1
|
Kawaida MY, Maas KR, Moore TE, Reiter AS, Tillquist NM, Reed SA. Effects of astaxanthin on gut microbiota of polo ponies during deconditioning and reconditioning periods. Physiol Rep 2024; 12:e16051. [PMID: 38811348 PMCID: PMC11136553 DOI: 10.14814/phy2.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
To determine the effects of astaxanthin (ASTX) supplementation on the equine gut microbiota during a deconditioning-reconditioning cycle, 12 polo ponies were assigned to a control (CON; n = 6) or supplemented (ASTX; 75 mg ASTX daily orally; n = 6) group. All horses underwent a 16-week deconditioning period, with no forced exercise, followed by a 16-week reconditioning program where physical activity gradually increased. Fecal samples were obtained at the beginning of the study (Baseline), after deconditioning (PostDecon), after reconditioning (PostRecon), and 16 weeks after the cessation of ASTX supplementation (Washout). Following DNA extraction from fecal samples, v4 of 16S was amplified and sequenced to determine operational taxonomic unit tables and α-diversity and β-diversity indices. The total number of observed species was greater at Baseline than PostDecon, PostRecon, and Washout (p ≤ 0.02). A main effect of ASTX (p = 0.01) and timepoint (p = 0.01) was observed on β-diversity, yet the variability of timepoint was greater (13%) than ASTX (6%), indicating a greater effect of timepoint than ASTX. Deconditioning and reconditioning periods affected the abundance of the Bacteroidetes and Fibrobacteres phyla. Physical activity and ASTX supplementation affect the equine gut microbiome, yet conditioning status may have a greater impact.
Collapse
Affiliation(s)
- Mia Y. Kawaida
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Kendra R. Maas
- Microbial Analysis, Resources, and ServicesUniversity of ConnecticutStorrsConnecticutUSA
| | - Timothy E. Moore
- Statistical Consulting Services, Center for Open Research Resources and EquipmentUniversity of ConnecticutStorrsConnecticutUSA
| | - Amanda S. Reiter
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Sarah A. Reed
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
2
|
Kayani SI, -Rahman SU, Shen Q, Cui Y, Liu W, Hu X, Zhu F, Huo S. Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in Haematococcus pluvialis. Crit Rev Biotechnol 2024; 44:514-529. [PMID: 37380353 DOI: 10.1080/07388551.2023.2208284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/02/2023] [Accepted: 03/10/2023] [Indexed: 06/30/2023]
Abstract
Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. Haematococcus pluvialis is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in H. pluvialis. However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in H. pluvialis genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in H. pluvialis.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-Ur -Rahman
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Li Z, You L, Du X, Yang H, Yang L, Zhu Y, Li L, Jiang Z, Li Q, He N, Lin R, Chen Z, Ni H. New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in Phaffia rhodozyma. Crit Rev Biotechnol 2024:1-19. [PMID: 38797672 DOI: 10.1080/07388551.2024.2344578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Li You
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Haoyi Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Liang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Rui Lin
- College of Ocean and Earth Sciences, and Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| |
Collapse
|
4
|
Li H, Bao L, Wang T, Guan Y. Dietary change influences the composition of the fecal microbiota in two rescued wild raccoon dogs ( Nyctereutes procyonoides). Front Microbiol 2024; 15:1335017. [PMID: 38404601 PMCID: PMC10884114 DOI: 10.3389/fmicb.2024.1335017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
The gut microbiota of wild animals, influenced by various factors including diet, nutrition, gender, and age, plays a critical role in their health and disease status. This study focuses on raccoon dogs (Nyctereutes procyonoides), a commonly found wild animal, and its gut microbiota composition in response to dietary shifts. The study aimed to compare the fecal bacterial communities and diversity of rescued raccoon dogs fed three different diet types (fish and amphibians, mixed protein with maize, and solely maize) using high-throughput sequencing. Results indicated that the dietary composition significantly influenced the gut microbiota, with notable differences in the abundance of several key phyla and genera. The study identified Firmicutes as the dominant phylum in all diet groups, with notable variations in the relative abundances of Bacteroidota, Proteobacteria, and Verrucomicrobiota. Notably, the group solely fed maize exhibited a significant increase in Proteobacteria, potentially linked to dietary fiber and lignin degradation. The genus-level analysis highlighted significant differences, with Lactobacillus and Bifidobacterium responding to dietary shifts. The genus Akkermansia in Verrucomicrobiota can be identified as a marker for assessing the health of the gut and deserves further investigation. Gender-specific differences in the gut microbiota were observed, highlighting the influence of individual variation. Furthermore, the analysis of bacterial functions suggested a connection between diet and host metabolism, emphasizing the need for further research to understand the complex mechanisms underlying the relationship between dietary composition and gut microbiota in wild animals. These findings provide crucial insights into conservation and rescue efforts for wild animals.
