonio Ferracane
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Serena Savoca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Teresa Gervasi
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Rossana Rando
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Giacomo Dugo
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Nunziacarla Spanò
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| |
Collapse
|
22
|
Leone A, Lecci RM, Milisenda G, Piraino S. Mediterranean jellyfish as novel food: effects of thermal processing on antioxidant, phenolic, and protein contents. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03248-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Mariottini GL, Grice ID. Natural Compounds and Drug Discovery: Can Cnidarian Venom Play a Role? Cent Nerv Syst Agents Med Chem 2019; 19:114-118. [PMID: 30827266 DOI: 10.2174/1871524919666190227234834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 11/22/2022]
Abstract
Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Irwin Darren Grice
- Institute for Glycomics and School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
24
|
De Domenico S, De Rinaldis G, Paulmery M, Piraino S, Leone A. Barrel Jellyfish ( Rhizostoma pulmo) as Source of Antioxidant Peptides. Mar Drugs 2019; 17:md17020134. [PMID: 30813405 PMCID: PMC6410228 DOI: 10.3390/md17020134] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
The jellyfish Rhizostoma pulmo, Macrì 1778 (Cnidaria, Rhizostomae) undergoes recurrent outbreaks in the Mediterranean coastal waters, with large biomass populations representing a nuisance or damage for marine and maritime activities. A preliminary overview of the antioxidant activity (AA) of R. pulmo proteinaceous compounds is provided here based on the extraction and characterization of both soluble and insoluble membrane-fractioned proteins, the latter digested by sequential enzymatic hydrolyses with pepsin and collagenases. All jellyfish proteins showed significant AA, with low molecular weight (MW) proteins correlated with greater antioxidant activity. In particular, collagenase-hydrolysed collagen resulted in peptides with MW lower than 3 kDa, ranging 3⁻10 kDa or 10⁻30 kDa, with AA inversely proportional to MW. No cytotoxic effect was detected on cultured human keratinocytes (HEKa) in a range of protein concentration 0.05⁻20 μg/mL for all tested protein fractions except for soluble proteins higher than 30 kDa, likely containing the jellyfish venom compounds. Furthermore, hydrolyzed jellyfish collagen peptides showed a significantly higher AA and provided a greater protective effect against oxidative stress in HEKa than the hydrolyzed collagen peptides from vertebrates. Due to a high reproductive potential, jellyfish may represent a potential socioeconomic opportunity as a source of natural bioactive compounds, with far-reaching beneficial implications. Eventually, improvements in processing technology will promote the use of untapped marine biomasses in nutraceutical, cosmeceutical, and pharmaceutical fields, turning marine management problems into a more positive perspective.
Collapse
Affiliation(s)
- Stefania De Domenico
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA) Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
| | - Gianluca De Rinaldis
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA) Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Biotecnologia, Chimica e Farmacia (DBCF), Università Degli Studi Di Siena, Via A. Moro, 2, 53100 Siena, Italy.
| | - Mélanie Paulmery
- Département des Sciences et Technologies, Université de Lille, Cité Scientifique, F-59655 Villeneuve d'Ascq, France.
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, 73100 Lecce, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
| | - Antonella Leone
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA) Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
25
|
Stabili L, Rizzo L, Fanizzi FP, Angilè F, Del Coco L, Girelli CR, Lomartire S, Piraino S, Basso L. The Jellyfish Rhizostoma pulmo (Cnidaria): Biochemical Composition of Ovaries and Antibacterial Lysozyme-like Activity of the Oocyte Lysate. Mar Drugs 2018; 17:E17. [PMID: 30597935 PMCID: PMC6356739 DOI: 10.3390/md17010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 01/19/2023] Open
Abstract
Jellyfish outbreaks in marine coastal areas represent an emergent problem worldwide, with negative consequences on human activities and ecosystem functioning. However, potential positive effects of jellyfish biomass proliferation may be envisaged as a natural source of bioactive compounds of pharmaceutical interest. We investigated the biochemical composition of mature female gonads and lysozyme antibacterial activity of oocytes in the Mediterranean barrel jellyfish Rhizostoma pulmo. Chemical characterization was performed by means of multinuclear and multidimensional NMR spectroscopy. The ovaries of R. pulmo were mainly composed of water (93.7 ± 1.9% of wet weight), with organic matter (OM) and dry weight made respectively of proteins (761.76 ± 25.11 µg mg-1 and 45.7 ± 1.5%), lipids (192.17 ± 10.56 µg mg-1 and 9.6 ± 0.6%), and carbohydrates (59.66 ± 2.72 µg mg-1 and 3.7 ± 0.3%). The aqueous extract of R. pulmo gonads contained free amino acids, organic acids, and derivatives; the lipid extract was composed of triglycerides (TG), polyunsaturated fatty acids (PUFAs), diunsaturated fatty acids (DUFAs), monounsaturated fatty acids (MUFAs), saturated fatty acids (SFAs), and minor components such as sterols and phospholipids. The R. pulmo oocyte lysate exhibited an antibacterial lysozyme-like activity (mean diameter of lysis of 9.33 ± 0.32 mm corresponding to 1.21 mg/mL of hen egg-white lysozyme). The occurrence of defense molecules is a crucial mechanism to grant healthy development of mature eggs and fertilized embryos (and the reproductive success of the species) by preventing marine bacterial overgrowth. As a corollary, these results call for future investigations for an exploitation of R. pulmo biomasses as a resource of bioactive metabolites of biotechnological importance including pharmaceuticals and nutrition.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
- Water Research Institute (IRSA) of the National Research Council, S.S. Talassografico of Taranto, Via Roma 3, 74122 Taranto, Italy.
