1
|
Tukker AM, Vrolijk MF, van Kleef RGDM, Sijm DTHM, Westerink RHS. Mixture effects of tetrodotoxin (TTX) and drugs targeting voltage-gated sodium channels on spontaneous neuronal activity in vitro. Toxicol Lett 2023; 373:53-61. [PMID: 36375636 DOI: 10.1016/j.toxlet.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Tetrodotoxin (TTX) potently inhibits TTX-sensitive voltage-gated sodium (NaV) channels in nerve and muscle cells, potentially resulting in depressed neurotransmission, paralysis and death from respiratory failure. Since a wide range of pharmaceutical drugs is known to also act on NaV channels, the use of medicines could predispose individuals to a higher susceptibility towards TTX toxicity. We therefore first assessed the inhibitory effect of selected medicines that act on TTX-sensitive (Riluzole, Chloroquine, Fluoxetine, Valproic acid, Lamotrigine, Lidocaine) and TTX-resistant (Carbamazepine, Mexiletine, Flecainide) NaV channels on spontaneous neuronal activity of rat primary cortical cultures grown on microelectrode arrays (MEA). After establishing concentration-effect curves, binary mixtures of the medicines with TTX at calculated NOEC, IC20 and IC50 values were used to determine if pharmacodynamic interactions occur between TTX and these drugs on spontaneous neuronal activity. At IC20 and IC50 values, all medicines significantly increased the inhibitory effect of TTX on spontaneous neuronal activity of rat cortical cells in vitro. Subsequent experiments using human iPSC-derived neuronal co-cultures grown on MEAs confirmed the ability of selected medicines (Carbamazepine, Flecainide, Riluzole, Lidocaine) to inhibit spontaneous neuronal activity. Despite the need for additional experiments using human iPSC-derived neuronal co-cultures, our combined data already highlight the importance of identifying and including vulnerable risk groups in the risk assessment of TTX.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands
| | - Misha F Vrolijk
- Faculty of Health, Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands
| | - Dick T H M Sijm
- Faculty of Health, Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, the Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, the Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands.
| |
Collapse
|
2
|
Hu C, Zhang Y, Zhou Y, Xiang YJY, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12249-12269. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrodotoxin (TTX), found in various organisms including pufferfish, is an extremely potent marine toxin responsible for numerous food poisoning accidents. Due to its serious toxicity and public health threat, detecting TTX and its analogues in diverse food matrices with a simple, fast, efficient method has become a worldwide concern. This review summarizes the advances in sample preparation and analytical methods for the determination of TTX and its analogues, focusing on the latest development over the past five years. Current state-of-the-art technologies, such as solid-phase microextraction, online technology, novel injection technology, two-dimensional liquid chromatography, high-resolution mass spectrometry, newly developed lateral flow immunochromatographic strips, immunosensors, dual-mode aptasensors, and nanomaterials-based approaches, are thoroughly discussed. The advantages and limitations of different techniques, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights to the future development and broad application of pretreatment and detection methods for TTX and its analogues.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang-Jia-Yi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
4
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|
5
|
O'Neill A, Morrell N, Turner AD, Maskrey BH. Method performance verification for the combined detection and quantitation of the marine neurotoxins cyclic imines and brevetoxin shellfish metabolites in mussels (Mytilus edulis) and oysters (Crassostrea gigas) by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122864. [PMID: 34343946 DOI: 10.1016/j.jchromb.2021.122864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
A single laboratory method performance verification is reported for a rapid sensitive UHPLC-MS/MS method for the quantification of eight cyclic imine and two brevetoxin analogues in two bivalve shellfish matrices: mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas). Targeted cyclic imine analogues were from the spirolide, gymnodimine and pinnatoxin groups, namely 20-Me-SPX-C, 13-desMe-SPX-C, 13,19-didesMe-SPX-C, GYM-A, 12-Me-GYM, PnTx-E, PnTx-F and PnTx-G. Brevetoxin analogues consisted of the shellfish metabolites BTX-B5 and S-desoxy-BTX-B2. A rapid dispersive extraction was used as well as a fast six-minute UHPLC-MS/MS analysis. Mobile phase prepared using ammonium fluoride and methanol was optimised for both chromatographic separation and MS/MS response to suit all analytes. Method performance verification checks for both matrices were carried out. Matrix influence was acceptable for the majority of analogues with the MS response for all analogues being linear across an appropriate range of concentrations. In terms of limits of detection and quantitation the method was shown to be highly sensitive when compared with other methods. Acceptable recoveries were found with most analogues, with laboratory precision in terms of intra- and inter-batch precision deemed appropriate. The method was applied to environmental shellfish samples with results showing low concentrations of cyclic imines to be present. The method is fast and highly sensitive for the detection and quantification of all targeted analogues, in both mussel and oyster matrices. Consequently, the method has been shown to provide a useful tool for simultaneous monitoring for the presence or future emergence of these two toxin groups in shellfish.
