1
|
Cuomo P, Medaglia C, Casillo A, Gentile A, Fruggiero C, Corsaro MM, Capparelli R. Phage-resistance alters Lipid A reactogenicity: a new strategy for LPS-based conjugate vaccines against Salmonella Rissen. Front Immunol 2024; 15:1450600. [PMID: 39723217 PMCID: PMC11668645 DOI: 10.3389/fimmu.2024.1450600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Salmonella enterica serovar Rissen (S. Rissen) is an emerging causative agent of foodborne diseases. The current emergence of antibiotic resistance makes necessary alternative therapeutic strategies. In this study, we investigated the potential of a phage-resistant strain of S. Rissen (RR) as a tool for developing an effective lipopolysaccharide (LPS)-based vaccine. The LPS O-antigen is known to play critical roles in protective immunity against Salmonella. However, the high toxicity of the LPS lipid A moiety limits its use in vaccines. Here, we demonstrated that the acquisition of bacteriophage resistance by S. Rissen leads to structural modifications in the LPS structure. Using NMR and mass spectrometry, we characterized the LPS from phage-resistant strains as a smooth variant bearing under-acylated Lipid A portions (penta- and tetra-acylated forms). We then combined RT-qPCR and NMR-based metabolomics to explore the effects of phage resistance and LPS modification on bacterial fitness and virulence. Finally, we conducted in vivo studies to determine whether lysogeny-induced remodeling of LPS affects the host immune response. Results revealed that the under-acylated variant of LPS from RR attenuates the inflammatory response in BALB/c mice, while eliciting a specific antibody response that protects against S. Rissen (RW) infection. In conclusion, our findings suggest that phage resistance, through lipid A modification, may offer a novel strategy for reducing LPS toxicity, highlighting its potential as a promising biological approach for developing LPS-based vaccines against Salmonella infections.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Chiara Medaglia
- Functional Genomics Research Center, Fondazione Human Technopole, Milan, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Gentile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Carmine Fruggiero
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Pham TT, Nguyen TD, Nguyen TT, Pham MN, Nguyen PT, Nguyen TUT, Huynh TTN, Nguyen HT. Rhizosphere bacterial exopolysaccharides: composition, biosynthesis, and their potential applications. Arch Microbiol 2024; 206:388. [PMID: 39196410 DOI: 10.1007/s00203-024-04113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Bacterial exopolysaccharides (EPS) are biopolymers of carbohydrates, often released from cells into the extracellular environment. Due to their distinctive physicochemical properties, biocompatibility, biodegradability, and non-toxicity, EPS finds applications in various industrial sectors. However, the need for alternative EPS has grown over the past few decades as lactic acid bacteria's (LAB) low-yield EPS is unable to meet the demand. In this case, rhizosphere bacteria with the diverse communities in soil leading to variations in composition and structure, are recognized as a potential source of EPS applicable in various industries. In addition, media components and cultivation conditions have an impact on EPS production, which ultimately affects the quantity, structure, and biological functions of the EPS. Therefore, scientists are currently working on manipulating bacterial EPS by developing cultures and applying abiotic and biotic stresses, so that better production of exopolysaccharides can be attained. This review highlights the composition, biosynthesis, and effects of environmental factors on EPS production along with the potential applications in different fields of industry. Ultimately, an overview of potential future paths and tactics for improving EPS implementation and commercialization is pointed out.