| | - Lucia Rizzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 00196, 9- Roma, Italy.
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Federica Angilè
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Silvia Lomartire
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 00196, 9- Roma, Italy.
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 00196, 9- Roma, Italy.
| |
Collapse
|
26
|
The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Mar Drugs 2018; 16:md16100396. [PMID: 30347869 PMCID: PMC6213208 DOI: 10.3390/md16100396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/04/2023] Open
Abstract
Jellyfish is a compartment in the marine food web that often achieves high increases of biomass and that it is starting to be explored for several human potential uses. In this paper, a recently rediscovered large jellyfish, Rhizostoma luteum, is studied for the first time to describe its organic compounds for the isolation and production of bioactive compounds in several fields of food, cosmetics, or biomedical industries. The biogeochemical composition (Carbon, Nitrogen and Sulfur content), protein and phenols content, together with their antioxidant activity, and the analysis of lipid content (identifying each of the fatty acids presented) was analyzed. The results presented here suggested this jellyfish has the highest antioxidant activity ever measured in a jellyfish, but also with high content in polyunsaturated fatty acids (PUFAs), including the essential fatty acid linoleic. The large natural biomass of Rhizostoma luteum in nature, the wide geographical spread, the fact that already its life cycle has been completed in captivity, establishes a promising positive association of this giant jellyfish species and the isolation of bioactive compounds for future use in marine biotechnology.
Collapse
|
27
|
Oliveira CS, Caldeira CAS, Diniz-Sousa R, Romero DL, Marcussi S, Moura LA, Fuly AL, de Carvalho C, Cavalcante WLG, Gallacci M, Pai MD, Zuliani JP, Calderon LA, Soares AM. Pharmacological characterization of cnidarian extracts from the Caribbean Sea: evaluation of anti-snake venom and antitumor properties. J Venom Anim Toxins Incl Trop Dis 2018; 24:22. [PMID: 30181737 PMCID: PMC6114500 DOI: 10.1186/s40409-018-0161-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). METHODS The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. RESULTS All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C. gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C. gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells. CONCLUSION The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Cleópatra A. S. Caldeira
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Rafaela Diniz-Sousa
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Dolores L. Romero
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Havana, Cuba
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras (UFLA), Lavras, MG Brazil
| | - Laura A. Moura
- Departamento de Biologia Celular e Molecular (GCM), Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, RJ Brazil
| | - André L. Fuly
- Departamento de Biologia Celular e Molecular (GCM), Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, RJ Brazil
| | - Cicília de Carvalho
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Walter L. G. Cavalcante
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
- Instituto de Ciências Biológicas, Departamento de Farmacologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Márcia Gallacci
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Maeli Dal Pai
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Juliana P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
- Centro Universitário São Lucas (UniSL), Porto Velho, RO Brazil
| |
Collapse
|
28
|
Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. Int J Mol Sci 2018; 19:ijms19061645. [PMID: 29865195 PMCID: PMC6032133 DOI: 10.3390/ijms19061645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Since their characterization more than five decades ago, gap junctions and their structural proteins-the connexins-have been associated with cancer cell growth. During that period, the accumulation of data and molecular knowledge about this association revealed an apparent contradictory relationship between them and cancer. It appeared that if gap junctions or connexins can down regulate cancer cell growth they can be also implied in the migration, invasion and metastatic dissemination of cancer cells. Interestingly, in all these situations, connexins seem to be involved through various mechanisms in which they can act either as gap-junctional intercellular communication mediators, modulators of signalling pathways through their interactome, or as hemichannels, which mediate autocrine/paracrine communication. This complex involvement of connexins in cancer progression is even more complicated by the fact that their hemichannel function may overlap with other gap junction-related proteins, the pannexins. Despite this complexity, the possible involvements of connexins and pannexins in cancer progression and the elucidation of the mechanisms they control may lead to use them as new targets to control cancer progression. In this review, the involvements of connexins and pannexins in these different topics (cancer cell growth, invasion/metastasis process, possible cancer therapeutic targets) are discussed.
