1
|
Liu S, Mohri S, Tsukamoto M, Yanai Y, Manabe Y, Sugawara T. Preventive effects of dietary fucoxanthin on ultraviolet A induced photoaging in hairless mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:453-464. [PMID: 39194018 DOI: 10.1002/jsfa.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Repeated exposure to ultraviolet A (UVA) irradiation, which can penetrate the epidermis and reach the dermis, is one of the major causes of skin photoaging. Photoaged skin is characterized clinically by generalized wrinkling, a dry and loose appearance, and seborrheic keratoses, along with skin barrier dysfunction. Fucoxanthin, a xanthophyll carotenoid with a specific allenic bond and 5,6-monoepoxide in its structure, has been found to serve various functions as a food supplement. In the present study, the protective effects of orally administered fucoxanthin at relatively low concentrations (0.001% and 0.01%) against UVA induced photoaging were evaluated in vivo using hairless mice. RESULTS Oral supplementation of 0.001% fucoxanthin was sufficient for its metabolites to accumulate in the skin, thereby inhibiting pathological changes induced by UVA irradiation, including impaired skin barrier function and accelerated wrinkle formation. Analysis of gene expression revealed that dietary fucoxanthin exerted antiphotoaging effects, possibly by modulating natural moisturizing factor (NMF) synthesis, desquamation, and ceramide composition in the epidermis, and by inhibiting the UVA induced degradation of collagen fibers and inflammation in the dermis. CONCLUSION Taken together, our data indicate the potential application of dietary fucoxanthin as a novel ingredient in nutricosmetics for skin care against photoaging. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuyu Liu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shinsuke Mohri
- Department of Biomedical Sciences, Ritsumeikan University, Kyoto, Japan
| | | | | | - Yuki Manabe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
2
|
Yu W, Zhao Y, Jia P, Liu W, Cheng Z, Li W, Zhu H. Preparation and evaluation of gastrodin microsphere-loaded Gastrodia elata polysaccharides composite hydrogel on UVB-induced skin damage in vitro and in vivo. Int J Biol Macromol 2024; 277:134303. [PMID: 39084431 DOI: 10.1016/j.ijbiomac.2024.134303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Skin damage from sun exposure is a common issue among outdoor workers and is primarily caused by ultraviolet rays. Upon absorption of these rays, the skin will experience inflammation and cell apoptosis. This study explored the concept of 'Combination of medicine and adjuvant' by utilizing Gastrodia elata polysaccharide, a key component of Gastrodia elata Bl., to develop a new hydrogel material. Oxidized Gastrodia elata polysaccharide (OGEP) and carboxymethyl chitosan (CMCS) was use to prepare a biocompatible, biodegradable and self-healing hydrogel OGEP/CMCS (OC). And this hydrogel was further loaded with Gastrodin-containing microspheres (GAS/GEL) to create GAS/GEL/OGEP/CMCS (GGOC) hydrogel. Characterization studies revealed that OC and GGOC hydrogels exhibited favorable mechanical properties, antioxidant activity and biocompatibility. The experiments showed that OC and GGOC hydrogels could regulate mitochondrial membrane potential, prevent mitochondrial breakage, inhibit proinflammatory factors, prevent NF-κB protein activation and regulate apoptosis-related pathways. This study highlighted the application potential of Gastrodia elata polysaccharide as a 'Combination of medicine and adjuvant' and the anti-UVB damage effect of the prepared hydrogel.
Collapse
Affiliation(s)
- Weimin Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Pinhui Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
García-Gil S, Rodríguez-Luna A, Ávila-Román J, Rodríguez-García G, del Río RE, Motilva V, Gómez-Hurtado MA, Talero E. Photoprotective Effects of Two New Morin-Schiff Base Derivatives on UVB-Irradiated HaCaT Cells. Antioxidants (Basel) 2024; 13:134. [PMID: 38275659 PMCID: PMC10813227 DOI: 10.3390/antiox13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Ultraviolet (UV) radiation harms the skin, causing oxidative damage, inflammation, and disruption of the skin's barrier function. There is considerable interest in identifying new natural ingredients with antioxidant and anti-inflammatory properties to serve as adjuvants in sunscreens. The flavonoid morin (1) can undergo structural modifications to enhance its biological properties. The aim of this study was to synthesize two new morin-Schiff base derivatives, morin oxime (2) and morin semicarbazone (3), comparing their photoprotective effects with that of the parent compound on UVB-exposed HaCaT keratinocytes. The chemical structure of the novel compounds was revealed based on spectroscopic data analysis. Our findings demonstrated that derivatives 2 and 3 enhanced the light absorption capability in the UV-visible (vis) range compared to 1. Tested compounds exhibited a higher scavenger capacity than Trolox. Moreover, pre-treatment with all compounds protected HaCaT cells from UVB-induced cell death. Compound 3 demonstrated the strongest antioxidant effect, reducing reactive oxygen species (ROS) generation and, subsequently, malondialdehyde (MDA) levels. Additionally, compounds 2 and 3 exhibited greater anti-inflammatory effects than compound 1, significantly reducing interleukin (IL)-6 production levels at all tested concentrations. These findings have demonstrated, for the first time, a promising photoprotective activity of two new Schiff base derivatives and suggest their use as natural sunscreen ingredients.
Collapse
Affiliation(s)
- Sara García-Gil
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
- Faculty of Health Sciences, Universidad Loyola Andalucía, 41704 Seville, Spain
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Gabriela Rodríguez-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Rosa E. del Río
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| |
Collapse
|
4
|
Fernandes V, Mamatha BS. Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability. Curr Nutr Rep 2023; 12:567-580. [PMID: 37642932 DOI: 10.1007/s13668-023-00492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Fucoxanthin is an orange-red xanthophyll carotenoid found in brown seaweeds and known for its many bioactive properties. In recent years, the bioactive properties of fucoxanthin have been widely explored, making it a compound of immense interest for various health applications like anti-cancer, anti-tumour, anti-diabetic and anti-obesity properties. However, the poor bioavailability and instability of fucoxanthin in the gastrointestinal tract have major limitations. Encapsulation is a promising approach to overcome these challenges by enclosing fucoxanthin in a protective layer, such as liposomes or nano-particles. Encapsulation can improve the stability of fucoxanthin by protecting it from exposure to heat, pH, illumination, gastric acids and enzymes that can accelerate its degradation. RECENT FINDINGS Studies have shown that lipid-based encapsulation systems such as liposomes or nano-structured lipid carriers may solubilise fucoxanthin and enhance its bioavailability (from 25 to 61.2%). In addition, encapsulation can also improve the solubility of hydrophobic fucoxanthin, which is important for its absorption and bioavailability. This review highlights the challenges involved in the absorption of fucoxanthin in the living system, role of micro- and nano-encapsulation of fucoxanthin and their potential to enhance intestinal absorption.
Collapse
Affiliation(s)
- Vanessa Fernandes
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India.
| |
Collapse
|
5
|
Kee PE, Phang SM, Lan JCW, Tan JS, Khoo KS, Chang JS, Ng HS. Tropical Seaweeds as a Sustainable Resource Towards Circular Bioeconomy: Insights and Way Forward. Mol Biotechnol 2023:10.1007/s12033-023-00940-7. [PMID: 37938536 DOI: 10.1007/s12033-023-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023]
Abstract
Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.
Collapse
Affiliation(s)
- Phei Er Kee
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Siew Moi Phang
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
- Institute Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan, 32003, Taiwan.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan.
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Sawicki K, Matysiak-Kucharek M, Kruszewski M, Wojtyła-Buciora P, Kapka-Skrzypczak L. Influence of chlorpyrifos exposure on UVB irradiation induced toxicity in human skin cells. J Occup Med Toxicol 2023; 18:23. [PMID: 37803377 PMCID: PMC10559529 DOI: 10.1186/s12995-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | | | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
- World Institute for Family Health, Calisia University, Kalisz, Poland.