Collapse
Affiliation(s)
| | | | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - To-Uyen Thi Nguyen
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
D’ambrosio S, Dabous A, Sadiq S, Casillo A, Schiraldi C, Cassese E, Bedini E, Corsaro MM, Cimini D. Bifidobacterium animalis subsp. lactis HN019 live probiotics and postbiotics: production strategies and bioactivity evaluation for potential therapeutic properties. Front Bioeng Biotechnol 2024; 12:1379574. [PMID: 39055336 PMCID: PMC11270027 DOI: 10.3389/fbioe.2024.1379574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: B. animalis subsp. lactis HN019 is a commercially available well-characterized probiotic with documented effects on human health, such as the ability to enhance the immune function and to balance the intestinal microbiome. Therefore, optimizing the manufacturing process to improve sustainability, increasing biomass yields and viability, and avoiding animal -derived nutrients in the medium to meet vegan consumer's needs, is currently of interest. Besides the established use of live probiotic cells, alternative supplements indicated as postbiotics, like non-viable cells and/or probiotics derived bioactive molecules might be considered as potential next generation biotherapeutics. In fact, advantages of postbiotics include fewer technological limitations, such as easier production processes and scale-up, and even higher specificity. Methods: In this work, medium design together with different fermentation strategies such as batch, fed-batch and in situ product removal on lab-scale bioreactors were combined. Medium pretreatment by ultrafiltration and protease digestion was performed to reduce polysaccharidic contaminants and facilitate the purification of secreted exopolysaccharides (EPS). The latter were isolated from the fermentation broth and characterized through NMR, GC-MS and SEC-TDA analyses. The expression of TLR-4, NF-kb and IL-6 in LPS challenged differentiated CaCo-2 cells treated with EPS, live and heat-killed B. lactis cells/broth, was evaluated in vitro by western blotting and ELISA. Zonulin was also assessed by immunofluorescence assays. Results and Discussion: The titer of viable B. lactis HN019 was increased up to 2.9 ± 0.1 x 1010 on an animal-free semidefined medium by applying an ISPR fermentation strategy. Medium pre-treatment and a simple downstream procedure enriched the representativity of the EPS recovered (87%), the composition of which revealed the presence of mannuronic acid among other sugars typically present in polysaccharides produced by bifidobacteria. The isolated EPS, live cells and whole heat inactivated broth were compared for the first up to date for their immunomodulatory and anti-inflammatory properties and for their ability to promote intestinal barrier integrity. Interestingly, EPS and live cells samples demonstrated immune-stimulating properties by downregulating the expression of TLR-4 and NF-kb, and the ability to promote restoring the integrity of the intestinal barrier by up-regulating the expression of zonulin, one of the tight junctions forming proteins. Postbiotics in the form of heat killed broth only reduced NF-kb expression, whereas they did not seem effective in the other tested conditions.
Collapse
Affiliation(s)
- Sergio D’ambrosio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Azza Dabous
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Saba Sadiq
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Elisabetta Cassese
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Donatella Cimini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
4
|
Finore I, Dal Poggetto G, Leone L, Cattaneo A, Immirzi B, Corsaro MM, Casillo A, Poli A. Sustainable production of heavy metal-binding levan by a subarctic permafrost thaw lake Pseudomonas strain 2ASCA. Int J Biol Macromol 2024; 268:131664. [PMID: 38636757 DOI: 10.1016/j.ijbiomac.2024.131664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pseudomonas strain 2ASCA isolated in subarctic Québec, Canada, produced a cell membrane bound levan-type exopolymer (yield 1.17 g/L), after incubation in growth media containing 6 % sucrose (w/v) at temperature of 15 °C for 96 h. The objective of this study was to optimize levan production by varying the growth parameters. Moreover, the polymer's chemical characterization has been studied with the aim of increasing knowledge and leading to future applications in many fields, including heavy metal remediation. Higher levan yields (7.37 g/L) were reached by setting up microbial fermentation conditions based on the re-use of the molasses obtained from sugar beet processing. Spectroscopy analyses confirmed the levan-type nature of the exopolymer released by strain 2ASCA, consisting of a β-(2,6)-linked fructose repeating unit. Gel permeation chromatography revealed that the polymer has a molecular weight of 13 MDa. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) showed that the levan sequestered with a strong affinity Cr(III), which has never been previously reported, highlighting an interesting biosorption potential. In addition, SEM analysis revealed the formation of nanoparticles in acidified water solution.
Collapse
Affiliation(s)
- Ilaria Finore
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Giovanni Dal Poggetto
- Consiglio Nazionale delle Ricerche, Institute of Polymers, Composites and Biomaterial (IPCB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Luigi Leone
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Andrea Cattaneo
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy
| | - Barbara Immirzi
- Consiglio Nazionale delle Ricerche, Institute of Polymers, Composites and Biomaterial (IPCB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Na, Italy.