Collapse
Affiliation(s)
- Hailong Li
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, China
- College of Geography and Ocean Science, Yanbian University, Yanji, China
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Lei Bao
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, China
| | - Tianming Wang
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, China
| | - Yu Guan
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Yu D, Guo M, Tan M, Su W. Lipid-Lowering and Antioxidant Effects of Self-Assembled Astaxanthin-Anthocyanin Nanoparticles on High-Fat Caenorhabditis elegans. Foods 2024; 13:514. [PMID: 38397491 PMCID: PMC10887880 DOI: 10.3390/foods13040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity has become a serious global public health risk threatening millions of people. In this study, the astaxanthin-anthocyanin nanoparticles (AXT-ACN NPs) were used to investigate their effects on the lipid accumulation and antioxidative capacity of the high-sugar-diet-induced high-fat Caenorhabditis elegans (C. elegans). It can be found that the lifespan, motility, and reproductive capacity of the high-fat C. elegans were significantly decreased compared to the normal nematodes in the control group. However, treatment of high-fat C. elegans with AXT-ACN NPs resulted in a prolonged lifespan of 35 days, improved motility, and a 22.06% increase in total spawn production of the nematodes. Furthermore, AXT-ACN NPs were found to effectively extend the lifespan of high-fat C. elegans under heat and oxidative stress conditions. Oil-red O staining results also demonstrated that AXT-ACN NPs have a remarkable effect on reducing the fat accumulation in nematodes, compared with pure astaxanthin and anthocyanin nanoparticles. Additionally, AXT-ACN NPs can significantly decrease the accumulation of lipofuscin and the level of reactive oxygen species (ROS). The activities of antioxidant-related enzymes in nematodes were further measured, which revealed that the AXT-ACN NPs could increase the activities of catalase (CAT), superoxidase dismutase (SOD), and glutathione peroxidase (GSH-Px), and decrease the malondialdehyde (MDA) content. The astaxanthin and anthocyanin in AXT-ACN NPs showed sound synergistic antioxidation and lipid-lowering effects, making them potential components in functional foods.
Collapse
Affiliation(s)
- Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Meng Guo
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Chen Y, Ling C, Chen M, Yu L, Yang J, Fang Q. Astaxanthin Ameliorates Worsened Muscle Dysfunction of MDX Mice Fed with a High-Fat Diet through Reducing Lipotoxicity and Regulating Gut Microbiota. Nutrients 2023; 16:33. [PMID: 38201863 PMCID: PMC10780320 DOI: 10.3390/nu16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Duchenne muscular dystrophy (DMD), a severe X-linked inherited neuromuscular disease, has a high prevalence of obesity. Obesity exacerbates muscle damage and results in adverse clinical outcomes. Preventing obesity helps DMD patients delay disease progression and improve quality of life. Astaxanthin (AX) is a kind of carotenoid which has antioxidant and anti-adipogenesis effects. In this study, male C57BL/10ScSnDmdmdx/J mice were fed with a normal diet, a high-fat diet (HFD), and an HFD containing AX for 16 weeks, respectively. The results showed that AX significantly increased gastrocnemius fiber cross-section area and grip strength, improved treadmill endurance test and mitochondrial morphology, and reduced muscle triglyceride and malonaldehyde levels compared to the HFD. Lipidomic analysis revealed that AX decreased high levels of triglyceride, diglyceride, ceramides, and wax ester induced by HFD. Gut microbiota analysis indicated that AX supplementation failed to alleviate abnormal microbiota diversity, but increased the relative abundances of Akkermansia, Bifidobacterium, Butyricicoccus, and Staphylococcus. In conclusion, AX was expected to alleviate disease progression associated with obesity in DMD patients by reducing lipotoxicity and increasing the abundance of beneficial bacteria.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (Y.C.); (L.Y.)
| | - Chenjie Ling
- Department of Clinical Nutrition, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215124, China;
| | - Mengting Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (Y.C.); (L.Y.)
| | - Jing Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, Suzhou 215031, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (Y.C.); (L.Y.)
- Department of Clinical Nutrition, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215124, China;
| |
Collapse
|
7
|
Martin M, Pusceddu MM, Teichenné J, Negra T, Connolly A, Escoté X, Torrell Galceran H, Cereto Massagué A, Samarra Mestre I, Del Pino Rius A, Romero-Gimenez J, Egea C, Alcaide-Hidalgo JM, Del Bas JM. Preventive Treatment with Astaxanthin Microencapsulated with Spirulina Powder, Administered in a Dose Range Equivalent to Human Consumption, Prevents LPS-Induced Cognitive Impairment in Rats. Nutrients 2023; 15:2854. [PMID: 37447181 DOI: 10.3390/nu15132854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cognitive alterations are a common feature associated with many neurodegenerative diseases and are considered a major health concern worldwide. Cognitive alterations are triggered by microglia activation and oxidative/inflammatory processes in specific areas of the central nervous system. Consumption of bioactive compounds with antioxidative and anti-inflammatory effects, such as astaxanthin and spirulina, can help in preventing the development of these pathologies. In this study, we have investigated the potential beneficial neuroprotective effects of a low dose of astaxanthin (ASX) microencapsulated within spirulina (ASXSP) in female rats to prevent the cognitive deficits associated with the administration of LPS. Alterations in memory processing were evaluated in the Y-Maze and Morris Water Maze (MWM) paradigms. Changes in microglia activation and in gut microbiota content were also investigated. Our results demonstrate that LPS modified long-term memory in the MWM and increased microglia activation in the hippocampus and prefrontal cortex. Preventive treatment with ASXSP ameliorated LPS-cognitive alterations and microglia activation in both brain regions. Moreover, ASXSP was able to partially revert LPS-induced gut dysbiosis. Our results demonstrate the neuroprotective benefits of ASX when microencapsulated with spirulina acting through different mechanisms, including antioxidant, anti-inflammatory and, probably, prebiotic actions.