| |
Collapse
|
7
|
Smeriglio A, Lionti J, Ingegneri M, Burlando B, Cornara L, Grillo F, Mastracci L, Trombetta D. Xanthophyll-Rich Extract of Phaeodactylum tricornutum Bohlin as New Photoprotective Cosmeceutical Agent: Safety and Efficacy Assessment on In Vitro Reconstructed Human Epidermis Model. Molecules 2023; 28:molecules28104190. [PMID: 37241930 DOI: 10.3390/molecules28104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The nutritional and health properties of algae make them perfect functional ingredients for nutraceutical and cosmeceutical applications. In this study, the Phaeodactylum tricornutum Bohlin (Phaeodactylaceae), a pleiomorphic diatom commonly found in marine ecosystems, was investigated. The in vitro culture conditions used favoured the fusiform morphotype, characterized by a high accumulation of neutral lipids, as detected by fluorescence microscopy after BODIPY staining. These data were confirmed by HPLC-DAD-APCI-MS/MS analyses carried out on the ethanolic extract (PTE), which showed a high content of xanthophylls (98.99%), and in particular of fucoxanthin (Fx, 6.67 g/100 g PTE). The antioxidant activity (ORAC, FRAP, TEAC and β-carotene bleaching) and photostability of PTE and Fx against UVA and UVB rays were firstly evaluated by in vitro cell-free assays. After this, phototoxicity and photoprotective studies were carried out on in vitro reconstructed human epidermidis models. Results demonstrated that PTE (0.1% Fx) and 0.1% Fx, both photostable, significantly (p < 0.05) reduce oxidative and inflammatory stress markers (ROS, NO and IL-1α), as well as cytotoxicity and sunburn cells induced by UVA and UVB doses simulating the solar radiation, with an excellent safety profile. However, PTE proved to be more effective than Fx, suggesting its effective and safe use in broad-spectrum sunscreens.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Joseph Lionti
- Archimede Ricerche Srl, Corso Italia 220, 18033 Camporosso, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Leon Battista Alberti, 2, 16132 Genova, Italy
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Bruno Burlando
- Department of Pharmacy-DIFAR, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Federica Grillo
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Luca Mastracci
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
8
|
Ávila-Román J, Gómez-Villegas P, de Carvalho CCCR, Vigara J, Motilva V, León R, Talero E. Up-Regulation of the Nrf2/HO-1 Antioxidant Pathway in Macrophages by an Extract from a New Halophilic Archaea Isolated in Odiel Saltworks. Antioxidants (Basel) 2023; 12:antiox12051080. [PMID: 37237946 DOI: 10.3390/antiox12051080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The production of reactive oxygen species (ROS) plays an important role in the progression of many inflammatory diseases. The search for antioxidants with the ability for scavenging free radicals from the body cells that reduce oxidative damage is essential to prevent and treat these pathologies. Haloarchaea are extremely halophilic microorganisms that inhabit hypersaline environments, such as saltworks or salt lakes, where they have to tolerate high salinity, and elevated ultraviolet (UV) and infrared radiations. To cope with these extreme conditions, haloarchaea have developed singular mechanisms to maintain an osmotic balance with the medium, and are endowed with unique compounds, not found in other species, with bioactive properties that have not been fully explored. This study aims to assess the potential of haloarchaea as a new source of natural antioxidant and anti-inflammatory agents. A carotenoid-producing haloarchaea was isolated from Odiel Saltworks (OS) and identified on the basis of its 16S rRNA coding gene sequence as a new strain belonging to the genus Haloarcula. The Haloarcula sp. OS acetone extract (HAE) obtained from the biomass contained bacterioruberin and mainly C18 fatty acids, and showed potent antioxidant capacity using ABTS assay. This study further demonstrates, for the first time, that pretreatment with HAE of lipopolysaccharide (LPS)-stimulated macrophages results in a reduction in ROS production, a decrease in the pro-inflammatory cytokines TNF-α and IL-6 levels, and up-regulation of the factor Nrf2 and its target gene heme oxygenase-1 (HO-1), supporting the potential of the HAE as a therapeutic agent in the treatment of oxidative stress-related inflammatory diseases.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González Street, 41012 Seville, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Center for Natural Resources, Health, and Environment, Universidad de Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Javier Vigara
- Laboratory of Biochemistry, Center for Natural Resources, Health, and Environment, Universidad de Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González Street, 41012 Seville, Spain
| | - Rosa León
- Laboratory of Biochemistry, Center for Natural Resources, Health, and Environment, Universidad de Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González Street, 41012 Seville, Spain
| |
Collapse
|
9
|
Duan X, Xie C, Hill DRA, Barrow CJ, Dunshea FR, Martin GJO, Suleria HA. Bioaccessibility, Bioavailability and Bioactivities of Carotenoids in Microalgae: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyu Duan
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - David R. A. Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Gregory J. O. Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
10
|
Frantz MC, Rozot R, Marrot L. NRF2 in dermo-cosmetic: From scientific knowledge to skin care products. Biofactors 2023; 49:32-61. [PMID: 36258295 DOI: 10.1002/biof.1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
The skin is the organ that is most susceptible to the impact of the exposome. Located at the interface with the external environment, it protects internal organs through the barrier function of the epidermis. It must adapt to the consequences of the harmful effects of solar radiation, the various chemical constituents of atmospheric pollution, and wounds associated with mechanical damage: oxidation, cytotoxicity, inflammation, and so forth. In this biological context, a capacity to adapt to the various stresses caused by the exposome is essential; otherwise, more or less serious conditions may develop accelerated aging, pigmentation disorders, atopy, psoriasis, and skin cancers. Nrf2-controlled pathways play a key role at this level. Nrf2 is a transcription factor that controls genes involved in oxidative stress protection and detoxification of chemicals. Its involvement in UV protection, reduction of inflammation in processes associated with healing, epidermal differentiation for barrier function, and hair regrowth, has been demonstrated. The modulation of Nrf2 in the skin may therefore constitute a skin protection or care strategy for certain dermatological stresses and disorders initiated or aggravated by the exposome. Nrf2 inducers can act through different modes of action. Keap1-dependent mechanisms include modification of the cysteine residues of Keap1 by (pro)electrophiles or prooxidants, and disruption of the Keap1-Nrf2 complex. Indirect mechanisms are suggested for numerous phytochemicals, acting on upstream pathways, or via hormesis. While developing novel and safe Nrf2 modulators for skin care may be challenging, new avenues can arise from natural compounds-based molecular modeling and emerging concepts such as epigenetic regulation.
Collapse
Affiliation(s)
| | - Roger Rozot
- Advanced Research, L'OREAL Research & Innovation, Aulnay-sous-Bois, France
| | - Laurent Marrot
- Advanced Research, L'OREAL Research & Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
11
|
Rocha DHA, Pinto DCGA, Silva AMS. Macroalgae Specialized Metabolites: Evidence for Their Anti-Inflammatory Health Benefits. Mar Drugs 2022; 20:md20120789. [PMID: 36547936 PMCID: PMC9783307 DOI: 10.3390/md20120789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammation is an organism's response to chemical or physical injury. It is split into acute and chronic inflammation and is the last, most significant cause of death worldwide. Nowadays, according to the World Health Organization (WHO), the greatest threat to human health is chronic disease. Worldwide, three out of five people die from chronic inflammatory diseases such as stroke, chronic respiratory diseases, heart disorders, and cancer. Nowadays, anti-inflammatory drugs (steroidal and non-steroidal, enzyme inhibitors that are essential in the inflammatory process, and receptor antagonists, among others) have been considered as promising treatments to be explored. However, there remains a significant proportion of patients who show poor or incomplete responses to these treatments or experience associated severe side effects. Seaweeds represent a valuable resource of bioactive compounds associated with anti-inflammatory effects and offer great potential for the development of new anti-inflammatory drugs. This review presents an overview of specialized metabolites isolated from seaweeds with in situ and in vivo anti-inflammatory properties. Phlorotannins, carotenoids, sterols, alkaloids, and polyunsaturated fatty acids present significant anti-inflammatory effects given that some of them are involved directly or indirectly in several inflammatory pathways. The majority of the isolated compounds inhibit the pro-inflammatory mediators/cytokines. Studies have suggested an excellent selectivity of chromene nucleus towards inducible pro-inflammatory COX-2 than its constitutive isoform COX-1. Additional research is needed to understand the mechanisms of action of seaweed's compounds in inflammation, given the production of sustainable and healthier anti-inflammatory agents.
Collapse
|
12
|
Guan B, Chen K, Tong Z, Chen L, Chen Q, Su J. Advances in Fucoxanthin Research for the Prevention and Treatment of Inflammation-Related Diseases. Nutrients 2022; 14:nu14224768. [PMID: 36432455 PMCID: PMC9694790 DOI: 10.3390/nu14224768] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Owing to its unique structure and properties, fucoxanthin (FX), a carotenoid, has attracted significant attention. There have been numerous studies that demonstrate FX's anti-inflammatory, antioxidant, antitumor, and anti-obesity properties against inflammation-related diseases. There is no consensus, however, regarding the molecular mechanisms underlying this phenomenon. In this review, we summarize the potential health benefits of FX in inflammatory-related diseases, from the perspective of animal and cellular experiments, to provide insights for future research on FX. Previous work in our lab has demonstrated that FX remarkably decreased LPS-induced inflammation and improved survival in septic mice. Further investigation of the activity of FX against a wide range of diseases will require new approaches to uncover its molecular mechanism. This review will provide an outline of the current state of knowledge regarding FX application in the clinical setting and suggest future directions to implement FX as a therapeutic ingredient in pharmaceutical sciences in order to develop it into a treatment strategy against inflammation-associated disorders.
Collapse
Affiliation(s)
- Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Correspondence: (Q.C.); (J.S.); Tel./Fax: +86-0591-22868190 (Q.C.); +86-0591-22868830 (J.S.)