Collapse
Affiliation(s)
- Alison O'Neill
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Nadine Morrell
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| |
Collapse
|
6
|
Li Y, Xu X, Liu L, Kuang H, Xu L, Xu C. A gold nanoparticle-based lateral flow immunosensor for ultrasensitive detection of tetrodotoxin. Analyst 2020; 145:2143-2151. [PMID: 32129380 DOI: 10.1039/d0an00170h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin. Its frequent detection and widespread distribution pose a substantial health risk to consumers. The work presented herein describes the development of a lateral flow immunosensor based on a gold nanoparticle-labeled monoclonal antibody probe, which allows the affinity reaction of antigen-antibody and amplifies the reaction signal. The immunosensor assay was found to provide a visible limit of detection (vLOD) of 10 μg kg-1 in crucian and clam matrices without time-consuming pretreatment. Spiked samples were analyzed using the immunosensor and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The immunosensor gave average intra-assay recoveries of 84.0-103.9%, inter-assay recoveries of 76.1-105% for the crucian matrix and intra-assay recoveries of 78.5-93.0%, inter-assay recoveries of 74.8-85.7% for the clam matrix. The results obtained using the immunosensor and LC-MS/MS were in good agreement. The immunosensor test could be completed within 10 min, offering a convenient option or complementarity to the traditional methods of TTX detection.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
7
|
Biessy L, Boundy MJ, Smith KF, Harwood DT, Hawes I, Wood SA. Tetrodotoxin in marine bivalves and edible gastropods: A mini-review. CHEMOSPHERE 2019; 236:124404. [PMID: 31545201 DOI: 10.1016/j.chemosphere.2019.124404] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin responsible for countless human intoxications and deaths around the world. The distribution of TTX and its analogues is diverse and the toxin has been detected in organisms from both marine and terrestrial environments. Increasing detections seafood species, such as bivalves and gastropods, has drawn attention to the toxin, reinvigorating scientific interest and regulatory concerns. There have been reports of TTX in 21 species of bivalves and edible gastropods from ten countries since the 1980's. While TTX is structurally dissimilar to saxitoxin (STX), another neurotoxin detected in seafood, it has similar sodium channel blocking action and potency and both neurotoxins have been shown to have additive toxicities. The global regulatory level for the STX group toxins applied to shellfish is 800 μg/kg. The presence of TTX in shellfish is only regulated in one country; The Netherlands, with a regulatory level of 44 μg/kg. Due to the recent interest surrounding TTX in bivalves, the European Food Safety Authority established a panel to assess the risk and regulation of TTX in bivalves, and their final opinion was that a concentration below 44 μg of TTX per kg of shellfish would not result in adverse human effects. In this article, we review current knowledge on worldwide TTX levels in edible gastropods and bivalves over the last four decades, the different methods of detection used, and the current regulatory status. We suggest research needs that will assist with knowledge gaps and ultimately allow development of robust monitoring and management protocols.
Collapse
Affiliation(s)
- Laura Biessy
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand; Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand; New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand.
| | | | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand.
