1
|
Chen G, Yu L, Shi F, Shen J, Zhang Y, Liu G, Mei X, Li X, Xu X, Xue C, Chang Y. A comprehensive review of sulfated fucan from sea cucumber: Antecedent and prospect. Carbohydr Polym 2024; 341:122345. [PMID: 38876715 DOI: 10.1016/j.carbpol.2024.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Long Yu
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xinyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
2
|
Liu J, Geng L, Wang J, Yue Y, Wu N, Zhang Q. Structural Analysis and Anticoagulant Activity of Fucosylated Glycosaminoglycan from Sea Cucumber Phyllophorus proteus. Foods 2024; 13:2889. [PMID: 39335817 PMCID: PMC11431815 DOI: 10.3390/foods13182889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Phyllophorus proteus is a low-value sea cucumber from Indonesia and other tropical peripheral waters. In this study, a fucosylated glycosaminoglycan (FG) was extracted from P. proteus. It consists of GlcA, GalNAc, and Fuc, with a molecular weight of 67.1 kDa. The degraded FG (dFG) was prepared by β-elimination. Structural analysis revealed that the main chain of dFG was composed of GalNAc and GlcA, linked alternately by β1,3 and β1,4 glycosidic bonds. The sulfate group was located at the 4 and 6 positions of GalNAc. Fuc was attached to the 3 position of GlcA by an α1,3 glycosidic bond, and the side chain of Fuc exhibited various sulfate substitutions. FG significantly prolonged the coagulation time of APTT, PT, TT, and FIB, surpassing the effect of LMWH, thereby demonstrating its ability to exert anticoagulant effects in both the endogenous and exogenous coagulation pathways. Conversely, dFG had no significant effect on the clotting time of PT, suggesting its lack of impact on the intrinsic coagulation pathway. This study elucidates the structural properties and potent anticoagulant activities of fucosylated glycosaminoglycan from P. proteus.
Collapse
Affiliation(s)
- Jingwen Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (L.G.); (J.W.); (Y.Y.); (N.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (L.G.); (J.W.); (Y.Y.); (N.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (L.G.); (J.W.); (Y.Y.); (N.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (L.G.); (J.W.); (Y.Y.); (N.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (L.G.); (J.W.); (Y.Y.); (N.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (L.G.); (J.W.); (Y.Y.); (N.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Cui L, Sun H, Shang X, Wen J, Li P, Yang S, Chen L, Huang X, Li H, Yin R, Zhao J. Purification and Structural Analyses of Sulfated Polysaccharides from Low-Value Sea Cucumber Stichopus naso and Anticoagulant Activities of Its Oligosaccharides. Mar Drugs 2024; 22:265. [PMID: 38921576 PMCID: PMC11204762 DOI: 10.3390/md22060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea cucumbers. The highly regular structure {3)-L-Fuc2S-(α1,}n of SnFS was determined via a detailed NMR analysis of its oxidative degradation product. By employing β-elimination depolymerization of SnFG, tri-, penta-, octa-, hendeca-, tetradeca-, and heptadeca-saccharides were obtained from the low-molecular-weight product. Their well-defined structures confirmed that SnFG possessed the backbone of {D-GalNAc4S6S-β(1,4)-D-GlcA}, and each GlcA residue was branched with Fuc2S4S. SnFS and SnFG are both structurally the simplest version of natural fucan sulfate and fucosylated glycosaminoglycan, facilitating the application of low-value sea cucumbers S. naso. Bioactivity assays showed that SnFG and its derived oligosaccharides exhibited potent anticoagulation and intrinsic factor Xase (iXase) inhibition. Moreover, a comparative analysis with the series of oligosaccharides solely branched with Fuc3S4S showed that in oligosaccharides with lower degrees of polymerization, such as octasaccharides, Fuc2S4S led to a greater increase in APTT prolongation and iXase inhibition. As the degree of polymerization increases, the influence from the sulfation pattern diminishes, until it is overshadowed by the effects of molecular weight.
Collapse
Affiliation(s)
- Lige Cui
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Xiaolei Shang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Jing Wen
- School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China;
| | - Pengfei Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Shengtao Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Linxia Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Xiangyang Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Haoyang Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.C.); (H.S.); (X.S.); (P.L.); (S.Y.); (L.C.); (X.H.); (H.L.); (J.Z.)