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Correspondence: (Q.C.); (J.S.); Tel./Fax: +86-0591-22868190 (Q.C.); +86-0591-22868830 (J.S.)
| |
Collapse
|
13
|
Sun Q, Fang J, Wang Z, Song Z, Geng J, Wang D, Wang C, Li M. Two Laminaria japonica Fermentation Broths Alleviate Oxidative Stress and Inflammatory Response Caused by UVB Damage: Photoprotective and Reparative Effects. Mar Drugs 2022; 20:650. [PMID: 36286472 PMCID: PMC9605345 DOI: 10.3390/md20100650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
UVB radiation can induce oxidative stress and inflammatory response in human epidermal cells. We establish a UVB-induced damage model of human immortalized epidermal keratinocytes (HaCaT) to explore the protective and reparative effects of Laminaria japonica on UVB-damaged epidermal inflammation after fermentation by white Ganoderma lucidum (Curtis) P. Karst and Saccharomyces cerevisiae. Compared with unfermented Laminaria japonica, fermented Laminaria japonica possesses stronger in vitro free radical scavenging ability. Laminaria japonica white Ganoderma lucidum fermentation broth (LJ-G) and Laminaria japonica rice wine yeast fermentation broth (LJ-Y) can more effectively remove excess reactive oxygen species (ROS) in cells and increase the content of the intracellular antioxidant enzymes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO-1). In addition, fermented Laminaria japonica effectively reduces the content of pro-inflammatory factors ILs, TNF-α and MMP-9 secreted by cells. The molecular research results show that fermented Laminaria japonica activates the Nrf2 signaling pathway, increases the synthesis of antioxidant enzymes, inhibits the gene expression levels of pro-inflammatory factors, and alleviates cellular oxidative stress and inflammatory response caused by UVB radiation. Based on the above results, we conclude that fermented Laminaria japonica has stronger antioxidant and anti-inflammatory activity than unfermented Laminaria japonica, possesses good safety, and can be developed and used as a functional inflammation reliever. Fermented Laminaria japonica polysaccharide has a more slender morphological structure and more rockulose, with better moisturizing and rheological properties.
Collapse
Affiliation(s)
- Qianru Sun
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Jiaxuan Fang
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Ziwen Wang
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Zixin Song
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Jiman Geng
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Dongdong Wang
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Changtao Wang
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Meng Li
- College of Chemistry and Materials Engineering, Beijing Technology & Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
14
|
Zhang L, Liao W, Huang Y, Wen Y, Chu Y, Zhao C. Global seaweed farming and processing in the past 20 years. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00103-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractSeaweed has emerged as one of the most promising resources due to its remarkable adaptability, short development period, and resource sustainability. It is an effective breakthrough to alleviate future resource crises. Algal resources have reached a high stage of growth in the past years due to the increased output and demand for seaweed worldwide. Several aspects global seaweed farming production and processing over the last 20 years are reviewed, such as the latest situation and approaches of seaweed farming. Research progress and production trend of various seaweed application are discussed. Besides, the challenges faced by seaweed farming and processing are also analyzed, and the related countermeasures are proposed, which can provide advice for seaweed farming and processing. The primary products, extraction and application, or waste utilization of seaweed would bring greater benefits with the continuous development and improvement of applications in various fields.
Graphical Abstract
Collapse
|
15
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR, Takahashi K. Fucoxanthin Production of Microalgae under Different Culture Factors: A Systematic Review. Mar Drugs 2022; 20:md20100592. [PMID: 36286416 PMCID: PMC9604996 DOI: 10.3390/md20100592] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Fucoxanthin is one of the light-harvesting pigments in brown microalgae, which is increasingly gaining attention due to its numerous health-promoting properties. Currently, the production of microalgal fucoxanthin is not yet feasible from an economic perspective. However, the cultivation of microalgae at favourable conditions holds great potential to increase the viability of this fucoxanthin source. Hence, this study aimed to review the fucoxanthin production of microalgae under different conditions systematically. A literature search was performed using the Web of Science, Scopus and PubMed databases. A total of 188 articles were downloaded and 28 articles were selected for the current review by two independent authors. Microalgae appeared to be a more reliable fucoxanthin source compared to macroalgae. Overall, a consensus fucoxanthin production condition was obtained and proposed: light intensity ranging from 10 to 100 µmol/m2/s could achieve a higher fucoxanthin content. However, the optimal light condition in producing fucoxanthin is species-specific. The current review serves as an antecedent by offering insights into the fucoxanthin-producing microalgae response to different culture factors via a systematic analysis. With the current findings and recommendations, the feasibility of producing fucoxanthin commercially could be enhanced and possibly achieve practical and sustainable fucoxanthin production.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Ko SH, Lim Y, Kim EJ, Ko YW, Hong IS, Kim S, Jung Y. Antarctic Marine Algae Extracts as a Potential Natural Resource to Protect Epithelial Barrier Integrity. Mar Drugs 2022; 20:562. [PMID: 36135751 PMCID: PMC9503798 DOI: 10.3390/md20090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The intestine and skin provide crucial protection against the external environment. Strengthening the epithelial barrier function of these organs is critical for maintaining homeostasis against inflammatory stimuli. Recent studies suggest that polar marine algae are a promising bioactive resource because of their adaptation to extreme environments. To investigate the bioactive properties of polar marine algae on epithelial cells of the intestine and skin, we created extracts of the Antarctic macroalgae Himantothallus grandifolius, Plocamium cartilagineum, Phaeurus antarcticus, and Kallymenia antarctica, analyzed the compound profiles of the extracts using gas chromatography-mass spectrometry, and tested the protective activities of the extracts on human intestinal and keratinocyte cell lines by measuring cell viability and reactive oxygen species scavenging. In addition, we assessed immune responses modulated by the extracts by real-time polymerase chain reaction, and we monitored the barrier-protective activities of the extracts on intestinal and keratinocyte cell lines by measuring transepithelial electrical resistance and fluorescence-labeled dextran flux, respectively. We identified bioactive compounds, including several fatty acids and lipid compounds, in the extracts, and found that the extracts perform antioxidant activities that remove intracellular reactive oxygen species and scavenge specific radicals. Furthermore, the Antarctic marine algae extracts increased cell viability, protected cells against inflammatory stimulation, and increased the barrier integrity of cells damaged by lipopolysaccharide or ultraviolet radiation. These results suggest that Antarctic marine algae have optimized their composition for polar environments, and furthermore, that the bioactive properties of compounds produced by Antarctic marine algae can potentially be used to develop therapeutics to promote the protective barrier function of the intestine and skin.
Collapse
Affiliation(s)
- Seong-Hee Ko
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - YoonHee Lim
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - Young Wook Ko
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - In-Sun Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
17
|
Liu Y, Liu Y, Deng J, Wu X, He W, Mu X, Nie X. Molecular mechanisms of Marine-Derived Natural Compounds as photoprotective strategies. Int Immunopharmacol 2022; 111:109174. [PMID: 35998505 DOI: 10.1016/j.intimp.2022.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
18
|
Assessment of the Effects of Edible Microalgae in a Canine Gut Model. Animals (Basel) 2022; 12:ani12162100. [PMID: 36009689 PMCID: PMC9405368 DOI: 10.3390/ani12162100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae are a source of bioactive compounds having recently been studied for their possible application as health-promoting ingredients. The aim of the study was to evaluate in an in vitro canine gut model the effects of four microalgae, Arthrospira platensis (AP), Haematococcus pluvialis (HP), Phaeodactylum tricornutum (PT) and Chlorella vulgaris (CV), on some fecal microbial populations and metabolites. The four microalgae were subjected to an in vitro digestion procedure, and subsequently, the digested biomass underwent colonic in vitro fermentation. After 6 h of incubation, PT increased propionate (+36%) and butyrate (+24%), and decreased total BCFA (−47%), isobutyrate (−52%) and isovalerate (−43%) and C. hiranonis (−0.46 log10 copies/75 ng DNA). After 24 h, PT increased propionate (+21%) and isovalerate (+10%), and decreased the abundance of Turicibacter spp. (7.18 vs. 6.69 and 6.56 log10 copies/75 ng DNA for CTRL vs. PT, respectively); moreover, after 24 h, CV decreased C. coccoides (−1.12 log10 copies/75 ng DNA) and Enterococcus spp. (−0.37 log10 copies/75 ng DNA). In conclusion, the microbial saccharolytic activities and the shift in fecal bacterial composition were less pronounced than expected, based on current literature. This study should be considered as a preliminary assessment, and future investigations are required to better understand the role of microalgae in canine nutrition.