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand; New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand.
| | - Ian Hawes
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand.
| |
Collapse
|
8
|
Silva M, Rodríguez I, Barreiro A, Kaufmann M, Neto AI, Hassouani M, Sabour B, Alfonso A, Botana LM, Vasconcelos V. Tetrodotoxins Occurrence in Non-Traditional Vectors of the North Atlantic Waters (Portuguese Maritime Territory, and Morocco Coast). Toxins (Basel) 2019; 11:E306. [PMID: 31146433 PMCID: PMC6628425 DOI: 10.3390/toxins11060306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 11/16/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent alkaloid typically from tropical ecosystems, but in the last decade its presence has been more pronounced in the temperate waters of the Atlantic. In its last scientific opinion, the European Food Safety Authority (EFSA) stressed the need for data regarding TTX prevalence in European waters. To address EFSA's concerns, benthic organisms such as mollusks, crustaceans, echinoderms and fish with different feeding habits were collected along the Portuguese continental coast, islands (São Miguel, Azores, and Madeira) and the northwestern Moroccan coast. A total of 165 samples were analyzed by ultra high performance liquid chromatography high resolution mass spectrometry (UHPLC-HRMS) and ultra high performance chromatography mass spectrometry (UHPLC-MS/MS). Geographical tendencies were detected as follows, by descending order: S. Miguel Island (Azores), Moroccan coast, Madeira Island and Portuguese continental coast. The toxin amounts detected were significant, above the Dutch limit value established in 2017, showing the importance and the need for continuity of these studies to gain more knowledge about the prevalence of these toxins, unraveling new vectors, in order to better assess human health risk. This work represents a general overview of new TTX bearers (7) most of them in gastropods (Patella depressa, Nucella lapillus, Onchidella celtica and Aplysia depilans), followed by echinoderms (Echinus esculentus and Ophidiaster ophidianus) and puffer fish Sphoeroides marmoratus.
Collapse
Affiliation(s)
- Marisa Silva
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| | - Inés Rodríguez
- Laboratorio CIFGA S.A., Plaza de Santo Domingo no. 20, 5a planta, 27001 Lugo, Spain.
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Aldo Barreiro
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| | - Manfred Kaufmann
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
- Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, 9000-107 Funchal, Portugal.
- Center of Interdisciplinary Marine and Environmental Research of Madeira-CIIMAR-Madeira, Edif. Madeira Tecnopolo, Caminho da Penteada, 9020-105 Funchal, Portugal.
| | - Ana Isabel Neto
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
- cE3c/GBA-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Department of Biology, Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, São Miguel, Azores, Portugal.
| | - Meryem Hassouani
- Phycology Research Unit-Biotechnology, Ecosystems Ecology and Valorization Laboratory, Faculty of Sciences El Jadida, University Chouaib Doukkali, BP20 El Jadida, Morocco.
| | - Brahim Sabour
- Phycology Research Unit-Biotechnology, Ecosystems Ecology and Valorization Laboratory, Faculty of Sciences El Jadida, University Chouaib Doukkali, BP20 El Jadida, Morocco.
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain.
| | - Vitor Vasconcelos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 S/N Matosinhos, Portugal.
| |
Collapse
|
9
|
Dell'Aversano C, Tartaglione L, Polito G, Dean K, Giacobbe M, Casabianca S, Capellacci S, Penna A, Turner AD. First detection of tetrodotoxin and high levels of paralytic shellfish poisoning toxins in shellfish from Sicily (Italy) by three different analytical methods. CHEMOSPHERE 2019; 215:881-892. [PMID: 30408884 DOI: 10.1016/j.chemosphere.2018.10.081] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Paralytic shellfish toxins (PST) and tetrodotoxin (TTX) are naturally-occurring toxins that may contaminate the food chain, inducing similar neurological symptoms in humans. They are co-extracted under the same conditions and thus their combined detection is desirable. Whilst PST are regulated and officially monitored in Europe, more data on TTX occurrence in bivalves and gastropods are needed before meaningful regulations can be established. In this study, we used three separate analytical methods - pre-column oxidation with liquid chromatography and fluorescence detection, ultrahigh performance hydrophilic interaction liquid chromatography (HILIC) tandem mass spectrometry (MS/MS) and HILIC high resolution (HR) MS/MS - to investigate the presence of PST and TTX in seawater and shellfish (mussels, clams) collected in spring summer 2015 to 2017 in the Mediterranean Sea. Samples were collected at 10 sites in the Syracuse Bay (Sicily, Italy) in concomitance with a mixed bloom of Alexandrium minutum and A. pacificum. A very high PST contamination in mussels emerged, unprecedentedly found in Italy, with maximum total concentration of 10851 μg saxitoxin equivalents per kg of shellfish tissue measured in 2016. In addition, for the first time TTX was detected in Italy in most of the analysed samples in the range 0.8-6.4 μg TTX eq/kg. The recurring blooms of PST-producing species over the 3-year period, the high PST levels and the first finding of TTX in mussels from the Syracuse bay, suggest that monitoring programmes of PST and TTX in seafood should be activated in this geographical area.