| |
Collapse
|
4
|
Ma Y, Zuo Z, Zheng W, Yin R, Wu X, Ma Y, Ji M, Ma W, Li X, Xiao W, Gao N, Zhao J. Structural characterization of a distinct fucan sulfate from Pattalus mollis through an oligosaccharide mapping approach. Carbohydr Res 2024; 536:109052. [PMID: 38325067 DOI: 10.1016/j.carres.2024.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The elucidation of the precise structure of fucan sulfate is essential for understanding the structure-activity relationship and promoting potential biomedical applications. In this work, the structure of a distinct fucan sulfate fraction V (PmFS in Ref 15 and FSV in Ref 16 → PFV) from Pattalus mollis was investigated using an oligosaccharide mapping approach. Six size-homogeneous fractions were purified from the mild acid hydrolyzed PFV and identified as fucitols, disaccharides and trisaccharides by 1D/2D NMR and MS analysis. Significantly, the sulfation pattern, glycosidic linkages, and sequences of all the oligosaccharides were unambiguously identified. The common 2-desulfation of the reducing end residue of the oligosaccharides was observed. Overall, the backbone of PFV was composed of L-Fuc2S (major) and L-Fuc3S (minor) linked by α1,4 glycosidic bonds. Importantly, the branches contain both monosaccharide and disaccharide linked to the backbone by α1,3 glycosidic linkages. Thus, the tentative structure of natural PFV was shown to be {-(R-α1,3)-L-Fuc2S-α1,4-(L-Fuc2S/3S-α1,4)x-}n, where R is L-Fuc(2S)4S-α1,3/4-L-Fuc4S(0S)- or L-Fuc(2S)4S-. Our results provide insight into the heterogeneous structure of the fucan sulfate found in sea cucumbers. Additionally, PFV and its fractions showed strong anticoagulant and anti-iXase activities, which may be related to the distinct structure of PFV.
Collapse
Affiliation(s)
- Yan Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Zhichuang Zuo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenqi Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xuewen Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Yujun Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Mengchen Ji
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenwen Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xian Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
5
|
Hossain A, Dave D, Shahidi F. Sulfated polysaccharides in sea cucumbers and their biological properties: A review. Int J Biol Macromol 2023; 253:127329. [PMID: 37844809 DOI: 10.1016/j.ijbiomac.2023.127329] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Sea cucumbers contain a wide range of biomolecules, including sulfated polysaccharides (SPs), with immense therapeutic and nutraceutical potential. SPs in sea cucumbers are mainly fucosylated chondroitin sulfate (FCS) and fucan sulfate (FS) which exhibit a series of pharmacological effects, including anticoagulant activity, in several biological systems. FCS is a structurally distinct glycosaminoglycan in the sea cucumber body wall, and its biological properties mainly depend on the degree of sulfation, position of sulfate group, molecular weight, and distribution of branches along the backbone. So far, FCS and FS have been recognized for their antithrombotic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, anti-obesity, and antioxidant potential. However, the functions of these SPs are mainly dependent on the species, origins, harvesting season, and extraction methods applied. This review focuses on the SPs of sea cucumbers and how their structural diversities affect various biological activities. In addition, the mechanism of actions of SPs, chemical structures, factors affecting their bioactivities, and their extraction methods are also discussed.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL A1C 5R3, Canada.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
6
|
Chen R, Wang W, Yin R, Pan Y, Xu C, Gao N, Luo X, Zhao J. Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata. Mar Drugs 2023; 21:632. [PMID: 38132953 PMCID: PMC10744359 DOI: 10.3390/md21120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide β-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways.
Collapse
Affiliation(s)
- Ru Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Institute of Traditional Chinese Medicine and Materia Medica, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Ying Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Xiaodong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| |
Collapse
|
7
|
Lan D, Zhang J, Shang X, Yu L, Xu C, Wang P, Cui L, Cheng N, Sun H, Ran J, Sha L, Yin R, Gao N, Zhao J. Branch distribution pattern and anticoagulant activity of a fucosylated chondroitin sulfate from Phyllophorella kohkutiensis. Carbohydr Polym 2023; 321:121304. [PMID: 37739534 DOI: 10.1016/j.carbpol.2023.121304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Fucosylated chondroitin sulfate (FCS) extracted from Phyllophorella kohkutiensis (PkFCS) is composed of d-GalNAc, d-GlcA, l-Fuc and -SO42-. According to the defined structures revealed by NMR spectra of the branches released by mild acid hydrolysis and oligosaccharides generated by β-eliminative depolymerization, the backbone of PkFCS is CS-E, and the branch types attached to C-3 of d-GlcA include l-Fuc2S4S, l-Fuc3S4S, l-Fuc4S, and the disaccharide α-d-GalNAc-1,2-α-l-Fuc3S4S with the ratio of 43:13:22:22. Notably, novel heptasaccharide and hendecasaccharide were identified that are branched with continuous distribution of the disaccharide. The structural sequences of the oligosaccharides indicate that three unique structural motifs are present in the entire PkFCS polymer, including a motif branched with randomly distributed different sulfated l-Fuc units, a motif containing regular l-Fuc2S4S branches and a motif enriched in α-d-GalNAc-1,2-α-l-Fuc3S4S. This is the first report about the distribution pattern of diverse branches in natural FCS. Natural PkFCS exhibited potent anticoagulant activity on APTT prolonging and anti-iXase activity. Regarding the structurally defined oligosaccharides with sulfated fucosyl side chains, octasaccharide (Pk4b) is the minimum fragment responsible for its anticoagulant activity correlated with anti-iXase. However, further glycosyl modification with a non-sulfated d-GalNAc at the C-2 position of l-Fuc3S4S could significantly decrease the anticoagulant and anti-iXase activity.