Collapse
|
29
|
Cnidarian Jellyfish: Ecological Aspects, Nematocyst Isolation, and Treatment Methods of Sting. Results Probl Cell Differ 2018; 65:477-513. [PMID: 30083932 DOI: 10.1007/978-3-319-92486-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cnidarians play an important role in ecosystem functioning, in the competition among species, and for possible utilization of several active compounds against cardiovascular, nervous, endocrine, immune, infective, and inflammatory disorders or having antitumoral properties, which have been extracted from these organisms. Nevertheless, notwithstanding these promising features, the main reason for which cnidarians are known is due to their venomousness as they have a serious impact on public health as well as in economy being able to affect some human activities. For this reason a preeminent subject of the research about cnidarians is the organization of proper systems and methods of care and treatment of stinging. This chapter aims to present the data about the morphological, ecological, toxicological, epidemiological, and therapeutic aspects regarding cnidarians with the purpose to summarize the existing knowledge and to stimulate future perspectives in the research on these organisms.
Collapse
|
30
|
Abstract
Medusae (aka jellyfish) have multiphasic life cycles and a propensity to adapt to, and proliferate in, a plethora of aquatic habitats, connecting them to a number of ecological and societal issues. Now, in the midst of the genomics era, affordable next-generation sequencing (NGS) platforms coupled with publically available bioinformatics tools present the much-anticipated opportunity to explore medusa taxa as potential model systems. Genome-wide studies of medusae would provide a remarkable opportunity to address long-standing questions related to the biology, physiology, and nervous system of some of the earliest pelagic animals. Furthermore, medusae have become key targets in the exploration of marine natural products, in the development of marine biomarkers, and for their application to the biomedical and robotics fields. Presented here is a synopsis of the current state of medusa research, highlighting insights provided by multi-omics studies, as well as existing knowledge gaps, calling upon the scientific community to adopt a number of medusa taxa as model systems in forthcoming research endeavors.
Collapse
Affiliation(s)
- Cheryl Lewis Ames
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, NW, Washington, DC, USA.
| |
Collapse
|
31
|
Ha SH, Jin F, Kwak CH, Abekura F, Park JY, Park NG, Chang YC, Lee YC, Chung TW, Ha KT, Son JK, Chang HW, Kim CH. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. PeerJ 2017; 5:e2895. [PMID: 28133573 PMCID: PMC5251936 DOI: 10.7717/peerj.2895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/10/2016] [Indexed: 12/21/2022] Open
Abstract
Jellyfish species are widely distributed in the world's oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura's jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Fansi Jin
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsang, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyung National University, Busan, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Jong-Keun Son
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsang, Republic of Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsang, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon City, Kyunggi-Do, Republic of Korea
| |
Collapse
|
32
|
Mirshamsi MR, Omranipour R, Vazirizadeh A, Fakhri A, Zangeneh F, Mohebbi GH, Seyedian R, Pourahmad J. Persian Gulf Jellyfish (Cassiopea andromeda) Venom Fractions Induce Selective Injury and Cytochrome C Release in Mitochondria Obtained from Breast Adenocarcinoma Patients. Asian Pac J Cancer Prev 2017; 18:277-286. [PMID: 28240847 PMCID: PMC5563113 DOI: 10.22034/apjcp.2017.18.1.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective: This study was conducted to investigate whether fractions of jellyfish Cassiope andromeda venom, could selectively induce toxicity on mitochondria isolated from cancer tissue of patients with breast adenocarcinomas. Methods: Firstly, we extracted two fractions, (f1 and f2) from crude jellyfish venom by gel filtration on Sephadex G-200. Then different dilutions of these extracted fractions were applied to mitochondria isolated from human breast tumoral- and extra-tumoral tissues. Parameters of mitochondrial toxicity including generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) collapse, swelling, cytochrome c release, activation of caspase3 and apoptosis were then assayed. Result: Our results demonstrate that fraction 2 of Cassiopea andromeda crude venom significantly (P<0.05) decreased mitochondrial succinate dehydrogenase activity, increased mitochondrial ROS production, induced mitochondrial swelling, MMP collapse and cytochrome c release, activated caspase3 and induced apoptosis only in tumoral mitochondria, and not in mitochondria obtained from extra-tumoral tissue (P<0.05). Conclusion: In conclusion this study suggested that fraction 2 of Cassiopea andromeda crude venom selectively induces ROS mediated cytotoxicity by directly targeting mitochondria isolated from human breast tumor tissue.