Collapse
Affiliation(s)
- Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy.
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Giuseppe Polito
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Karl Dean
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Mariagrazia Giacobbe
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (NRC), Via San Raineri 86, 98122 Messina, Italy
| | - Silvia Casabianca
- CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, 61121 Pesaro, Italy
| | - Samuela Capellacci
- CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, 61121 Pesaro, Italy
| | - Antonella Penna
- CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, 61121 Pesaro, Italy
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| |
Collapse
|
10
|
Turner AD, Fenwick D, Powell A, Dhanji-Rapkova M, Ford C, Hatfield RG, Santos A, Martinez-Urtaza J, Bean TP, Baker-Austin C, Stebbing P. New Invasive Nemertean Species ( Cephalothrix Simula) in England with High Levels of Tetrodotoxin and a Microbiome Linked to Toxin Metabolism. Mar Drugs 2018; 16:E452. [PMID: 30453540 PMCID: PMC6266807 DOI: 10.3390/md16110452] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
The marine nemertean Cephalothrix simula originates from the Pacific Ocean but in recent years has been discovered in northern Europe. The species has been associated with high levels of the marine neurotoxin Tetrodotoxin, traditionally associated with Pufferfish Poisoning. This study reports the first discovery of two organisms of C. simula in the UK, showing the geographical extent of this species is wider than originally described. Species identification was initially conducted morphologically, with confirmation by Cox 1 DNA sequencing. 16S gene sequencing enabled the taxonomic assignment of the microbiome, showing the prevalence of a large number of bacterial genera previously associated with TTX production including Alteromonas, Vibrio and Pseudomonas. LC-MS/MS analysis of the nemertean tissue revealed the presence of multiple analogues of TTX, dominated by the parent TTX, with a total toxin concentration quantified at 54 µg TTX per g of tissue. Pseudomonas luteola isolated from C. simula, together with Vibrio alginolyticus from the native nemertean Tubulanus annulatus, were cultured at low temperature and both found to contain TTX. Overall, this paper confirms the high toxicity of a newly discovered invasive nemertean species with links to toxin-producing marine bacteria and the potential risk to human safety. Further work is required to assess the geographical extent and toxicity range of C. simula along the UK coast in order to properly gauge the potential impacts on the environment and human safety.
Collapse
Affiliation(s)
- Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | | | - Andy Powell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Charlotte Ford
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Andres Santos
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
- Laboratory of Applied and Molecular Biology, Avenida Alemania 0458, 4810296 Temuco, Chile.
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 4811230 Temuco, Chile.
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Tim P Bean
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Paul Stebbing
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
11
|
Katikou P, Vlamis A. Tetrodotoxins: recent advances in analysis methods and prevalence in European waters. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Assessing the presence of marine toxins in bivalve molluscs from southwest India. Toxicon 2017; 140:147-156. [DOI: 10.1016/j.toxicon.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/17/2023]
|
13
|
De Cauwer H, Somville FJMP, Joillet M. Neurological aspects of chemical and biological terrorism: guidelines for neurologists. Acta Neurol Belg 2017; 117:603-611. [PMID: 28343251 DOI: 10.1007/s13760-017-0774-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022]
Abstract
This statement paper deals with the key role an neurologist plays in the management of victims of chemical warfare/terrorist attacks. Because terrorist factions have expanded the war zone creating a worldwide risk of terrorist attacks, not only limited to some conflict zones in the Middle East, neurologists in all countries/regions have to be prepared for disaster response. The scope of this paper is to provide guidelines for the neurological management of victims of chemical and biological terrorist attacks.