Collapse
Affiliation(s)
- Di Lan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiali Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaolei Shang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lijuan Yu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lige Cui
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Nanqi Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jianing Ran
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Le Sha
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
8
|
Cheng S, Cai H, Yi M, Dong L, Yang J. Degradation Product of Sea Cucumber Polysaccharide by Dielectric Barrier Discharge Enhanced the Migration of Macrophage In Vitro. Foods 2023; 12:4079. [PMID: 38002137 PMCID: PMC10670309 DOI: 10.3390/foods12224079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the effect of dielectric barrier discharge (DBD) on sea cucumber polysaccharide (SP-2) and evaluated its anti-inflammatory properties. The SP-2 was depolymerized by applying an input voltage of 60~90 V for 3~9 min. The features of the products were examined using high-performance gel permeation chromatography, HPLC-PAD-MS, and the Fourier transform infrared (FTIR) spectrum. The anti-inflammatory properties of the product were investigated by measuring nitric oxide (NO) release, ROS accumulation, and cell migration using RAW264.7 cells (LPS-induced or not-induced). The results showed SP-2 depolymerized into homogeneous and controllable-size oligosaccharide products. The depolymerized ratio can reach 80%. The results of the measurement of reducing sugars indicate that SP-2 was cleaved from within the sugar chain. The SP-2 was deduced to have a monosaccharide sequence of GlcN-Man-Man-Man-Man-Man based on the digested fragment information. The depolymerization product restrained the release of NO and the accumulation of ROS. By testing the RAW264.7 cell scratch assay, it was found that it enhances the migration of immune cells. DBD degradation of SP-2 leads to homogeneous and controllable-size oligosaccharide products, and this technique can be used for polysaccharide structure analysis. The depolymerized product of SP-2 has an anti-inflammatory capability in vitro.
Collapse
Affiliation(s)
| | | | | | | | - Jingfeng Yang
- School of Food Science and Technology, Dalian Municipality Engineering Laboratory for Shellfish Polysaccharide, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China; (S.C.); (H.C.); (M.Y.); (L.D.)
| |
Collapse
|
9
|
Zhang J, Hao P, Han L, Xie J, Gao C, Li Y, Zhang X, liu P, Guo C, Hao Z, Ding J, Chang Y, Wang L. UHPLC-MS/MS metabolomics analysis of sea cucumber ( Apostichopus japonicus) processed using different methods. Heliyon 2023; 9:e21854. [PMID: 38058607 PMCID: PMC10695838 DOI: 10.1016/j.heliyon.2023.e21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023] Open
Abstract
The effects of different processing methods on the nutritional components of sea cucumber (Apostichopus japonicus) are of concern to consumers who select sea cucumber products. This study employed liquid chromatography tandem mass spectrometry to examine the metabolites in fresh, unsoaked salted, soaked salted, and instant sea cucumber body wall samples sourced from Dalian, China. Metabolites were evaluated utilizing partial least squares discriminant analysis (PLS-DA) and subsequently subjected to KEGG metabolic pathway analysis for further investigation. PLS-DA effectively discriminated the body wall metabolites of sea cucumbers obtained via various processing techniques. The differential metabolites identified predominantly encompassed amino acids, lipids, and carbohydrates. Subsequent KEGG metabolic pathway analysis demonstrated a significant association between lipid, carbohydrate, and amino acid metabolism and the specific processing methods employed. The assessment of nutritional differences corresponding to the various A. japonicus processing methods was conducted. The findings of this study can assist in the choice of sea cucumber products and the selection of suitable processing methods.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Lingshu Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, PR China
| | - Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Chuang Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Peng liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| |
Collapse
|
10
|
Muhsin MF, Fujaya Y, Hidayani AA, Fazhan H, Wan Mahari WA, Lam SS, Shu-Chien AC, Wang Y, Afiqah-Aleng N, Rukminasari N, Waiho K. Bridging the gap between sustainability and profitability: unveiling the untapped potential of sea cucumber viscera. PeerJ 2023; 11:e16252. [PMID: 37842055 PMCID: PMC10576502 DOI: 10.7717/peerj.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Sea cucumbers have high economic value, and in most forms of trade, their body wall is typically the only part that is harvested and sold. The organs of the sea cucumber, collectively known as the viscera, are frequently discarded, contributing to land and water pollution. However, discarded sea cucumber viscera contain various nutrients that can be used in many applications. Therefore, this review highlights the biological and economic aspects of sea cucumbers, followed by a critical discussion of the nutritional value of their internal organs and possible applications, including as functional feed additives in the aquaculture industry, sources of natural testosterone for application in sex reversal and production of monosex population, of neuroprotective agents against central nervous system disorders and of cosmetic ingredients, especially for skin whitening and anti-ageing products. The review further highlights the valorisation potential of viscera to maximize their economic potential, thus providing an enormous prospect for reusing sea cucumber waste, thereby reducing the negative impact of the sea cucumber fishery sector on the environment.