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Na, Italy.
| | - Annarita Poli
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| |
Collapse
|
5
|
Imparato M, Maione A, Buonanno A, Gesuele R, Gallucci N, Corsaro MM, Paduano L, Casillo A, Guida M, Galdiero E, de Alteriis E. Extracellular Vesicles from a Biofilm of a Clinical Isolate of Candida albicans Negatively Impact on Klebsiella pneumoniae Adherence and Biofilm Formation. Antibiotics (Basel) 2024; 13:80. [PMID: 38247639 PMCID: PMC10812662 DOI: 10.3390/antibiotics13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The opportunistic human fungal pathogen Candida albicans produces and releases into the surrounding medium extracellular vesicles (EVs), which are involved in some processes as communication between fungal cells and host-pathogen interactions during infection. Here, we have conducted the isolation of EVs produced by a clinical isolate of C. albicans during biofilm formation and proved their effect towards the ability of the Gram-negative bacterial pathogen Klebsiella pneumoniae to adhere to HaCaT cells and form a biofilm in vitro. The results represent the first evidence of an antagonistic action of fungal EVs against bacteria.
Collapse
Affiliation(s)
- Marianna Imparato
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Annalisa Buonanno
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Renato Gesuele
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| |
Collapse
|
6
|
Casillo A, D’Angelo C, Imbimbo P, Monti DM, Parrilli E, Lanzetta R, Gomez d’Ayala G, Mallardo S, Corsaro MM, Duraccio D. Aqueous Extracts from Hemp Seeds as a New Weapon against Staphylococcus epidermidis Biofilms. Int J Mol Sci 2023; 24:16026. [PMID: 38003214 PMCID: PMC10671263 DOI: 10.3390/ijms242216026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the antibiofilm activity of water-soluble extracts obtained under different pH conditions from Cannabis sativa seeds and from previously defatted seeds. The chemical composition of the extracts, determined through GC-MS and NMR, revealed complex mixtures of fatty acids, monosaccharides, amino acids and glycerol in ratios depending on extraction pH. In particular, the extract obtained at pH 7 from defatted seeds (Ex7d) contained a larger variety of sugars compared to the others. Saturated and unsaturated fatty acids were found in all of the analysed extracts, but linoleic acid (C18:2) was detected only in the extracts obtained at pH 7 and pH 10. The extracts did not show cytotoxicity to HaCaT cells and significantly inhibited the formation of Staphylococcus epidermidis biofilms. The exception was the extract obtained at pH 10, which appeared to be less active. Ex7d showed the highest antibiofilm activity, i.e., around 90%. Ex7d was further fractionated by HPLC, and the antibiofilm activity of all fractions was evaluated. The 2D-NMR analysis highlighted that the most active fraction was largely composed of glycerolipids. This evidence suggested that these molecules are probably responsible for the observed antibiofilm effect but does not exclude a possible synergistic contribution by the other components.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Giovanna Gomez d’Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Salvatore Mallardo
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS)-CNR, Strada Delle Cacce 73, 10135 Torino, Italy;
| |
Collapse
|
7
|
Bouallegue A, Chaari F, Casillo A, Corsaro MM, Bachoual R, Ellouz-Chaabouni S. Levan produced by Bacillus subtilis AF17: Thermal, functional and rheological properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Casillo A, Fabozzi A, Russo Krauss I, Parrilli E, Biggs CI, Gibson MI, Lanzetta R, Appavou MS, Radulescu A, Tutino ML, Paduano L, Corsaro MM. Physicochemical Approach to Understanding the Structure, Conformation, and Activity of Mannan Polysaccharides. Biomacromolecules 2021; 22:1445-1457. [PMID: 33729771 PMCID: PMC8045027 DOI: 10.1021/acs.biomac.0c01659] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Extracellular
polysaccharides are widely produced by bacteria, yeasts, and algae.