Collapse
Affiliation(s)
- Harald De Cauwer
- Department of Neurology, Dimpna Regional Hospital, AZ St Dimpna, JB Stessenstraat 2, 2440, Geel, Belgium.
| | - Francis J M P Somville
- Department of Emergency Medicine, Dimpna Regional Hospital, Geel, Belgium
- Department of Health Psychology, University of Leiden, Leiden, The Netherlands
- Clerkships Office, Faculty of Medicine, University of Leuven, Louvain, Belgium
| | - Marieke Joillet
- Department of Emergency Medicine, Dimpna Regional Hospital, Geel, Belgium
- Faculty of Medicine, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
14
|
Turner AD, Dhanji-Rapkova M, Coates L, Bickerstaff L, Milligan S, O'Neill A, Faulkner D, McEneny H, Baker-Austin C, Lees DN, Algoet M. Detection of Tetrodotoxin Shellfish Poisoning (TSP) Toxins and Causative Factors in Bivalve Molluscs from the UK. Mar Drugs 2017; 15:E277. [PMID: 28867772 PMCID: PMC5618416 DOI: 10.3390/md15090277] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 12/27/2022] Open
Abstract
Tetrodotoxins (TTXs) are traditionally associated with the occurrence of tropical Pufferfish Poisoning. In recent years, however, TTXs have been identified in European bivalve mollusc shellfish, resulting in the need to assess prevalence and risk to shellfish consumers. Following the previous identification of TTXs in shellfish from southern England, this study was designed to assess the wider prevalence of TTXs in shellfish from around the coast of the UK. Samples were collected between 2014 and 2016 and subjected to analysis using HILIC-MS/MS. Results showed the continued presence of toxins in shellfish harvested along the coast of southern England, with the maximum concentration of total TTXs reaching 253 µg/kg. TTX accumulation was detected in Pacific oysters (Crassostreagigas), native oysters (Ostreaedulis) common mussels (Mytilusedulis) and hard clams (Mercenariamercenaria), but not found in cockles (Cerastodermaedule), razors (Ensis species) or scallops (Pectenmaximus). Whilst the highest concentrations were quantified in samples harvested during the warmer summer months, TTXs were still evident during the winter. An assessment of the potential causative factors did not reveal any links with the phytoplankton species Prorocentrumcordatum, instead highlighting a greater level of risk in areas of shallow, estuarine waters with temperatures above 15 °C.
Collapse
Affiliation(s)
- Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Monika Dhanji-Rapkova
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Lewis Coates
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Lesley Bickerstaff
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Steve Milligan
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Alison O'Neill
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Dermot Faulkner
- Agri-Food and Biosciences Institute (AFBI), Marine Biotoxin Unit, Chemical Surveillance Branch, Agri-Food and Biosciences Institute-Stormont, Belfast BT4 3SD, UK.
| | - Hugh McEneny
- Agri-Food and Biosciences Institute (AFBI), Marine Biotoxin Unit, Chemical Surveillance Branch, Agri-Food and Biosciences Institute-Stormont, Belfast BT4 3SD, UK.
| | - Craig Baker-Austin
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - David N Lees
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Myriam Algoet
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
15
|
Braga AC, Lage S, Pacheco M, Rydberg S, Costa PR. Native (Ruditapes decussatus) and non-indigenous (R. philippinarum) shellfish species living in sympatry: Comparison of regulated and non-regulated biotoxins accumulation. MARINE ENVIRONMENTAL RESEARCH 2017; 129:147-155. [PMID: 28527836 DOI: 10.1016/j.marenvres.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The native Ruditapes decussatus and the non-indigenous Ruditapes philippinarum are an important target of shellfish industries. The aim of this study was to compare an invader with a native species living in sympatry in the view of marine biotoxins accumulation. Samples were analysed for regulated and non-regulated biotoxins. The consistently occurrence of okadaic acid-group toxins and BMAA, may cause human health problems and economical losses. A strong positive relationship was observed between species, with significantly higher DSP toxicity in R. decussatus. Similar toxin profiles dominated by DTX3 in both species suggests similar metabolic pathways. Lower DSP toxicity in R. philippinarum may favour their cultivation, but a tendency for higher levels of the non-regulated BMAA was observed, indicating risks for consumers that are not monitored. This study highlights the need to better understand the physiological responses and adaptations allowing similar species exposed to the same conditions to present different toxicity levels.