Collapse
Affiliation(s)
- Muhammad Fatratullah Muhsin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Yushinta Fujaya
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Andi Aliah Hidayani
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nita Rukminasari
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
11
|
Ruzemaimaiti D, Sun H, Zhang J, Xu C, Chen L, Yin R, Zhao J. Oligomer-guided recognition of two fucan sulfate from Bohadschia argus and inhibition of P-selectin binding to its ligand. Carbohydr Polym 2023; 317:121080. [PMID: 37364953 DOI: 10.1016/j.carbpol.2023.121080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Fucan sulfate (FS) from sea cucumber shows intriguing structure and extensive activities. Here, three homogeneous FS (BaFSI - III) were obtained from Bohadschia argus, followed with physicochemical properties analyses including monosaccharide composition, molecular weight, and sulfate content. BaFSI was proposed to carry a unique distribution pattern of sulfate groups as a novel sequence composed of domain A and domain B that formed by different FucS residues, markedly differing from FS reported before, according to the analyses of 12 oligosaccharides and a representative residual saccharide chain. BaFSII possessed a highly regular structure {4-L-Fuc3S-α1,}n according to its peroxide depolymerized product. BaFSIII was confirmed as a FS mixture bearing similar structural characteristics with BaFSI and BaFSII by means of mild acid hydrolysis and oligosaccharide analysis. Bioactivity assays showed that BaFSI and BaFSII could potently inhibit P-selectin binding to PSGL-1 and HL-60 cells. Structure-activity relationship analysis showed that molecular weight and sulfation pattern were the essential factors for the potent inhibition. Meanwhile, an acid hydrolysate of BaFSII with a molecular weight about 15 kDa exhibited a comparable inhibition with the native BaFSII. Given the potent activity and highly regular structure of BaFSII, it shows great potential for development as a P-selectin inhibitor.
Collapse
Affiliation(s)
- Dilihumaer Ruzemaimaiti
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Jiali Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Linxia Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
12
|
Dwivedi R, Farrag M, Sharma P, Shi D, Shami AA, Misra SK, Ray P, Shukla J, Zhang F, Linhardt RJ, Sharp JS, Tandon R, Pomin VH. The Sea Cucumber Thyonella gemmata Contains a Low Anticoagulant Sulfated Fucan with High Anti-SARS-CoV-2 Actions against Wild-Type and Delta Variants. JOURNAL OF NATURAL PRODUCTS 2023; 86:1463-1475. [PMID: 37306476 PMCID: PMC10401483 DOI: 10.1021/acs.jnatprod.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we isolated two new sulfated glycans from the body wall of the sea cucumber Thyonella gemmata: one fucosylated chondroitin sulfate (TgFucCS) (17.5 ± 3.5% kDa) and one sulfated fucan (TgSF) (383.3 ± 2.1% kDa). NMR results showed the TgFucCS backbone composed of [→3)-β-N-acetylgalactosamine-(1→4)-β-glucuronic acid-(1→] with 70% 4-sulfated and 30% 4,6-disulfated GalNAc units and one-third of the GlcA units decorated at the C3 position with branching α-fucose (Fuc) units either 4-sulfated (65%) or 2,4-disulfated (35%) and the TgSF structure composed of a tetrasaccharide repeating unit of [→3)-α-Fuc2,4S-(1→2)-α-Fuc4S-(1→3)-α-Fuc2S-(1→3)-α-Fuc2S-(1→]n. Inhibitory properties of TgFucCS and TgSF were investigated using SARS-CoV-2 pseudovirus coated with S-proteins of the wild-type (Wuhan-Hu-1) or the delta (B.1.617.2) strains and in four different anticoagulant assays, comparatively with unfractionated heparin. Molecular binding to coagulation (co)-factors and S-proteins was investigated by competitive surface plasmon resonance spectroscopy. Among the two sulfated glycans tested, TgSF showed significant anti-SARS-CoV-2 activity against both strains together with low anticoagulant properties, indicating a good candidate for future studies in drug development.