These polymers are involved in several biological functions, such
as bacteria adhesion to surface and biofilm formation, ion sequestering,
protection from desiccation, and cryoprotection. The chemical characterization
of these polymers is the starting point for obtaining relationships
between their structures and their various functions. While this fundamental
correlation is well reported and studied for the proteins, for the
polysaccharides, this relationship is less intuitive. In this paper,
we elucidate the chemical structure and conformational studies of
a mannan exopolysaccharide from the permafrost isolated bacterium Psychrobacter arcticus strain 273-4. The mannan from
the cold-adapted bacterium was compared with its dephosphorylated
derivative and the commercial product from Saccharomyces
cerevisiae. Starting from the chemical structure,
we explored a new approach to deepen the study of the structure/activity
relationship. A pool of physicochemical techniques, ranging from small-angle
neutron scattering (SANS) and dynamic and static light scattering
(DLS and SLS, respectively) to circular dichroism (CD) and cryo-transmission
electron microscopy (cryo-TEM), have been used. Finally, the ice recrystallization
inhibition activity of the polysaccharides was explored. The experimental
evidence suggests that the mannan exopolysaccharide from P. arcticus bacterium has an efficient interaction
with the water molecules, and it is structurally characterized by
rigid-rod regions assuming a 14-helix-type conformation.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Antonio Fabozzi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.,CSGI - Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Florence 50019, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-857478 Garching bei München, Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-857478 Garching bei München, Germany
| | - Maria L Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.,CSGI - Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Florence 50019, Italy
| | - Maria M Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
9
|
López-Ortega MA, Chavarría-Hernández N, López-Cuellar MDR, Rodríguez-Hernández AI. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse! Int J Biol Macromol 2021; 177:559-577. [PMID: 33609577 DOI: 10.1016/j.ijbiomac.2021.02.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
Every year, new organisms that survive and colonize adverse environments are discovered and isolated. Those organisms, called extremophiles, are distributed throughout the world, both in aquatic and terrestrial environments, such as sulfurous marsh waters, hydrothermal springs, deep waters, volcanos, terrestrial hot springs, marine saltern, salt lakes, among others. According to the ecosystem inhabiting, extremophiles are categorized as thermophiles, psychrophiles, halophiles, acidophiles, alkalophilic, piezophiles, saccharophiles, metallophiles and polyextremophiles. They have developed chemical adaptation strategies that allow them to maintain their cellular integrity, altering physiology or improving repair capabilities; one of them is the biosynthesis of extracellular polysaccharides (EPS), which constitute a slime and hydrated matrix that keep the cells embedded, protecting from environmental stress (desiccation, salinity, temperature, radiation). EPS have gained interest; they are explored by their unique properties such as structural complexity, biodegradability, biological activities, and biocompatibility. Here, we present a review concerning the biosynthesis, characterization, and potential EPS applications produced by extremophile microorganisms, namely, thermophiles, halophiles, and psychrophiles. A bibliometric analysis was conducted, considering research articles published within the last two decades. Besides, an overview of the culture conditions used for extremophiles, the main properties and multiple potential applications of their EPS is also presented.
Collapse
Affiliation(s)
- Mayra Alejandra López-Ortega
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| |
Collapse
|
10
|
Di Guida R, Casillo A, Corsaro MM. O-specific polysaccharide structure isolated from the LPS of the Antarctic bacterium Pseudomonas ANT_J38B. Carbohydr Res 2020; 497:108125. [PMID: 32905875 DOI: 10.1016/j.carres.2020.108125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Pseudomonas ANT_J38B is a Gram-negative bacterium isolated from an Antarctic island. LPS was extracted using the phenol/chloroform/petroleum ether method. A mild acid hydrolysis followed by a gel filtration purification afforded the O-chain. The polysaccharide was characterized by means of chemical analyses and NMR spectroscopy. The O-chain displays a disaccharide repeating unit with the following backbone: →4)-α-l-GulpNAc3OAcAN-(1 →3)-β-d-QuipNAc-(1→ .
Collapse
Affiliation(s)
- Rossella Di Guida
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| |
Collapse
|
11
|
Bacteriophages Promote Metabolic Changes in Bacteria Biofilm. Microorganisms 2020; 8:microorganisms8040480. [PMID: 32231093 DOI: 10.3390/microorganisms8040480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial biofilm provides bacteria with resistance and protection against conventional antimicrobial agents and the host immune system. Bacteriophages are known to move across the biofilm to make it permeable to antimicrobials. Mineral hydroxyapatite (HA) can improve the lytic activity of bacteriophages, and, together with eicosanoic acid (C20:0), can destroy the biofilm structure. Here, we demonstrate the efficacy of the combined use of phage, HA and C20:0 against Xanthomonas campestris pv campestris (Xcc) biofilm. We used nuclear magnetic resonance (NMR)-based metabolomics to investigate the molecular determinants related to the lytic action, aiming at identifying the metabolic pathways dysregulated by phage treatment. Furthermore, we identified specific markers (amino acids, lactate and galactomannan) which are involved in the control of biofilm stability. Our data show that Xccφ1, alone or in combination with HA and C20:0, interferes with the metabolic pathways involved in biofilm formation. The approach described here might be extended to other biofilm-producing bacteria.