Collapse
|
19
|
Din NAS, Mohd Alayudin ‘AS, Sofian-Seng NS, Rahman HA, Mohd Razali NS, Lim SJ, Wan Mustapha WA. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022; 11:2235. [PMID: 35954003 PMCID: PMC9368577 DOI: 10.3390/foods11152235] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin is an algae-specific xanthophyll of aquatic carotenoid. It is prevalent in brown seaweed because it functions as a light-harvesting complex for algal photosynthesis and photoprotection. Its exceptional chemical structure exhibits numerous biological activities that benefit human health. Due to these valuable properties, fucoxanthin's potential as a potent source for functional food, feed, and medicine is being explored extensively today. This article has thoroughly reviewed the availability and biosynthesis of fucoxanthin in the brown seaweed, as well as the mechanism behind it. We included the literature findings concerning the beneficial bioactivities of fucoxanthin such as antioxidant, anti-inflammatory, anti-obesity, antidiabetic, anticancer, and other potential activities. Last, an additional view on its potential as a functional food ingredient has been discussed to facilitate a broader application of fucoxanthin as a promising bioactive compound.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - ‘Ain Sajda Mohd Alayudin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
20
|
Chaiprasongsuk A, Panich U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front Pharmacol 2022; 13:823881. [PMID: 35645796 PMCID: PMC9133606 DOI: 10.3389/fphar.2022.823881] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Ethnopharmacological studies have become increasingly valuable in the development of botanical products and their bioactive phytochemicals as novel and effective preventive and therapeutic strategies for various diseases including skin photoaging and photodamage-related skin problems including abnormal pigmentation and inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation (UVR)-induced skin damage is thus of importance to offer insights into medicinal and ethnopharmacological potential for development of novel and effective photoprotective agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin integrity and function through triggering various biological responses of skin cells including apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced by epidermal melanocytes play a protective role against UVR-induced skin damage and therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive response of the skin to stress. However, alteration in melanin synthesis may be implicated in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR contributes to the process of skin aging and inflammation through the activation of related signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription (STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK, PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling pathways involved in regulation of photoaging, inflammation associated with skin barrier dysfunction and melanogenesis. This review thus highlights the roles of phytochemicals potentially acting as Nrf2 inducers in improving photoaging, inflammation and hyperpigmentation via regulation of cellular homeostasis involved in skin integrity and function. Taken together, understanding the role of phytochemicals targeting Nrf2 in photoprotection could provide an insight into potential development of natural products as a promising strategy to delay skin photoaging and improve skin conditions.
Collapse
Affiliation(s)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Uraiwan Panich,
| |
Collapse
|
21
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
22
|
Mohibbullah M, Haque MN, Sohag AAM, Hossain MT, Zahan MS, Uddin MJ, Hannan MA, Moon IS, Choi JS. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar Drugs 2022; 20:279. [PMID: 35621930 PMCID: PMC9146768 DOI: 10.3390/md20050279] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Md. Nazmul Haque
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
| | - Jae-Suk Choi
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| |
Collapse
|
23
|
Khotimah H, Dewi Lestari Ismail D, Widasmara D, Riawan W, Retnaningtyas E, Weka Nugraheni R, Eka Puspita O, Rahayu Adianingsih O, Mardiyah M, Setiawan A. Ameliorative effect of gel combination of Centella asiatica extract transfersomes and rosemary essential oil nanoemulsion against UVB-induced skin aging in Balb/c mice. F1000Res 2022. [DOI: 10.12688/f1000research.109318.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Ultraviolet B (UVB) radiation induces physiological and morphological photoaging of the skin resulting in wrinkles, and loss of elasticity. This study analyzed nanoencapsulation of a gel combination of Centella asiatica (CA) transfersomes and rosemary essential oil (REO) nanoemulsion with lipid-based nanocarriers for the ability of both biological compounds to synergistically prevent UVB radiation, along with ameliorative and anti-aging effects. Methods: To ensure the quality, lipid-based nanocarriers of transfersomes and nanoemulsion were characterized based on physicochemical properties such as particle size distribution, polydispersity index, zeta potential. In vivo studies were used to determine the biological effects of a gel combination of CA transfersomes, and REO nanoemulsion applied topically two weeks before UVB radiation (840 mJ/cm2) in BALB/c hairless mice. Results: Results showed that the optimum lipid-based nanocarriers had a particle size of 43.97 ± 5.6 nm, a polydispersity index of 0.64 ± 0.01, and a zeta potential of -10.91 ± 1.99 mV. In vivo experiments revealed that topical application of a gel combination of CA transfersomes and REO nanoemulsion significantly ameliorated wrinkle formation, epidermal hyperplasia, and collagen fiber arrangement caused by UVB exposure. Further, the gel combining CA transfersomes and REO nanoemulsion suppressed lipid peroxidation by decreasing the expression of malondialdehyde (MDA) and collagen destruction by inhibiting matrix metalloproteinase-9 (MMP-9) expression. Moreover, the gel combination of CA transfersomes and REO nanoemulsion upregulated type I collagen through activation of the transforming growth factor-β (TGF-β)/Smad pathway, thereby recovering the density of collagen fiber reduced by UVB radiation. Conclusions: Overall, these data indicate that topical application of a gel combination of CA transfersomes and REO nanoemulsion could act synergistically and potentially prevents oxidative stress and collagen degradation in the skin from UVB-induced photoaging.
Collapse
|
24
|
Pourzand C, Albieri-Borges A, Raczek NN. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel) 2022; 11:471. [PMID: 35326121 PMCID: PMC8944509 DOI: 10.3390/antiox11030471] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Reactive oxygen species (ROS) are necessary for normal cell signaling and the antimicrobial defense of the skin. However excess production of ROS can disrupt the cellular redox balance and overwhelm the cellular antioxidant (AO) capacity, leading to oxidative stress. In the skin, oxidative stress plays a key role in driving both extrinsic and intrinsic aging. Sunlight exposure has also been a major contributor to extrinsic photoaging of the skin as its oxidising components disrupt both redox- and iron-homeostasis, promoting oxidative damage to skin cells and tissue constituents. Upon oxidative insults, the interplay between excess accumulation of ROS and redox-active labile iron (LI) and its detrimental consequences to the skin are often overlooked. In this review we have revisited the oxidative mechanisms underlying skin damage and aging by focussing on the concerted action of ROS and redox-active LI in the initiation and progression of intrinsic and extrinsic skin aging processes. Based on these, we propose to redefine the selection criteria for skin antiaging and photoprotective ingredients to include natural antioxidants (AOs) exhibiting robust redox-balancing and/or iron-chelating properties. This would promote the concept of natural-based or bio-inspired bifunctional anti-aging and photoprotective ingredients for skincare and sunscreen formulations with both AO and iron-chelating properties.
Collapse
Affiliation(s)
- Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Andrea Albieri-Borges
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| | - Nico N. Raczek
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| |
Collapse
|
25
|
Tang D, Wu J, Wang Y, Cui H, Tao Z, Lei L, Zhou Z, Tao S. Dietary restriction attenuates inflammation and protects mouse skin from high-dose UVB irradiation. Rejuvenation Res 2022; 25:149-157. [PMID: 35152736 DOI: 10.1089/rej.2021.0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Duozhuang Tang
- Nanchang University Second Affiliated Hospital, 196534, Department of Hematology, Nanchang, jiangxi, China
| | - Jianying Wu
- Nanchang University Second Affiliated Hospital, 196534, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, Nanchang, Jiangxi, China
| | - Yiting Wang
- Nanchang University Second Affiliated Hospital, 196534, Department of Hematology,, Nanchang, Jiangxi, China
| | - Hui Cui
- Nanchang University Second Affiliated Hospital, 196534, Department of Oncology, Nanchang, China
| | - Zhendong Tao
- Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Department of Medical Laboratory Medicine, nanchang, China
| | - Lang Lei
- Nanchang University Second Affiliated Hospital, 196534, Department of Pathology, Nanchang, China
| | - Zhuangfa Zhou
- Shangrao Guangxin Maternal and Child Health Care Hospital, shangrao, jiangxi, China
| | - Si Tao
- Nanchang University Second Affiliated Hospital, 196534, Min-De Road. 1, Nanchang, China, 330006
| |
Collapse
|
26
|
Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Abdelmohsen UR. The genus Turbinaria: chemical and pharmacological diversity. Nat Prod Res 2021; 35:4560-4578. [PMID: 32091241 DOI: 10.1080/14786419.2020.1731741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/19/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022]
Abstract
The Genus Turbinaria is still chemically and pharmacologically underexplored. These brown algae belong to the family Sargassaceae. Therapeutic potentials of pure compounds isolated from the Genus Turbinaria are extraordinarily promising as antiproliferative, antipyretic, anti-inflammatory immunostimulatory, anti-diabetic, anti-obesity, antiviral, antimicrobial, cardioprotective, hepatoprotective and hypolipidemic. Those activities are represented by diverse classes of compounds including sterols, amino acids, fatty acids, alcohols, halocarbons, hydrocarbons, carbohydrates, esters and cyclic tetrapyrrole compounds. This review focuses on the Genus Turbinaria during the period 1972 to 2019.