Collapse
Affiliation(s)
- Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Marwa Farrag
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Poonam Sharma
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Deling Shi
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Anter A Shami
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Priya Ray
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Jayanti Shukla
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Ritesh Tandon
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
13
|
Zhang Y, Liu Y, Ni G, Xu J, Tian Y, Liu X, Gao J, Gao Q, Shen Y, Yan Z. Sulfated modification, basic characterization, antioxidant and anticoagulant potentials of polysaccharide from Sagittaria trifolia. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
14
|
Hao-Yu D, Ding-Yi Y, Bao-Hong X, Aihua S, Xiao-Qian D, Cun-Zhi L. Two Molecular Weights Holothurian Glycosaminoglycan and Hematoporphyrin Derivative-Photodynamic Therapy Inhibit Proliferation and Promote Apoptosis of Human Lung Adenocarcinoma Cells. Integr Cancer Ther 2023; 22:15347354221144310. [PMID: 36624619 PMCID: PMC9834781 DOI: 10.1177/15347354221144310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber, and previous studies have shown many unique bioactivities of hGAG, including antitumor, anti-angiogenesis, anti coagulation, anti thrombosis, anti-inflammation, antidiabetic effect, antivirus, and immune regulation. The effects of 3W and 5W molecular weights hGAG with hematoporphyrin derivative-photodynamic therapy (HPD-PDT) on lung cancer were investigated. Human lung adenocarcinoma A549 cells were divided into 6 groups: control group, 3W molecular weight hGAG group, 5W molecular weight hGAG group, HPD-PDT group, 3W molecular weight hGAG + HPD-PDT group, and 5W molecular weight hGAG + HPD-PDT group. Cell morphology was observed under inverted phase contrast microscope. Cell proliferative activity was detected by CCK8 and cell apoptosis was assayed by Hoechst33258 staining and flow cytometry. The results showed that two different molecular weights hGAG could inhibit proliferation, promote apoptosis rates of A549 cells, and enhance the sensitivity of A549 cells to HPD-PDT. The combined use of hGAG and HPD-PDT has synergistic inhibitory effects on A549 cells, and the effects of 3W molecular weight hGAG are better than that of 5W molecular weight hGAG.
Collapse
Affiliation(s)
- Dai Hao-Yu
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Yu Ding-Yi
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Xiao Bao-Hong
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Sui Aihua
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Ding Xiao-Qian
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Lin Cun-Zhi
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China,Lin Cun-Zhi, Department of Respiratory and
Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao
266003, Shandong, China.
| |
Collapse
|
15
|
Yin R, Pan Y, Cai Y, Yang F, Gao N, Ruzemaimaiti D, Zhao J. Re-understanding of structure and anticoagulation: Fucosylated chondroitin sulfate from sea cucumber Ludwigothurea grisea. Carbohydr Polym 2022; 294:119826. [PMID: 35868774 DOI: 10.1016/j.carbpol.2022.119826] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022]
Abstract
Fucosylated chondroitin sulfate (FCS) from sea cucumber Ludwigothurea grisea (FCSLg) is the first one that reported to bear the di-fucosyl branches. Here we deciphered it by analyzing the physicochemical properties and its derivatives. Oligosaccharides prepared by selective cleavage of glycosidic linkages presented the mono-fucose and heterodisaccharide branches in FCSLg. The disaccharide branch was determined as d-GalNAcR1-(α1,2)-l-FucR2 rather than the di-fucosyl branch, where R1 was 4-mono-O- or 4,6-di-O-sulfation, and R2 was 3-mono-O- or 3,4-di-O-sulfation, respectively. The diversity of sulfation patterns in branches complicated the structure. These results give us a new understanding of FCSLg and provided a reliable method to decipher the FCS with complex branches. Bioanalysis of chemically modified derivatives showed that modulating the molecular mass could enhance the Xase target selectivity. Side chains conferred the Xase complex inhibition by binding to FIXa with a high affinity. Whether monosaccharide and disaccharide branches have differential effects needs to be further explored.