Collapse
|
12
|
Lo Giudice A, Poli A, Finore I, Rizzo C. Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications. Appl Microbiol Biotechnol 2020; 104:2923-2934. [PMID: 32076778 DOI: 10.1007/s00253-020-10448-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Extracellular polymeric substances (EPSs) possess diversified ecological role, including the cell adhesion to surfaces and cell protection, and are highly involved in the interactions between the bacterial cells and the bulk environments. Interestingly, EPSs find valuable applications in the industrial field, due to their chemical versatility. In this context, Antarctic bacteria have not been given the attention they deserve as producers of EPS molecules and a very limited insight into their EPS production capabilities and biotechnological potential is available in literature to date. Antarctic EPS-producing bacteria are mainly psychrophiles deriving from the marine environments (generally sea ice and seawater) around the continent, whereas a unique thermophilic bacterium, namely Parageobacillus thermantarcticus strain M1, was isolated from geothermal soil of the crater of Mount Melbourne. This mini-review is aimed at showcasing the current knowledge on EPS-producing Antarctic bacteria and the chemical peculiarities of produced EPSs, highlighting their biotechnological potential and the yet unexplored treasure they represent for biodiscovery.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- National Research Council (CNR-ISP), Institute of Polar Sciences, Spianata S. Raineri 86, 98122, Messina, Italy.
| | - Annarita Poli
- National Research Council (CNR-ICB), Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Ilaria Finore
- National Research Council (CNR-ICB), Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Carmen Rizzo
- Department BIOTECH, Stazione Zoologica Anton Dohrn,, National Institute of Biology, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy
| |
Collapse
|
13
|
Ali P, Shah AA, Hasan F, Hertkorn N, Gonsior M, Sajjad W, Chen F. A Glacier Bacterium Produces High Yield of Cryoprotective Exopolysaccharide. Front Microbiol 2020; 10:3096. [PMID: 32117080 PMCID: PMC7026135 DOI: 10.3389/fmicb.2019.03096] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas sp. BGI-2 is a psychrotrophic bacterium isolated from the ice sample collected from Batura glacier, Pakistan. This strain produces highly viscous colonies on agar media supplemented with glucose. In this study, we have optimized growth and production of exopolysaccharide (EPS) by the cold-adapted Pseudomonas sp. BGI-2 using different nutritional and environmental conditions. Pseudomonas sp. BGI-2 is able to grow in a wide range of temperatures (4-35°C), pH (5-11), and salt concentrations (1-5%). Carbon utilization for growth and EPS production was extensively studied and we found that glucose, galactose, mannose, mannitol, and glycerol are the preferable carbon sources. The strain is also able to use sugar waste molasses as a growth substrate, an alternative for the relatively expensive sugars for large scale EPS production. Maximum EPS production was observed at 15°C, pH 6, NaCl (10 g L-1), glucose as carbon source (100 g L-1), yeast extract as nitrogen source (10 g L-1), and glucose/yeast extract ratio (10/1). Under optimized conditions, EPS production was 2.01 g L-1, which is relatively high for a Pseudomonas species compared to previous studies using the same method for quantification. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis of EPS revealed glucose, galactose, and glucosamine as the main sugar monomers. Membrane protection assay using human RBCs revealed significant reduction in cell lysis (∼50%) in the presence of EPS, suggesting its role in membrane protection. The EPS (5%) also conferred significant cryoprotection for a mesophilic Escherichia coli k12 which was comparable to glycerol (20%). Also, improvement in lipid peroxidation inhibition (in vitro) resulted when lipids from the E. coli was pretreated with EPS. Increased EPS production at low temperatures, freeze thaw tolerance of the EPS producing strain, and increased survivability of E. coli in the presence of EPS as cryoprotective agent supports the hypothesis that EPS production is a strategy for survival in extremely cold environments such as the glacier ice.