Collapse
Affiliation(s)
- Mohammad Reza Mirshamsi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Evaluation of anti-proliferative and anti-inflammatory activities of Pelagia noctiluca venom in Lipopolysaccharide/Interferon-γ stimulated RAW264.7 macrophages. Biomed Pharmacother 2016; 84:1986-1991. [DOI: 10.1016/j.biopha.2016.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 01/22/2023] Open
|
34
|
Gerardi C, Frassinetti S, Caltavuturo L, Leone A, Lecci R, Calabriso N, Carluccio MA, Blando F, Mita G. Anti-proliferative, anti-inflammatory and anti-mutagenic activities of a Prunus mahaleb L. anthocyanin-rich fruit extract. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
35
|
Mariottini GL, Grice ID. Antimicrobials from Cnidarians. A New Perspective for Anti-Infective Therapy? Mar Drugs 2016; 14:E48. [PMID: 27005633 PMCID: PMC4820302 DOI: 10.3390/md14030048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 01/27/2023] Open
Abstract
The ability of microbes to counter the scientific and therapeutic advancements achieved during the second half of the twentieth century to provide effective disease treatments is currently a significant challenge for researchers in biology and medicine. The discovery of antibiotics, and the subsequent development of synthetic antimicrobial compounds, altered our therapeutic approach towards infectious diseases, and improved the quality and length of life for humans and other organisms. The current alarming rise in cases of antibiotic-resistance has forced biomedical researchers to explore new ways to recognize and/or produce new antimicrobials or to find other approaches for existing therapeutics. Aquatic organisms are known to be a source of compounds having the potential to play a role in fighting the battle against pathogenic microbes. In this connection, cnidarians occupy a pre-eminent role. Over the past few decades several studies have explored the antimicrobial/antibiotic properties of cnidarian extracts with the aim of isolating compounds possessing useful therapeutic features. This paper aims to review the existing data on this subject, taking into account the possible utilization of identified compounds.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| | - Irwin Darren Grice
- Institute for Glycomics and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport 4222, Queensland, Australia.
| |
Collapse
|
36
|
Leone A, Lecci RM, Durante M, Meli F, Piraino S. The Bright Side of Gelatinous Blooms: Nutraceutical Value and Antioxidant Properties of Three Mediterranean Jellyfish (Scyphozoa). Mar Drugs 2015; 13:4654-81. [PMID: 26230703 PMCID: PMC4556998 DOI: 10.3390/md13084654] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/01/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Jellyfish are recorded with increasing frequency and magnitude in many coastal areas and several species display biological features comparable to the most popular Asiatic edible jellyfish. The biochemical and antioxidant properties of wild gelatinous biomasses, in terms of nutritional and nutraceutical values, are still largely unexplored. In this paper, three of the most abundant and commonly recorded jellyfish species (Aurelia sp.1, Cotylorhiza tuberculata and Rhizostoma pulmo) in the Mediterranean Sea were subject to investigation. A sequential enzymatic hydrolysis of jellyfish proteins was set up by pepsin and collagenase treatments of jellyfish samples after aqueous or hydroalcoholic protein extraction. The content and composition of proteins, amino acids, phenolics, and fatty acids of the three species were recorded and compared. Protein content (mainly represented by collagen) up to 40% of jellyfish dry weight were found in two of the three jellyfish species (C. tuberculata and R. pulmo), whereas the presence of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) was significantly higher in the zooxanthellate jellyfish C. tuberculata only. Remarkable antioxidant ability was also recorded from both proteinaceous and non proteinaceous extracts and the hydrolyzed protein fractions in all the three species. The abundance of collagen, peptides and other bioactive molecules make these Mediterranean gelatinous biomasses a largely untapped source of natural compounds of nutraceutical, cosmeceutical and pharmacological interest.