Collapse
Affiliation(s)
- Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Pan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | | | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
16
|
Fucose-Rich Sulfated Polysaccharides from Two Vietnamese Sea Cucumbers Bohadschia argus and Holothuria (Theelothuria) spinifera: Structures and Anticoagulant Activity. Mar Drugs 2022; 20:md20060380. [PMID: 35736183 PMCID: PMC9228488 DOI: 10.3390/md20060380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Fucosylated chondroitin sulfates (FCSs) FCS-BA and FCS-HS, as well as fucan sulfates (FSs) FS-BA-AT and FS-HS-AT were isolated from the sea cucumbers Bohadschia argus and Holothuria (Theelothuria) spinifera, respectively. Purification of the polysaccharides was carried out by anion-exchange chromatography on DEAE-Sephacel column. Structural characterization of polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of non-destructive NMR spectroscopic methods. Both FCSs were shown to contain a chondroitin core [→3)-β-d-GalNAc-(1→4)-β-d-GlcA-(1→]n bearing sulfated fucosyl branches at O-3 of every GlcA residue in the chain. These fucosyl residues were different in pattern of sulfation: FCS-BA contained Fuc2S4S, Fuc3S4S and Fuc4S at a ratio of 1:8:2, while FCS-HS contained these residues at a ratio of 2:2:1. Polysaccharides differed also in content of GalNAc4S6S and GalNAc4S units, the ratios being 14:1 for FCS-BA and 4:1 for FCS-HS. Both FCSs demonstrated significant anticoagulant activity in clotting time assay and potentiated inhibition of thrombin, but not of factor Xa. FS-BA-AT was shown to be a regular linear polymer of 4-linked α-L-fucopyranose 3-sulfate, the structure being confirmed by NMR spectra of desulfated polysaccharide. In spite of considerable sulfate content, FS-BA-AT was practically devoid of anticoagulant activity. FS-HS-AT cannot be purified completely from contamination of some FCS. Its structure was tentatively represented as a mixture of chains identical with FS-BA-AT and other chains built up of randomly sulfated alternating 4- and 3-linked α-L-fucopyranose residues.
Collapse
|
17
|
Comprehensive proteomic analysis of sea cucumbers (Stichopus japonicus) in thermal processing by HPLC-MS/MS. Food Chem 2022; 373:131368. [PMID: 34717088 DOI: 10.1016/j.foodchem.2021.131368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/11/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023]
Abstract
Thermal processing is the most frequently adopted processing technology for sea cucumbers, which can significantly affect their protein composition. In this paper, three thermal processing methods high pressure steaming (HPS), atmospheric pressure boiling (APB), and atmospheric pressure steaming (APS) were adopted and protein compositions of both body walls and cooking liquors by thermal processing stichopus japonicus were systematically analysis by proteomic strategy. The total proteins loss rates of body walls were 11.6%, 13.0%, and 14.8% for HPS, APS, and APB methods, respectively. However, the main types of protein composition were retained. Similar mechanisms of protein loss may exist even if different thermal processing were applied. The most frequent hydrolysis sites in thermal processing were phenylalanine, leucine, asparagine, and tyrosine at both C and N terminals. This study provides theoretical guidance for optimizing the industry thermal processing of sea cucumbers.
Collapse
|
18
|
Claus-Desbonnet H, Nikly E, Nalbantova V, Karcheva-Bahchevanska D, Ivanova S, Pierre G, Benbassat N, Katsarov P, Michaud P, Lukova P, Delattre C. Polysaccharides and Their Derivatives as Potential Antiviral Molecules. Viruses 2022; 14:426. [PMID: 35216019 PMCID: PMC8879384 DOI: 10.3390/v14020426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
In the current context of the COVID-19 pandemic, it appears that our scientific resources and the medical community are not sufficiently developed to combat rapid viral spread all over the world. A number of viruses causing epidemics have already disseminated across the world in the last few years, such as the dengue or chinkungunya virus, the Ebola virus, and other coronavirus families such as Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV). The outbreaks of these infectious diseases have demonstrated the difficulty of treating an epidemic before the creation of vaccine. Different antiviral drugs already exist. However, several of them cause side effects or have lost their efficiency because of virus mutations. It is essential to develop new antiviral strategies, but ones that rely on more natural compounds to decrease the secondary effects. Polysaccharides, which have come to be known in recent years for their medicinal properties, including antiviral activities, are an excellent alternative. They are essential for the metabolism of plants, microorganisms, and animals, and are directly extractible. Polysaccharides have attracted more and more attention due to their therapeutic properties, low toxicity, and availability, and seem to be attractive candidates as antiviral drugs of tomorrow.
Collapse
Affiliation(s)
- Hadrien Claus-Desbonnet
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Elsa Nikly
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Vanya Nalbantova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Medical University Sofia, 1000 Sofia, Bulgaria
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
19
|
Xu H, Zhou Q, Liu B, Chen F, Wang M. Holothurian fucosylated chondroitin sulfates and their potential benefits for human health: Structures and biological activities. Carbohydr Polym 2022; 275:118691. [PMID: 34742418 DOI: 10.1016/j.carbpol.2021.118691] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023]
Abstract
Fucosylated chondroitin sulfates (FCS) are a sulfated polysaccharide exclusively existing in the body wall of sea cucumber. FCS possesses a mammalian chondroitin sulfate like backbone, namely repeating disaccharides units composed of GlcA and GalNAc, with fucosyl branches linked to GlcA and/or GalNAc residues. It is found that FCS can prevent unhealthy dietary pattern-induced metabolic syndromes, including insulin resistance and β-cell function improvement, anti-inflammation, anti-hyperlipidemia, and anti-adipogenesis. Further studies show that those activities of FCS might be achieved through positively modulating gut microbiota composition. Besides, FCS also show therapeutic efficacy in cancer, HIV infection, and side effects of cyclophosphamide. Furthermore, bioactivities of FCS are closely affected by their molecular weights, sulfation pattern of the fucosyl branches, and chain conformations. This review summarizes the recent 20 years studies to provide references for the future studies and applications of FCS in functional foods or drugs.