Collapse
Affiliation(s)
- Pervaiz Ali
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Munich, Germany
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| |
Collapse
|
14
|
Casillo A, Ricciardelli A, Parrilli E, Tutino ML, Corsaro MM. Cell-wall associated polysaccharide from the psychrotolerant bacterium Psychrobacter arcticus 273-4: isolation, purification and structural elucidation. Extremophiles 2019; 24:63-70. [PMID: 31309337 DOI: 10.1007/s00792-019-01113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 01/27/2023]
Abstract
In this paper, the structure of the capsular polysaccharide isolated from the psychrotolerant bacterium Psychrobacter arcticus 273-4 is reported. The polymer was purified by gel filtration chromatography and the structure was elucidated by means of one- and two-dimensional NMR spectroscopy, in combination with chemical analyses. The polysaccharide consists of a trisaccharidic repeating unit containing two residues of glucose and a residue of a N,N-diacetyl-pseudaminic acid.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| | - Annarita Ricciardelli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
15
|
Casillo A, Parrilli E, Tutino ML, Corsaro MM. The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiol Ecol 2019; 95:5519854. [DOI: 10.1093/femsec/fiz094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTLipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Microorganisms that colonize permanently or transiently cold habitats have evolved an array of structural adaptations, some of which involve components of bacterial membranes. These adaptations assure the perfect functionality of the membrane even at freezing or sub-freezing growth temperatures. This review summarizes the state-of-the-art information concerning the structural features of the LPSs produced by cold-adapted bacteria. The LPS structure has recently been elucidated from species mainly belonging to Gammaproteobacteria and Flavobacteriaceae. Although the reported structural heterogeneity may arise from the phylogenetic diversity of the analyzed source strains, some generalized trends can be deduced. For instance, it is clear that only a small portion of LPSs displays the O-chain. In addition, the biological activity of the lipid A portion from several cold-adapted strains is reported.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| |
Collapse
|
16
|
Parrilli E, Tedesco P, Fondi M, Tutino ML, Lo Giudice A, de Pascale D, Fani R. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys Life Rev 2019; 36:137-161. [PMID: 31072789 DOI: 10.1016/j.plrev.2019.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/10/2023]
Abstract
Extremophilic microbes have adapted to thrive in ecological niches characterized by harsh chemical/physical conditions such as, for example, very low/high temperature. Living organisms inhabiting these environments have developed peculiar mechanisms to cope with extreme conditions, in such a way that they mark the chemical-physical boundaries of life on Earth. Studying such mechanisms is stimulating from a basic research viewpoint and because of biotechnological applications. Pseudoalteromonas species are a group of marine gamma-proteobacteria frequently isolated from a range of extreme environments, including cold habitats and deep-sea sediments. Since deep-sea floors constitute almost 60% of the Earth's surface and cold temperatures represent the most common of the extreme conditions, the genus Pseudoalteromonas can be considered one of the most important model systems for studying microbial adaptation. Particularly, among all Pseudoalteromonas representatives, P. haloplanktis TAC125 has recently gained a central role. This bacterium was isolated from seawater sampled along the Antarctic ice-shell and is considered one of the model organisms of cold-adapted bacteria. It is capable of thriving in a wide temperature range and it has been suggested as an alternative host for the soluble overproduction of heterologous proteins, given its ability to rapidly multiply at low temperatures. In this review, we will present an overview of the recent advances in the characterization of Pseudoalteromonas strains and, more importantly, in the understanding of their evolutionary and chemical-physical strategies to face such a broad array of extreme conditions. A particular attention will be given to systems-biology approaches in the study of the above-mentioned topics, as genome-scale datasets (e.g. genomics, proteomics, phenomics) are beginning to expand for this group of organisms. In this context, a specific section dedicated to P. haloplanktis TAC125 will be presented to address the recent efforts in the elucidation of the metabolic rewiring of the organisms in its natural environment (Antarctica).