Collapse
Affiliation(s)
- Mohammed I Rushdi
- Faculty of Pharmacy, Department of Pharmacognosy, South Valley University, Qena, Egypt
| | - Iman A M Abdel-Rahman
- Faculty of Pharmacy, Department of Pharmacognosy, South Valley University, Qena, Egypt
| | - Hani Saber
- Faculty of Science, Department of Botany and Microbiology, South Valley University, Qena, Egypt
| | - Eman Zekry Attia
- Faculty of Pharmacy, Department of Pharmacognosy, Minia University, Minia, Egypt
| | - Wedad M Abdelraheem
- Faculty of Medicine, Department of Medical Microbiology and Immunology, Minia University, Minia, Egypt
| | - Hashem A Madkour
- Department of Marine and Environmental Geology, National Institute of Oceanography and Fisheries, Hurghada, Egypt
| | - Usama Ramadan Abdelmohsen
- Faculty of Pharmacy, Department of Pharmacognosy, Minia University, Minia, Egypt
- Faculty of Pharmacy, Department of Pharmacognosy, Deraya University, New Minia City, Egypt
| |
Collapse
|
27
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR. The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review. Mar Drugs 2021; 19:md19110606. [PMID: 34822476 PMCID: PMC8623609 DOI: 10.3390/md19110606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fucoxanthin is a major carotenoid in brown macroalgae and diatoms that possesses a broad spectrum of health benefits. This review evaluated the research trends of the fucoxanthin field from 1928 to June 2021 using the bibliometric method. The present findings unraveled that the fucoxanthin field has grown quickly in recent years with a total of 2080 publications. Japan was the most active country in producing fucoxanthin publications. Three Japan institutes were listed in the top ten productive institutions, with Hokkaido University being the most prominent institutional contributor in publishing fucoxanthin articles. The most relevant subject area on fucoxanthin was the agricultural and biological sciences category, while most fucoxanthin articles were published in Marine Drugs. A total of four research concepts emerged based on the bibliometric keywords analysis: “bioactivities”, “photosynthesis”, “optimization of process’’, and “environment”. The “bioactivities” of fucoxanthin was identified as the priority in future research. The current analysis highlighted the importance of collaboration and suggested that global collaboration could be the key to valorizing and efficiently boosting the consumer acceptability of fucoxanthin. The present bibliometric analysis offers valuable insights into the research trends of fucoxanthin to construct a better future development of this treasurable carotenoid.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Fatimah Md. Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
28
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
29
|
Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int 2021; 149:105124. [PMID: 34245808 DOI: 10.1016/j.neuint.2021.105124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Brain and neuronal circuits constitute the most complex organ networks in human body. They not only control and coordinate functions of all other organs, but also represent one of the most-affected systems with stress, lifestyle and age. With global increase in aging populations, these neuropathologies have emerged as major concern for maintaining quality of life. Recent era has witnessed a surge in nutritional remediation of brain dysfunctions primarily by "nutraceuticals" that refer to functional foods and supplements with pharmacological potential. Specific dietary patterns with a balanced intake of carbohydrates, fatty acids, vitamins and micronutrients have also been ascertained to promote brain health. Dietary herbs and their phytochemicals with wide range of biological and pharmacological activities and minimal adverse effects have gained remarkable attention as neuro-nutraceuticals. Neuro-nutraceutical potentials of herbs are often expressed as effects on cognitive response, circadian rhythm, neuromodulatory, antioxidant and anti-inflammatory activities that are mediated by effects on gene expression, epigenetics, protein synthesis along with their turnover and metabolic pathways. Epidemiological and experimental evidence have implicated enormous applications of herbal supplementation in neurodegenerative and psychiatric disorders. The present review highlights the identification, experimental evidence and applications of some herbs including Bacopa monniera, Withania somnifera, Curcuma longa, Helicteres angustifolia, Undaria pinnatifida, Haematococcus pluvialis, and Vitis vinifera, as neuro-nutraceuticals.
Collapse
|
30
|
de Souza Guedes L, Martinez RM, Bou-Chacra NA, Velasco MVR, Rosado C, Baby AR. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants (Basel) 2021; 10:1034. [PMID: 34206935 PMCID: PMC8300771 DOI: 10.3390/antiox10071034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids and coenzyme Q10 are naturally occurring antioxidant compounds that are also found in human skin. These bioactive compounds have been the focus of considerable research due to their antioxidant, anti-inflammatory, and photoprotective properties. In this review, the current state of the art in the encapsulation of carotenoids and coenzyme Q10 in lipid nanoparticles to improve their bioavailability, chemical stability, and skin absorption is discussed. Additionally, the main findings are highlighted on the cytotoxic and photoprotective effects of these systems in the skin.
Collapse
Affiliation(s)
- Luciana de Souza Guedes
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Nádia A. Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Catarina Rosado
- CBIOS, Universidade Lusófona’s Research Center for Biosciences & Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| |
Collapse
|
31
|
Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D. Unconventional high-value products from microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 329:124895. [PMID: 33713898 DOI: 10.1016/j.biortech.2021.124895] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Microalgae have gained significant importance in biotechnology development, providing valuable goods and services in multiple applications. Although there is a rising market for most of these applications, the incorporation and introduction of microalgae into new venues will extend in the near future. These advances are due to the vast biodiversity of microalgal species, recent genetic engineering tools, and culture techniques. There are three main possible approaches for novel algal compounds from: (1) recently isolated yet less known microalgae; (2) selectively stressed conditions; and (3) enzymatically adjusted compounds from conventional molecules. All these approaches can be combined in a specific manner. This review discusses the opportunities, potential and limitations of introducing novel microalgae-based products, and how the recent technologies can be deployed to make these products financially viable. To give an outlook to the future, an analysis of the developments and predicted future market that further enlarge the promise of cultivating microalgae for commercial purposes are considered.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Zvy Dubinsky
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vitor Verdelho
- General Manager of the European Algae Biomass Association (EABA), Portugal
| | - David Iluz
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Environmental Sciences and Agriculture, Beit Berl Academic College, Israel; Talpiot academic College, Holon, Israel
| |
Collapse
|
32
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
33
|
Pangestuti R, Shin KH, Kim SK. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar Drugs 2021; 19:172. [PMID: 33809936 PMCID: PMC8004118 DOI: 10.3390/md19030172] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The skin health benefits of seaweeds have been known since time immemorial. They are known as potential renewable sources of bioactive metabolites that have unique structural and functional features compared to their terrestrial counterparts. In addition, to the consciousness of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds have been clinically tested and currently available in the market. In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.
Collapse
Affiliation(s)
- Ratih Pangestuti
- Director of Research and Development Division for Marine Bio Industry, Indonesian Institute of Sciences (LIPI), West Nusa Tenggara 83352, Indonesia;
| | - Kyung-Hoon Shin
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| | - Se-Kwon Kim
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| |
Collapse
|
34
|
Zhang P, Zou B, Liou YC, Huang C. The pathogenesis and diagnosis of sepsis post burn injury. BURNS & TRAUMA 2021; 9:tkaa047. [PMID: 33654698 PMCID: PMC7901709 DOI: 10.1093/burnst/tkaa047] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Indexed: 02/05/2023]
Abstract
Burn is an under-appreciated trauma that is associated with unacceptably high morbidity and mortality. Although the survival rate after devastating burn injuries has continued to increase in previous decades due to medical advances in burn wound care, nutritional and fluid resuscitation and improved infection control practices, there are still large numbers of patients at a high risk of death. One of the most common complications of burn is sepsis, which is defined as “severe organ dysfunction attributed to host's disordered response to infection” and is the primary cause of death in burn patients. Indeed, burn injuries are accompanied by a series of events that lead to sepsis and multiple organ dysfunction syndrome, such as a hypovolaemic state, immune and inflammatory responses and metabolic changes. Therefore, clear diagnostic criteria and predictive biomarkers are especially important in the prevention and treatment of sepsis and septic shock. In this review, we focus on the pathogenesis of burn wound infection and the post-burn events leading to sepsis. Moreover, the clinical and promising biomarkers of burn sepsis will also be summarized.
Collapse
Affiliation(s)
- Pengju Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 People's South Road, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 People's South Road, Chengdu, 610041, China
| |
Collapse
|
35
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Bagherzadeh M, Dinarvand R, Ahmadi S, Rabiee M, Tahriri M, Hamblin MR, Tayebi L, Webster TJ. The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Crit Rev Food Sci Nutr 2021; 62:3658-3697. [PMID: 33399020 DOI: 10.1080/10408398.2020.1867958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as β-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA.,Department of Dermatology, Harvard Medical School, Boston, USA
| | - Lobat Tayebi
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
36
|
Xiao H, Zhao J, Fang C, Cao Q, Xing M, Li X, Hou J, Ji A, Song S. Advances in Studies on the Pharmacological Activities of Fucoxanthin. Mar Drugs 2020; 18:E634. [PMID: 33322296 PMCID: PMC7763821 DOI: 10.3390/md18120634] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a natural carotenoid derived mostly from many species of marine brown algae. It is characterized by small molecular weight, is chemically active, can be easily oxidized, and has diverse biological activities, thus protecting cell components from ROS. Fucoxanthin inhibits the proliferation of a variety of cancer cells, promotes weight loss, acts as an antioxidant and anti-inflammatory agent, interacts with the intestinal flora to protect intestinal health, prevents organ fibrosis, and exerts a multitude of other beneficial effects. Thus, fucoxanthin has a wide range of applications and broad prospects. This review focuses primarily on the latest progress in research on its pharmacological activity and underlying mechanisms.