Collapse
Affiliation(s)
- Hui Xu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
20
|
Liu X, Ning Z, Zuo Z, Wang P, Yin R, Gao N, Wu B, Zhao J. The glycosidic bond cleavage and desulfation investigation of fucosylated glycosaminoglycan during mild acid hydrolysis through structural analysis of the resulting oligosaccharides. Carbohydr Res 2021; 511:108493. [PMID: 34942433 DOI: 10.1016/j.carres.2021.108493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Mild acid hydrolysis is a common method to study the chemical structure of fucosylated glycosaminoglycan (FG). It was generally considered that the fucose branches α-L-FucS-(1, of FG could be hydrolyzed selectively in mild acid. This report focused on the selectivity of glycosidic bond cleavage and extensive desulfation characteristics of the backbone during mild acid hydrolysis. The hydrolyzed product of native SvFG (dfSvFG) was prepared by mild acid hydrolysis in 0.1 M H2SO4 at 100 °C for 2 h. A series of oligosaccharides were purified by GPC and SAX-HPLC from dfSvFG, then they were analyzed by HPGPC, 1D/2D NMR and ESI-Q-TOF-MS. The precise structure of these oligosaccharides was elucidated to be trisaccharides, tetrasaccharides and pentasaccharides, indicating SvFG branches hydrolyzed basically and its' backbone composed of repeating β-D-GlcA-(1,3)-D-GalNAc and β-D-GalNAc-(1,4)-D-GlcA unit. The prevalent presence of the GlcA residues at the non-reducing terminal of these oligosaccharides, suggesting the glycosidic bond of β-D-GalNAc-(1,4)-D-GlcA was more susceptible to acid than that of β-D-GlcA-(1,3)-D-GalNAc during mild acid hydrolysis. Moreover, the sulfate ester groups in GalNAc4S6S unit could also be hydrolyzed by acid, and it at position C-4 was more susceptible to hydrolysis than that at C-6. This extensive degradation and desulfation of the backbone should be taken into consideration when mild acid hydrolysis was used in elucidating the exact structure or structure-activity relationship of native FG.
Collapse
Affiliation(s)
- Xixi Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Zimo Ning
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Zhichuang Zuo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
21
|
Li Y, Li M, Xu B, Li Z, Qi Y, Song Z, Zhao Q, Du B, Yang Y. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers: A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
22
|
Cui Y, Liu X, Yi J, Kang Q, Hao L, Lu J. Cognition of polysaccharides from confusion to clarity: when the next "omic" will come? Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34845952 DOI: 10.1080/10408398.2021.2007045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the accelerated pace of modern life, people are facing more and more health pressure. The study of polysaccharides seemed a good choice as a potential treasure trove. Polysaccharides, one of the four basic substances (proteins, nucleic acids, lipids and carbohydrates) that constitute life activities, are obviously an underrated macromolecular substance with great potential. Compared with protein and nucleic acid, the research of polysaccharides is still in the primary stage. The relationship between structure and function of polysaccharides is not clear. In this review, we highlighted the main methods of extraction, purification and structure identification of polysaccharides; summarized their biological activities including immunoregulation, hypoglycemic, anti-tumor, anti-virus, anti-coagulation, and so on. Particularly, the relationship between their structures and activities was described. In addition, the applications of polysaccharides in health food, medicine and cosmetics were also reviewed. This review can help polysaccharide researchers quickly understand the whole process of polysaccharides research, and also provide a reference for the comprehensive utilization of polysaccharides. We need to standardize the research of polysaccharides to make the experimental data more universal, and take it as important references in the review process. Glycomic may appear as the next "omic" after genomic and proteomic in the future. This review provides support for the advancement of glycomics.