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Pietro Tedesco
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | | | - Donatella de Pascale
- Institute of Protein Biochemistry, CNR, Napoli, Italy, Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Napoli, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
17
|
Casillo A, Di Guida R, Carillo S, Chen C, Kamasaka K, Kawamoto J, Kurihara T, Corsaro MM. Structural Elucidation of a Novel Lipooligosaccharide from the Antarctic Bacterium OMVs Producer Shewanella sp. HM13. Mar Drugs 2019; 17:E34. [PMID: 30626008 PMCID: PMC6357163 DOI: 10.3390/md17010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
Shewanella sp. HM13 is a cold-adapted Gram-negative bacterium isolated from the intestine of a horse mackerel. It produces a large amount of outer membrane vesicles (OMVs), which are particles released in the medium where the bacterium is cultured. This strain biosynthesizes a single major cargo protein in the OMVs, a fact that makes Shewanella sp. HM13 a good candidate for the production of extracellular recombinant proteins. Therefore, the structural characterization of the components of the vesicles, such as lipopolysaccharides, takes on a fundamental role for understanding the mechanism of biogenesis of the OMVs and their applications. The aim of this study was to investigate the structure of the oligosaccharide (OS) isolated from Shewanella sp. HM13 cells as the first step for a comparison with that from the vesicles. The lipooligosaccharide (LOS) was isolated from dry cells, purified, and hydrolyzed by alkaline treatment. The obtained OS was analyzed completely, and the composition of fatty acids was obtained by chemical methods. In particular, the OS was investigated in detail by ¹H and 13C NMR spectroscopy and MALDI-TOF mass spectrometry. The oligosaccharide was characterized by the presence of a residue of 8-amino-3,8-dideoxy-manno-oct-2-ulosonic acid (Kdo8N) and of a d,d-heptose, with both residues being identified in other oligosaccharides from Shewanella species.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.
| | - Rossella Di Guida
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.
| | - Sara Carillo
- Characterisation and Comparability Laboratory, National Institute for Bioprocessing Research and Training. Fosters Avenue, Mount Merrion. Blackrock, Co., A94 X099 Dublin, Ireland.
| | - Chen Chen
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Kouhei Kamasaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.
| |
Collapse
|
18
|
Role of phage ϕ1 in two strains of Salmonella Rissen, sensitive and resistant to phage ϕ1. BMC Microbiol 2018; 18:208. [PMID: 30526475 PMCID: PMC6286511 DOI: 10.1186/s12866-018-1360-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background The study describes the Salmonella Rissen phage ϕ1 isolated from the ϕ1-sensitive Salmonella Rissen strain RW. The same phage was then used to select the resistant strain RRϕ1+, which can harbour or not ϕ1. Results Following this approach, we found that ϕ1, upon excision from RW cells with mitomycin, behaves as a temperate phage: lyses host cells and generates phage particles; instead, upon spontaneous excision from RRϕ1+ cells, it does not generate phage particles; causes loss of phage resistance; switches the O-antigen from the smooth to the rough phenotype, and favors the transition of Salmonella Rissen from the planktonic to the biofilm growth. The RW and RRϕ1+ strains differ by 10 genes; of these, only two (phosphomannomutase_1 and phosphomannomutase_2; both involved in the mannose synthesis pathway) display significant differences at the expression levels. This result suggests that phage resistance is associated with these two genes. Conclusions Phage ϕ1 displays the unusual property of behaving as template as well as lytic phage. This feature was used by the phage to modulate several phases of Salmonella Rissen lifestyle. Electronic supplementary material The online version of this article (10.1186/s12866-018-1360-z) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Environmental conditions shape the biofilm of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Microbiol Res 2018; 218:66-75. [PMID: 30454660 DOI: 10.1016/j.micres.2018.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022]
Abstract
Biofilms are the most widely distributed and successful microbial modes of life. The capacity of bacteria to colonize surfaces provides stability in the growth environment, allows the capturing of nutrients and affords protection from a range of environmental challenges and stress. Bacteria living in cold environments, like Antarctica, can be found as biofilms, even though the mechanisms of how this lifestyle is related to their environmental adaptation have been poorly investigated. In this paper, the biofilm of Pseudoalteromonas haloplanktis TAC125, one of the model organisms of cold-adapted bacteria, has been characterized in terms of biofilm typology and matrix composition. The characterization was performed on biofilms produced by the bacterium in response to different nutrient abundance and temperatures; in particular, this is the first report describing the structure of a biofilm formed at 0 °C. The results reported demonstrate that PhTAC125 produces biofilms in different amount and endowed with different physico-chemical properties, like hydrophobicity and roughness, by modulating the relative amount of the different macromolecules present in the biofilm matrix. The capability of PhTAC125 to adopt different biofilm structures in response to environment changes appears to be an interesting adaptation strategy and gives the first hints about the biofilm formation in cold environments.