Collapse
Affiliation(s)
- Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Chang Fang
- Test Center for Agri‐Products Quality of Jinan, Jinan 250316, China;
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Xia Li
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Junfeng Hou
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| |
Collapse
|
37
|
Catanzaro E, Bishayee A, Fimognari C. On a Beam of Light: Photoprotective Activities of the Marine Carotenoids Astaxanthin and Fucoxanthin in Suppression of Inflammation and Cancer. Mar Drugs 2020; 18:E544. [PMID: 33143013 PMCID: PMC7692561 DOI: 10.3390/md18110544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Every day, we come into contact with ultraviolet radiation (UVR). If under medical supervision, small amounts of UVR could be beneficial, the detrimental and hazardous effects of UVR exposure dictate an unbalance towards the risks on the risk-benefit ratio. Acute and chronic effects of ultraviolet-A and ultraviolet-B involve mainly the skin, the immune system, and the eyes. Photodamage is an umbrella term that includes general phototoxicity, photoaging, and cancer caused by UVR. All these phenomena are mediated by direct or indirect oxidative stress and inflammation and are strictly connected one to the other. Astaxanthin (ASX) and fucoxanthin (FX) are peculiar marine carotenoids characterized by outstanding antioxidant properties. In particular, ASX showed exceptional efficacy in counteracting all categories of photodamages, in vitro and in vivo, thanks to both antioxidant potential and activation of alternative pathways. Less evidence has been produced about FX, but it still represents an interesting promise to prevent the detrimental effect of UVR. Altogether, these results highlight the importance of digging into the marine ecosystem to look for new compounds that could be beneficial for human health and confirm that the marine environment is as much as full of active compounds as the terrestrial one, it just needs to be more explored.
Collapse
Affiliation(s)
- Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
38
|
Natural Nrf2 Modulators for Skin Protection. Antioxidants (Basel) 2020; 9:antiox9090812. [PMID: 32882952 PMCID: PMC7556038 DOI: 10.3390/antiox9090812] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of antioxidant responsive elements (ARE), which are commonly found in the promoter of the Phase II metabolism/antioxidant enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor that binds to ARE, the study conducted in this field has expanded remarkably over the decades, and the Nrf2-mediated pathway is now recognized to occupy a central position in cell defense mechanisms. Induction of the Phase II metabolism/antioxidant enzymes through direct activation of Nrf2 can be a promising strategy for preventing degenerative diseases in general, but a dark side of this strategy should be considered, as Nrf2 activation can enhance the survival of cancer cells. In this review, we discuss the historical discovery of Nrf2 and the regulatory mechanism of the Nrf2-mediated pathway, focusing on the interacting proteins and post-translational modifications. In addition, we discuss the latest studies that examined various natural Nrf2 modulators for the protective roles in the skin, in consideration of their dermatological and cosmetic applications. Studies are reviewed in the order of time of research as much as possible, to help understand how and why such studies were conducted under the circumstances of that time. We hope that this review can serve as a steppingstone in conducting more advanced research by providing a scientific basis for researchers newly entering this field.
Collapse
|
39
|
Lourenço-Lopes C, Garcia-Oliveira P, Carpena M, Fraga-Corral M, Jimenez-Lopez C, Pereira AG, Prieto MA, Simal-Gandara J. Scientific Approaches on Extraction, Purification and Stability for the Commercialization of Fucoxanthin Recovered from Brown Algae. Foods 2020; 9:E1113. [PMID: 32823574 PMCID: PMC7465967 DOI: 10.3390/foods9081113] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
The scientific community has corroborated the numerous beneficial activities of fucoxanthin, such as its antioxidant, anti-inflammatory, anticancer or neuroprotective effects, among others. These properties have attracted the attention of nutraceutical, cosmetic and pharmacological industries, giving rise to various possible applications. Fucoxanthin may be chemically produced, but the extraction from natural sources is considered more cost-effective, efficient and eco-friendly. Thus, identifying suitable sources of this compound and giving a general overview of efficient extraction, quantification, purification and stabilization studies is of great importance for the future production and commercialization of fucoxanthin. The scientific research showed that most of the studies are performed using conventional techniques, but non-conventional techniques begin to gain popularity in the recovery of this compound. High Performance Liquid Chromatography (HPLC), Nuclear Magnetic Resonance (NMR) and spectroscopy techniques have been employed in the quantification and identification of fucoxanthin. The further purification of extracts has been mainly accomplished using purification columns. Finally, the stability of fucoxanthin has been assessed as a free molecule, in an emulsion, or encapsulated to identify the variables that might affect its further industrial application.
Collapse
Affiliation(s)
- Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Cecilia Jimenez-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| |
Collapse
|
40
|
Miyashita K, Beppu F, Hosokawa M, Liu X, Wang S. Bioactive significance of fucoxanthin and its effective extraction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Ortiz T, Argüelles-Arias F, Illanes M, García-Montes JM, Talero E, Macías-García L, Alcudia A, Vázquez-Román V, Motilva V, De-Miguel M. Polyphenolic Maqui Extract as a Potential Nutraceutical to Treat TNBS-Induced Crohn's Disease by the Regulation of Antioxidant and Anti-Inflammatory Pathways. Nutrients 2020; 12:nu12061752. [PMID: 32545398 PMCID: PMC7353344 DOI: 10.3390/nu12061752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals include a wide variety of bioactive compounds, such as polyphenols, which have been highlighted for their remarkable health benefits. Specially, maqui berries have shown great antioxidant activity and anti-inflammatory effects on some inflammatory diseases. The objectives of the present study were to explore the therapeutic effects of maqui berries on acute-phase inflammation in Crohn’s disease. Balb/c mice were exposed to 2,4,6-trinitrobenzene sulfonic acid (TNBS) via intracolonic administration. Polyphenolic maqui extract (Ach) was administered orally daily for 4 days after TNBS induction (Curative Group), and for 7 days prior to the TNBS induction until sacrifice (Preventive Group). Our results showed that both preventive and curative Ach administration inhibited body weight loss and colon shortening, and attenuated the macroscopic and microscopic damage signs, as well as significantly reducing transmural inflammation and boosting the recovery of the mucosal architecture and its muco-secretory function. Additionally, Ach promotes macrophage polarization to the M2 phenotype and was capable of down-regulating significantly the expression of inflammatory proteins COX-2 and iNOS, and at the same time it regulates the antioxidant Nrf-2/HO-1 pathway. In conclusion, this is the first study in which it is demonstrated that the properties of Ach as could be used as a preventive and curative treatment in Crohn’s disease.
Collapse
Affiliation(s)
- Tamara Ortiz
- Department of Normal and Pathological Cytology and Histology, University of Seville, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain; (M.I.); (L.M.-G.); (V.V.-R.)
- Correspondence: (T.O.); (M.D.-M.); Tel.: +34-954-551798 (T.O.); +34-955-421-025 (M.D.-M.)
| | - Federico Argüelles-Arias
- Department of Medicine, University of Seville, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain; (F.A.-A.); (J.-M.G.-M.)
- Department of Gastroenterology, University Hospital Virgen Macarena, c/Dr. Fedriani, nº 3, 41009 Sevilla, Spain
| | - Matilde Illanes
- Department of Normal and Pathological Cytology and Histology, University of Seville, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain; (M.I.); (L.M.-G.); (V.V.-R.)
| | - Josefa-María García-Montes
- Department of Medicine, University of Seville, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain; (F.A.-A.); (J.-M.G.-M.)
| | - Elena Talero
- Department of Pharmacology, University of Seville, c/Prof García González, nº 2, 41012 Sevilla, Spain; (E.T.); (V.M.)
| | - Laura Macías-García
- Department of Normal and Pathological Cytology and Histology, University of Seville, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain; (M.I.); (L.M.-G.); (V.V.-R.)
| | - Ana Alcudia
- Department of Organic and Pharmaceutical Chemistry, University of Seville, c/Prof García González, nº 2, 41012 Sevilla, Spain;
| | - Victoria Vázquez-Román
- Department of Normal and Pathological Cytology and Histology, University of Seville, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain; (M.I.); (L.M.-G.); (V.V.-R.)
| | - Virginia Motilva
- Department of Pharmacology, University of Seville, c/Prof García González, nº 2, 41012 Sevilla, Spain; (E.T.); (V.M.)
| | - Manuel De-Miguel
- Department of Normal and Pathological Cytology and Histology, University of Seville, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain; (M.I.); (L.M.-G.); (V.V.-R.)