Collapse
Affiliation(s)
- Yinxin Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Chemical Engineering, Joint Research Center for Biology, Zhengzhou University, Zhengzhou, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Yao Y, Yim EKF. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydr Polym 2021; 270:118347. [PMID: 34364596 PMCID: PMC10429693 DOI: 10.1016/j.carbpol.2021.118347] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Fucoidan is a sulfated polysaccharide with various bioactivities. The application of fucoidan in cancer treatment, wound healing, and food industry has been extensively studied. However, the therapeutic value of fucoidan in cardiovascular diseases has been less explored. Increasing number of investigations in the past years have demonstrated the effects of fucoidan on cardiovascular system. In this review, we will focus on the bioactivities related to cardiovascular applications, for example, the modulation functions of fucoidan on coagulation system, inflammation, and vascular cells. Factors mediating those activities will be discussed in detail. Current therapeutic strategies and future opportunities and challenges will be provided to inspire and guide further research.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
24
|
Ma Y, Gao N, Zuo Z, Li S, Zheng W, Shi X, Liu Q, Ma T, Yin R, Li X, Zhao J. Five distinct fucan sulfates from sea cucumber Pattalus mollis: Purification, structural characterization and anticoagulant activities. Int J Biol Macromol 2021; 186:535-543. [PMID: 34246676 DOI: 10.1016/j.ijbiomac.2021.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Fucan sulfates from echinoderm possess characteristic structures and various biological activities. Herein, comprehensive methods including enzymolysis, ion-exchange chromatography and size exclusion chromatography lead to the purification of five fucan sulfates (FSI, FSII, FSIII, FSIV, FSV) from the sea cucumber Pattalus mollis. Chemical composition analysis showed that they were all composed of l-fucose. Their sulfate content was determined by a conductimetric method. The molecular weight (Mw) of FSI, FSII, FSIII, FSIV and FSV were measured as 238.3 kDa, 81.0 kDa, 82.0 kDa, 23.2 kDa and 6.12 kDa, respectively. Detailed NMR spectroscopic analysis revealed that the structural sequence of FSI and FSII was →3)-l-FucS-α(1→, where FucS were Fuc2S4S (10%), Fuc2S (44%), Fuc0S (10%), Fuc4S (36%), that of FSIII was →4)-l-Fuc2S-(α1 → 4)-l-Fuc2S-(α1 → 4)-l-Fuc0S/3S-(α1→, where Fuc0S and Fuc3S were in equal molar, and that FSIV was →4)-l-Fuc2S3S-(α1 → 4)-l-Fuc2S3S-(α1 → 4)-l-Fuc2S-(α1→4)-l-Fuc2S-(α1 → 4)-l-Fuc2S-(α1 → 4)-l-Fuc2S-(α1 → . This is the first report that such a diversity of fucan sulfates were obtained from the same sea cucumber species. Biological activity showed that FSI, FSII, FSIII and FSIV exhibited potent anticoagulant by prolonging the APTT. Among them, FSII, FSIII and FSIV showed the similar potency, while FSI owned the strongest. Structure-activity relationships analysis showed that molecular weight and sulfation degree should be the crucial factors for the activity.
Collapse
Affiliation(s)
- Yan Ma
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhichuang Zuo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Shanni Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenqi Zheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiang Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qipei Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ting Ma
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xian Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
25
|
Li H, Yuan Q, Lv K, Ma H, Gao C, Liu Y, Zhang S, Zhao L. Low-molecular-weight fucosylated glycosaminoglycan and its oligosaccharides from sea cucumber as novel anticoagulants: A review. Carbohydr Polym 2021; 251:117034. [DOI: 10.1016/j.carbpol.2020.117034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
|
26
|
Dwivedi R, Pomin VH. Marine Antithrombotics. Mar Drugs 2020; 18:md18100514. [PMID: 33066214 PMCID: PMC7602030 DOI: 10.3390/md18100514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023] Open
Abstract
Thrombosis remains a prime reason of mortality worldwide. With the available antithrombotic drugs, bleeding remains the major downside of current treatments. This raises a clinical concern for all patients undergoing antithrombotic therapy. Novel antithrombotics from marine sources offer a promising therapeutic alternative to this pathology. However, for any potential new molecule to be introduced as a real alternative to existing drugs, the exhibition of comparable anticoagulant potential with minimal off-target effects must be achieved. The relevance of marine antithrombotics, particularly sulfated polysaccharides, is largely due to their unique mechanisms of action and lack of bleeding. There have been many investigations in the field and, in recent years, results have confirmed the role of potential marine molecules as alternative antithrombotics. Nonetheless, further clinical studies are required. This review covers the core of the data available so far regarding the science of marine molecules with potential medical applications to treat thrombosis. After a general discussion about the major biochemical steps involved in this pathology, we discuss the key structural and biomedical aspects of marine molecules of both low and high molecular weight endowed with antithrombotic/anticoagulant properties.
Collapse
|
27
|
Cai Y, Yang W, Li X, Zhou L, Wang Z, Lin L, Chen D, Zhao L, Li Z, Liu S, Yin R, Zuo Z, Gao N, Zhao J. Precise structures and anti-intrinsic tenase complex activity of three fucosylated glycosaminoglycans and their fragments. Carbohydr Polym 2019; 224:115146. [DOI: 10.1016/j.carbpol.2019.115146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
|