Collapse
|
20
|
Casillo A, Ziaco M, Lindner B, Parrilli E, Schwudke D, Holgado A, Beyaert R, Lanzetta R, Tutino ML, Corsaro MM. Lipid A structural characterization from the LPS of the Siberian psychro-tolerant Psychrobacter arcticus 273-4 grown at low temperature. Extremophiles 2018; 22:955-963. [PMID: 30128707 DOI: 10.1007/s00792-018-1051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Psychrobacter arcticus 273-4 is a Gram-negative bacterium isolated from a 20,000-to-30,000-year-old continuously frozen permafrost in the Kolyma region in Siberia. The survival strategies adopted to live at subzero temperatures include all the outer membrane molecules. A strategic involvement in the well-known enhancement of cellular membrane fluidity is attributable to the lipopolysaccharides (LPSs). These molecules covering about the 75% of cellular surface contribute to cold adaptation through structural modifications in their portions. In this work, we elucidated the exact structure of lipid A moiety obtained from the lipopolysaccharide of P. arcticus grown at 4 °C, to mimic the response to the real environment temperatures. The lipid A was obtained from the LPS by mild acid hydrolysis. The lipid A and its partially deacylated derivatives were exhaustively characterized by chemical analysis and by means of ESI Q-Orbitrap mass spectrometry. Moreover, biological assays indicated that P. arcticus 273-4 lipid A may behave as a weak TLR4 agonist.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Marcello Ziaco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Buko Lindner
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, 23845, Borstel, Germany
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, 23845, Borstel, Germany
| | - Aurora Holgado
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit for Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| |
Collapse
|
21
|
Di Lorenzo F, Billod JM, Martín-Santamaría S, Silipo A, Molinaro A. Gram-Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Jean-Marc Billod
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Sonsoles Martín-Santamaría
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Alba Silipo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| |
Collapse
|
22
|
Casillo A, Parrilli E, Sannino F, Mitchell DE, Gibson MI, Marino G, Lanzetta R, Parrilli M, Cosconati S, Novellino E, Randazzo A, Tutino ML, Corsaro MM. Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: A strategy for cryoprotection. Carbohydr Polym 2017; 156:364-371. [PMID: 27842835 PMCID: PMC5166977 DOI: 10.1016/j.carbpol.2016.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022]
Abstract
Microrganisms from sea ice, glacial and subglacial environments are currently under investigation due to their relevant ecological functions in these habitats, and to their potential biotechnological applications. The cold-adapted Colwellia psychrerythraea 34H produces extracellular polysaccharides with cryoprotection activity. We here describe the purification and detailed molecular primary and secondary structure of the exopolysaccharide (EPS) secreted by C. psychrerythraea 34H cells grown at 4°C. The structure was determined by chemical analysis and NMR. The trisaccharide repeating unit of the EPS is constituted by a N-acetyl quinovosamine unit and two residues of galacturonic acid both decorated with alanine. In addition, the EPS was tested in vitro showing a significant inhibitory effect on ice recrystallization. In-depth NMR and computational analysis suggest a pseudohelicoidal structure which seems to prevent the local tetrahedral order of the water molecules in the first hydration shell, and could be responsible of the inhibition of ice recrystallization. As cell cryopreservation is an essential tool in modern biotechnology and medicine, the observations reported in this paper could pave the way for a biotechnological application of Colwellia EPS.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Filomena Sannino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Daniel E Mitchell
- Department of Chemistry and Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry and Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Gennaro Marino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Michelangelo Parrilli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Maria L Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - M Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.
| |
Collapse
|