- Correspondence: (T.O.); (M.D.-M.); Tel.: +34-954-551798 (T.O.); +34-955-421-025 (M.D.-M.)
| |
Collapse
|
42
|
Liu M, Li W, Chen Y, Wan X, Wang J. Fucoxanthin: A promising compound for human inflammation-related diseases. Life Sci 2020; 255:117850. [PMID: 32470447 DOI: 10.1016/j.lfs.2020.117850] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
Fucoxanthin, a natural product of carotenoids, is a potential drug source obtained from marine algae. The special chemical structure of fucoxanthin has equipped it with a variety of biological activities. Several studies have indicated that fucoxanthin has a potential protective effect on a variety of inflammation-related diseases. This mechanism may be related to fucoxanthin's strong antioxidant capacity and gut microbiota regulation. The key molecules that require consideration include nuclear factor erythroid 2-related factor 2, Akt serine/threonine kinase/phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, adenosine monophosphate (AMP)-dependent protein kinase, cAMP response element binding protein, and peroxisome proliferator-activated receptorγcoactivator-1α. The study summarizes the recent progress in the research based on the protective effect of fucoxanthin and its related molecular mechanism, in addition to the potential use of fucoxanthin as a promising compound for human inflammation-related diseases.
Collapse
Affiliation(s)
- Mingjun Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Wenwen Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Ying Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| |
Collapse
|
43
|
Tavares RSN, Kawakami CM, Pereira KDC, do Amaral GT, Benevenuto CG, Maria-Engler SS, Colepicolo P, Debonsi HM, Gaspar LR. Fucoxanthin for Topical Administration, a Phototoxic vs. Photoprotective Potential in a Tiered Strategy Assessed by In Vitro Methods. Antioxidants (Basel) 2020; 9:E328. [PMID: 32316531 PMCID: PMC7222355 DOI: 10.3390/antiox9040328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Fucoxanthin possesses a well-described antioxidant activity that might be useful for human skin photoprotection. However, there is a lack of scientific information regarding its properties when applied onto human skin. Thus, the objective of the present study was to assess the photoprotective and phototoxicity potential of fucoxanthin based on its ultraviolet (UVB 280-320 nm; UVA 320-400 nm) and visible (VIS 400-700 nm) absorption, photostability, phototoxicity in 3T3 mouse fibroblast culture vs. full-thickness reconstructed human skin (RHS), and its ability to inhibit reactive oxygen species formation that is induced by UVA on HaCaT keratinocytes. Later, we evaluated the antioxidant properties of the sunscreen formulation plus 0.5% fucoxanthin onto RHS to confirm its bioavailability and antioxidant potential through the skin layers. The compound was isolated from the alga Desmarestia anceps. Fucoxanthin, despite presenting chemical photo-instability (dose 6 J/cm2: 35% UVA and 21% VIS absorbance reduction), showed acceptable photodegradation (dose 27.5 J/cm2: 5.8% UVB and 12.5% UVA absorbance reduction) when it was added to a sunscreen at 0.5% (w/v). In addition, it increased by 72% of the total sunscreen UV absorption spectra, presenting UV-booster properties. Fucoxanthin presented phototoxic potential in 3T3 fibroblasts (mean photo effect 0.917), but it was non-phototoxic in the RHS model due to barrier function that was provided by the stratum corneum. In addition, it showed a significant inhibition of ROS formation at 0.01% (p < 0.001), in HaCat, and in a sunscreen at 0.5% (w/v) (p < 0.001), in RHS. In conclusion, in vitro results showed fucoxanthin protective potential to the skin that might contribute to improving the photoprotective potential of sunscreens in vivo.
Collapse
Affiliation(s)
- Renata Spagolla Napoleão Tavares
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903 São Paulo, Brazil; (R.S.N.T.); (H.M.D.)
| | - Camila Martins Kawakami
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903 São Paulo, Brazil; (R.S.N.T.); (H.M.D.)
| | - Karina de Castro Pereira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903 São Paulo, Brazil; (R.S.N.T.); (H.M.D.)
| | - Gabriela Timotheo do Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903 São Paulo, Brazil; (R.S.N.T.); (H.M.D.)
| | - Carolina Gomes Benevenuto
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903 São Paulo, Brazil; (R.S.N.T.); (H.M.D.)
| | - Silvya Stuchi Maria-Engler
- Clinical and Toxicological Analyses Department, School of Pharmaceutical Sciences, University of São Paulo, SP 05508-000 São Paulo, Brazil
| | - Pio Colepicolo
- Institute of Chemistry, University of São Paulo, SP 05508-000 São Paulo, Brazil
| | - Hosana Maria Debonsi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903 São Paulo, Brazil; (R.S.N.T.); (H.M.D.)
| | - Lorena Rigo Gaspar
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903 São Paulo, Brazil; (R.S.N.T.); (H.M.D.)
| |
Collapse
|
44
|
Antiwrinkle and Antimelanogenesis Effects of Tyndallized Lactobacillus acidophilus KCCM12625P. Int J Mol Sci 2020; 21:ijms21051620. [PMID: 32120828 PMCID: PMC7084287 DOI: 10.3390/ijms21051620] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
UVB irradiation can induce generation of reactive oxygen species (ROS) that cause skin aging or pigmentation. Lactobacillus acidophilus is a well-known probiotic strain that regulates skin health through antimicrobial peptides and organic products produced by metabolism and through immune responses. In this study, we investigated the antioxidative, antiwrinkle, and antimelanogenesis effects of tyndallized Lactobacillus acidophilus KCCM12625P (AL). To analyze the effects of AL on UV irradiation-induced skin wrinkle formation in vitro, human keratinocytes and human dermal fibroblasts were exposed to UVB. Subsequent treatment with AL induced antiwrinkle effects by regulating wrinkle-related genes such as matrix metalloproteinases (MMPs), SIRT-1, and type 1 procollagen (COL1AL). In addition, Western blotting assays confirmed that regulation of MMPs by AL in keratinocytes was due to regulation of the AP-1 signaling pathway. Furthermore, we confirmed the ability of AL to regulate melanogenesis in B16F10 murine melanoma cells treated with α-melanocyte-stimulating hormone (α-MSH). In particular, AL reduced the mRNA expression of melanogenesis-related genes such as tyrosinase, TYRP-1, and TYRP-2. Finally, we used Western blotting assays to confirm that the antimelanogenesis role of AL was due to its regulation of the cyclic adenosine monophosphate (cAMP) signaling pathway. Collectively, these results indicate that AL has an antiwrinkle activity in damaged skin and can inhibit melanogenesis. Thus, AL should be considered an important substance for potential use in anti-aging drugs or cosmetics.
Collapse
|
45
|
Spagolla Napoleão Tavares R, Stuchi Maria-Engler S, Colepicolo P, Debonsi HM, Schäfer-Korting M, Marx U, Rigo Gaspar L, Zoschke C. Skin Irritation Testing beyond Tissue Viability: Fucoxanthin Effects on Inflammation, Homeostasis, and Metabolism. Pharmaceutics 2020; 12:pharmaceutics12020136. [PMID: 32033492 PMCID: PMC7076544 DOI: 10.3390/pharmaceutics12020136] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
UV light catalyzes the ozone formation from air pollutants, like nitrogen oxides. Since ozone reacts with cutaneous sebum lipids to peroxides and, thus, promotes inflammation, tumorigenesis, and aging, even broad-spectrum sunscreens cannot properly protect skin. Meanwhile, xanthophylls, like fucoxanthin, proved their antioxidant and cytoprotective functions, but the safety of their topical application in human cell-based models remains unknown. Aiming for a more detailed insight into the cutaneous fucoxanthin toxicity, we assessed the tissue viability according to OECD test guideline no. 439 as well as changes in inflammation (IL-1α, IL-6, IL-8), homeostasis (EGFR, HSPB1) and metabolism (NAT1). First, we proved the suitability of our 24-well-based reconstructed human skin for irritation testing. Next, we dissolved 0.5% fucoxanthin either in alkyl benzoate or in ethanol and applied both solutions onto the tissue surface. None of the solutions decreased RHS viability below 50%. In contrast, fucoxanthin ameliorated the detrimental effects of ethanol and reduced the gene expression of pro-inflammatory interleukins 6 and 8, while increasing NAT1 gene expression. In conclusion, we developed an organ-on-a-chip compatible RHS, being suitable for skin irritation testing beyond tissue viability assessment. Fucoxanthin proved to be non-irritant in RHS and already showed first skin protective effects following topical application.