Collapse
Affiliation(s)
- Antonella Leone
- Institute of Sciences of Food Production, National Research Council, Unit of Lecce (CNR, ISPA), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Raffaella Marina Lecci
- Institute of Sciences of Food Production, National Research Council, Unit of Lecce (CNR, ISPA), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Miriana Durante
- Institute of Sciences of Food Production, National Research Council, Unit of Lecce (CNR, ISPA), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Federica Meli
- Dipartimento di Scienze degli Alimenti, Università di Parma, Parco Area delle Scienze, 59/A, 43124 Parma, Italy.
| | - Stefano Piraino
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
- Università del Salento, DiSTeBA Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
37
|
Armani A, Giusti A, Castigliego L, Rossi A, Tinacci L, Gianfaldoni D, Guidi A. Pentaplex PCR as screening assay for jellyfish species identification in food products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12134-12143. [PMID: 25393326 DOI: 10.1021/jf504654b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Salted jellyfish, a traditional food in Asian Countries, is nowadays spreading on the Western markets. In this work, we developed a Pentaplex PCR for the identification of five edible species (Nemopilema nomurai, Rhopilema esculentum, Rhizostoma pulmo, Pelagia noctiluca, and Cotylorhiza tuberculata), which cannot be identified by a mere visual inspection in jellyfish products sold as food. A common degenerated forward primer and five specie-specific reverse primers were designed to amplify COI gene regions of different lengths. Another primer pair targeted the 28SrRNA gene and was intended as common positive reaction control. Considering the high level of degradation in the DNA extracted from acidified and salted products, the maximum length of the amplicons was set at 200 bp. The PCR was developed using 66 reference DNA samples. It gave successful amplifications in 85.4% of 48 ready to eat products (REs) and in 60% of 30 classical salted products (CPs) collected on the market.
Collapse
Affiliation(s)
- Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa , Via delle Piagge 2, 56124 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
First report of a peroxiredoxin homologue in jellyfish: molecular cloning, expression and functional characterization of CcPrx4 from Cyanea capillata. Mar Drugs 2014; 12:214-31. [PMID: 24413803 PMCID: PMC3917271 DOI: 10.3390/md12010214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 01/11/2023] Open
Abstract
We first identified and characterized a novel peroxiredoxin (Prx), designated as CcPrx4, from the cDNA library of the tentacle of the jellyfish Cyanea capillata. The full-length cDNA sequence of CcPrx4 consisted of 884 nucleotides with an open reading frame encoding a mature protein of 247 amino acids. It showed a significant homology to peroxiredoxin 4 (Prx4) with the highly conserved F-motif (93FTFVCPTEI101), hydrophobic region (217VCPAGW222), 140GGLG143 and 239YF240, indicating that it should be a new member of the Prx4 family. The deduced CcPrx4 protein had a calculated molecular mass of 27.2 kDa and an estimated isoelectric point of 6.3. Quantitative real-time PCR analysis showed that CcPrx4 mRNA could be detected in all the jellyfish tissues analyzed. CcPrx4 protein was cloned into the expression vector, pET-24a, and expressed in Escherichia coli Rosetta (DE3) pLysS. Recombinant CcPrx4 protein was purified by HisTrap High Performance chelating column chromatography and analyzed for its biological function. The results showed that the purified recombinant CcPrx4 protein manifested the ability to reduce hydrogen peroxide and protect supercoiled DNA from oxidative damage, suggesting that CcPrx4 protein may play an important role in protecting jellyfish from oxidative damage.
Collapse
|
39
|
Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel) 2013; 6:108-51. [PMID: 24379089 PMCID: PMC3920253 DOI: 10.3390/toxins6010108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 01/20/2023] Open
Abstract
The toxicity of Cnidaria is a subject of concern for its influence on human activities and public health. During the last decades, the mechanisms of cell injury caused by cnidarian venoms have been studied utilizing extracts from several Cnidaria that have been tested in order to evaluate some fundamental parameters, such as the activity on cell survival, functioning and metabolism, and to improve the knowledge about the mechanisms of action of these compounds. In agreement with the modern tendency aimed to avoid the utilization of living animals in the experiments and to substitute them with in vitro systems, established cell lines or primary cultures have been employed to test cnidarian extracts or derivatives. Several cnidarian venoms have been found to have cytotoxic properties and have been also shown to cause hemolytic effects. Some studied substances have been shown to affect tumour cells and microorganisms, so making cnidarian extracts particularly interesting for their possible therapeutic employment. The review aims to emphasize the up-to-date knowledge about this subject taking in consideration the importance of such venoms in human pathology, the health implications and the possible therapeutic application of these natural compounds.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| | - Luigi Pane
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| |
Collapse
|