Collapse
Affiliation(s)
- Ana C Braga
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Mário Pacheco
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Pedro R Costa
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
16
|
Tetrodotoxin-Producing Bacteria: Detection, Distribution and Migration of the Toxin in Aquatic Systems. Toxins (Basel) 2017; 9:toxins9050166. [PMID: 28513564 PMCID: PMC5450714 DOI: 10.3390/toxins9050166] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/18/2023] Open
Abstract
This review is devoted to the marine bacterial producers of tetrodotoxin (TTX), a potent non-protein neuroparalytic toxin. In addition to the issues of the ecology and distribution of TTX-producing bacteria, this review examines issues relating to toxin migration from bacteria to TTX-bearing animals. It is shown that the mechanism of TTX extraction from toxin-producing bacteria to the environment occur through cell death, passive/active toxin excretion, or spore germination of spore-forming bacteria. Data on TTX microdistribution in toxic organs of TTX-bearing animals indicate toxin migration from the digestive system to target organs through the transport system of the organism. The role of symbiotic microflora in animal toxicity is also discussed: despite low toxin production by bacterial strains in laboratory conditions, even minimal amounts of TTX produced by intestinal microflora of an animal can contribute to its toxicity. Special attention is paid to methods of TTX detection applicable to bacteria. Due to the complexity of toxin detection in TTX-producing bacteria, it is necessary to use several methods based on different methodological approaches. Issues crucial for further progress in detecting natural sources of TTX investigation are also considered.
Collapse
|
17
|
Acute Oral Toxicity of Tetrodotoxin in Mice: Determination of Lethal Dose 50 (LD50) and No Observed Adverse Effect Level (NOAEL). Toxins (Basel) 2017; 9:toxins9030075. [PMID: 28245573 PMCID: PMC5371830 DOI: 10.3390/toxins9030075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 01/09/2023] Open
Abstract
Tetrodotoxin (TTX) is starting to appear in molluscs from the European waters and is a hazard to seafood consumers. This toxin blocks sodium channels resulting in neuromuscular paralysis and even death. As a part of the risk assessment process leading to a safe seafood level for TTX, oral toxicity data are required. In this study, a 4-level Up and Down Procedure was designed in order to determine for the first time the oral lethal dose 50 (LD50) and the No Observed Adverse Effect Level (NOAEL) in mice by using an accurate well-characterized TTX standard.
Collapse
|
18
|
Kasteel EEJ, Westerink RHS. Comparison of the acute inhibitory effects of Tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicol Lett 2017; 270:12-16. [PMID: 28192153 DOI: 10.1016/j.toxlet.2017.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/29/2022]
Abstract
Tetrodotoxin (TTX) is an extremely toxic marine neurotoxin. TTX inhibits voltage-gated sodium channels, resulting in a potentially lethal inhibition of neurotransmission. Despite numerous intoxications in Asia and Europe, limited (human) toxicological data are available for TTX. Additionally, the degree of interspecies differences for TTX is not well established, hampering the use of available (animal) data for human risk assessment and establishing regulatory limits for TTX concentrations in (shell)fish. We therefore used micro-electrode array (MEA) recordings as an integrated measure of neurotransmission to demonstrate that TTX inhibits neuronal electrical activity in both primary rat cortical cultures and human-induced pluripotent stem cell (hIPSC)-derived iCell® neurons in co-culture with hIPSC-derived iCell® astrocytes, with IC50 values of 7 and 10nM, respectively. From these data combined with LD50 values and IC50 concentrations of voltage-gated sodium channels derived from literature it can be concluded that interspecies differences are limited for TTX. Consequently, we used experimental animal data to derive a human acute reference dose of 1.33μg/kg body weight, which corresponds to maximum concentration of TTX in shellfish of 200μg/kg.
Collapse
Affiliation(s)
- Emma E J Kasteel
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|