Collapse
Affiliation(s)
- Renata Spagolla Napoleão Tavares
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil; (R.S.N.T.); (H.M.D.); (L.R.G.)
| | - Silvya Stuchi Maria-Engler
- Clinical and Toxicological Analyses Department, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP 05508-000, Brazil;
| | - Pio Colepicolo
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP 05508-000, Brazil;
| | - Hosana Maria Debonsi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil; (R.S.N.T.); (H.M.D.); (L.R.G.)
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin Luise Str 2+4, 14195 Berlin, Germany;
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Germany;
| | - Lorena Rigo Gaspar
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil; (R.S.N.T.); (H.M.D.); (L.R.G.)
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin Luise Str 2+4, 14195 Berlin, Germany;
- Correspondence: ; Tel.: +49-30-838-56189
| |
Collapse
|
46
|
Riccio G, Lauritano C. Microalgae with Immunomodulatory Activities. Mar Drugs 2019; 18:E2. [PMID: 31861368 PMCID: PMC7024220 DOI: 10.3390/md18010002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Microalgae are photosynthetic microorganisms adapted to live in very different environments and showing an enormous biochemical and genetic diversity, thus representing an excellent source of new natural products with possible applications in several biotechnological sectors. Microalgae-derived compounds have shown several properties, such as anticancer, antimicrobial, anti-inflammatory, and immunomodulatory. In the last decade, compounds stimulating the immune system, both innate immune response and adaptive immune response, have been used to prevent and fight various pathologies, including cancer (cancer immunotherapy). In this review we report the microalgae that have been shown to possess immunomodulatory properties, the cells and the cellular mediators involved in the mechanisms of action and the experimental models used to test immunostimulatory activities. We also report information on fractions or pure compounds from microalgae identified as having immunostimulatory activity. Given the increasing interest in microalgae as new eco-friendly source of bioactive compounds, we also discuss their possible role as source of new classes of promising drugs to treat human pathologies.
Collapse
Affiliation(s)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy
| |
Collapse
|
47
|
Bauhammer I, Sacha M, Haltner E. Establishment of an in vitro model of cultured viable human, porcine and canine skin and comparison of different media supplements. PeerJ 2019; 7:e7811. [PMID: 31592353 PMCID: PMC6778665 DOI: 10.7717/peerj.7811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/01/2019] [Indexed: 12/31/2022] Open
Abstract
Transdermal drug delivery provides several advantages over conventional drug administration, such as the avoidance of first-pass metabolism and better patient compliance. In vitro research can abbreviate and facilitate the pharmaceutical development considerably compared to in vivo research as drug screening and clinical studies can be reduced. These advantages led to the development of corresponding skin models. Viable skin models are more useful than non-viable ones, due to the influence of skin metabolism on the results. While most in vitro studies concentrate on evaluating human-based models, the current study is designed for the investigation of both human and animal diseases. So far, there is little information available in the literature about viable animal skin cultures which are in fact intended for application in the veterinary and not the human field. Hence, the current study aims to fill the gap. For the in vitro viable skin model, specimens of human, porcine and canine skin were cultured over two weeks under serum-free conditions. To evaluate the influence of medium supplementation on skin viability, two different supplement mixtures were compared with basic medium. The skin specimens were maintained at a viability-level >50% until the end of the study. From the tested supplements, the addition of bovine pituitary extract and epidermal growth factor increased skin viability whereas hydrocortisone and insulin induced a decrease. This in vitro viable skin model may be a useful tool for the investigation of skin diseases, especially for the veterinary field.
Collapse
|
48
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Kodukula K, Zamboni RJ. Epigenetic treatment of dermatologic disorders. Drug Dev Res 2019. [DOI: 10.1002/ddr.21562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of PharmacyUniversity of California, San Francisco San Francisco California
- ShangPharma Innovation Inc. South San Francisco California
| | - Douglas V. Faller
- Department of MedicineBoston University School of Medicine Boston Massachusetts
- Cancer Research CenterBoston University School of Medicine Boston Massachusetts
| | - Ioannis P. Glavas
- Department of OphthalmologyNew York University School of Medicine New York City New York
| | - David N. Harpp
- Department of ChemistryMcGill University Montreal Quebec Canada
| | | | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary MedicineAuburn University Auburn Alabama
| | - Whitney R. Powers
- Department of Health SciencesBoston University Boston Massachusetts
- Department of AnatomyBoston University School of Medicine Boston Massachusetts
| | - Konstantina Sampani
- Beetham Eye InstituteJoslin Diabetes Center Boston Massachusetts
- Department of MedicineHarvard Medical School Boston Massachusetts
| | - Kosta Steliou
- Cancer Research CenterBoston University School of Medicine Boston Massachusetts
- PhenoMatriX, Inc. Natick Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis LaboratoryMassachusetts Eye and Ear Infirmary Boston Massachusetts
- Department of OphthalmologyHarvard Medical School Boston Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation Inc. South San Francisco California
- PhenoMatriX, Inc. Natick Massachusetts
| | | |
Collapse
|
49
|
Rodríguez-Luna A, Ávila-Román J, Oliveira H, Motilva V, Talero E. Fucoxanthin and Rosmarinic Acid Combination Has Anti-Inflammatory Effects through Regulation of NLRP3 Inflammasome in UVB-Exposed HaCaT Keratinocytes. Mar Drugs 2019; 17:E451. [PMID: 31374828 PMCID: PMC6722862 DOI: 10.3390/md17080451] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Excessive exposure to ultraviolet (UV) radiation is the main risk factor to develop skin pathologies or cancer because it encourages oxidative condition and skin inflammation. In this sense, strategies for its prevention are currently being evaluated. Natural products such as carotenoids or polyphenols, which are abundant in the marine environment, have been used in the prevention of oxidative stress due to their demonstrated antioxidant activities. Nevertheless, the anti-inflammatory activity and its implication in photo-prevention have not been extensively studied. Thus, we aimed to evaluate the combination of fucoxanthin (FX) and rosmarinic acid (RA) on cell viability, apoptosis induction, inflammasome regulation, and anti-oxidative response activation in UVB-irradiated HaCaT keratinocytes. We demonstrated for the first time that the combination of FX and RA (5 µM RA plus 5 μM FX, designated as M2) improved antioxidant and anti-inflammatory profiles in comparison to compounds assayed individually, by reducing UVB-induced apoptosis and the consequent ROS production. Furthermore, the M2 combination modulated the inflammatory response through down-regulation of inflammasome components such as NLRP3, ASC, and Caspase-1, and the interleukin (IL)-1β production. In addition, Nrf2 and HO-1 antioxidant genes expression increased in UVB-exposed HaCaT cells pre-treated with M2. These results suggest that this combination of natural products exerts photo-protective effects by down-regulating NRLP3-inflammasome and increasing Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Helena Oliveira
- Department of Biology, Faculty of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
50
|
Balić A, Mokos M. Do We Utilize Our Knowledge of the Skin Protective Effects of Carotenoids Enough? Antioxidants (Basel) 2019; 8:E259. [PMID: 31370257 PMCID: PMC6719967 DOI: 10.3390/antiox8080259] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Due to their potential health-promoting effects, carotenoids have drawn both scientific and public attention in recent years. The primary source of carotenoids in the human skin is diet, mainly fruits, vegetables, and marine product, but they may originate from supplementation and topical application, too. In the skin, they accumulate mostly in the epidermis and act as a protective barrier to various environmental influences. Namely, the skin is exposed to numerous environmental factors, including ultraviolet radiation (UVR), air pollution, and smoking, that cause oxidative stress within the skin with consequent premature (extrinsic) aging. UVR, as the most prominent environmental factor, may cause additional detrimental skin effects, such as sunburn, DNA damage, and skin cancer. Therefore, photoprotection is the first line intervention in the prevention of premature aging and skin cancer. Numerous studies have demonstrated that carotenoids, particularly β-carotene, lycopene, lutein, and astaxanthin, have photoprotective effects, not only through direct light-absorbing properties, but also through their antioxidant effects (scavenging reactive oxygen species), as well as by regulation of UV light-induced gene expression, modulation of stress-dependent signaling, and/or suppression of cellular and tissue responses like inflammation. Interventional studies in humans with carotenoid-rich diet have shown its photoprotective effects on the skin (mostly by decreasing the sensitivity to UVR-induced erythema) and its beneficial effects in prevention and improvement of skin aging (improved skin elasticity and hydration, skin texture, wrinkles, and age spots). Furthermore, carotenoids may be helpful in the prevention and treatment of some photodermatoses, including erythropoietic protoporphyria (EPP), porphyria cutanea tarda (PCT) and polymorphous light eruption (PMLE). Although UVR is recognized as the main etiopathogenetic factor in the development of non-melanoma skin cancer (NMSC) and melanoma, and the photoprotective effects of carotenoids are certain, available studies still could not undoubtedly confirm the protective role of carotenoids in skin photocarcinogenesis.
Collapse
Affiliation(s)
- Anamaria Balić
- University Hospital Centre Zagreb, Department of Dermatology and Venereology, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia.
| | - Mislav Mokos
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|