Collapse
Affiliation(s)
- Miquel Martin
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Matteo M Pusceddu
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Joan Teichenné
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | | | | | - Xavier Escoté
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Helena Torrell Galceran
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Adrià Cereto Massagué
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Iris Samarra Mestre
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Antoni Del Pino Rius
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Jordi Romero-Gimenez
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Cristina Egea
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | | | - Josep Maria Del Bas
- Eurecat-Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| |
Collapse
|
8
|
Noor J, Chaudhry A, Batool S, Noor R, Fatima G. Exploring the Impact of the Gut Microbiome on Obesity and Weight Loss: A Review Article. Cureus 2023; 15:e40948. [PMID: 37503494 PMCID: PMC10368799 DOI: 10.7759/cureus.40948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
The global obesity pandemic has prompted efforts to search for novel intervention options, including maximizing the health benefits of certain gut microbes and their metabolic byproducts. Our increased understanding of gut microbiota can potentially lead to revolutionary advancements in weight management and general well-being. We studied the association between gut microbiota and obesity, as well as the possible benefits of probiotics, prebiotics, and synbiotics in the prevention and management of obesity in this review. We observed a relationship between the metabolism of nutrients, energy consumption, and gut flora. Numerous mechanisms, including the synthesis of short-chain fatty acids, hormone stimulation, and persistent low-grade inflammation, have been postulated to explain the role of gut bacteria in the etiology of obesity. It has been discovered that the diversity and composition of the intestinal microbiome vary in response to various forms of obesity therapy, which raises concerns about the potential impact of these changes on weight loss. According to research, probiotics, prebiotics, and synbiotics may alter the release of hormones, neurotransmitters, and inflammatory factors, thereby diminishing the stimuli of food consumption that lead to weight gain. More clinical research is required to determine the optimal probiotic, prebiotic, and synbiotic supplementation dosages, formulations, and regimens for long-term weight management and to determine how different gastrointestinal microbiome bacterial species may influence weight gain.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| | - Riwad Noor
- Medicine/Public Health, Nishtar Hospital, Multan, PAK
| | - Ghulam Fatima
- Internal Medicine, Abbasi Shaheed Hospital, Karachi, PAK
| |
Collapse
|
9
|
Liu X, Xie J, Zhou L, Zhang J, Chen Z, Xiao J, Cao Y, Xiao H. Recent advances in health benefits and bioavailability of dietary astaxanthin and its isomers. Food Chem 2023; 404:134605. [DOI: 10.1016/j.foodchem.2022.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
10
|
Gopal SS, Sukhdeo SV, Vallikannan B, Ponesakki G. Lutein ameliorates high-fat diet-induced obesity, fatty liver, and glucose intolerance in C57BL/6J mice. Phytother Res 2023; 37:329-341. [PMID: 36086831 DOI: 10.1002/ptr.7615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 07/21/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
Obesity is a multi-factorial metabolic syndrome that increases the risk of cardiovascular diseases, diabetes, and cancer. We recently demonstrated the antiadipogenic efficacy of lutein using a 3 T3-L1 cell culture model. This study aimed to examine the antiobesity efficacy of lutein on high-fat (60% kcal fat) diet-induced C57BL/6J obese mice model. Lutein (300 and 500 μM), Orlistat (30 mg/kg body weight - positive control), and its combination (orlistat, 15 mg/kg body weight+lutein, 300 μM) were administered in high-fat diet (HFD)-fed mice every other day for 24 weeks. The effect on serum and hepatic lipid parameters was estimated using biochemical assay kits. The adipose tissue expression of adipocyte differentiation markers at gene and protein levels was analyzed by RT-PCR and western blotting, respectively. The results showed that lutein administration and drug significantly reduced epididymal and abdominal adipose tissue weights. Further, lutein reduced the serum cholesterol and LDL-C concentration compared to the HFD group. The HFD-induced elevation in the hepatic triglycerides and cholesterol levels were significantly blocked by lutein and its combination with the drug. Similarly, lutein and its drug combination efficiently lowered the HFD-mediated elevated blood glucose levels. Lutein downregulated the expression of CEBP-α, PPAR-γ, and FAS in the epididymal adipose tissue. Thus, supplementation of lutein may control diet-induced obesity and associated complications in the human population.
Collapse
Affiliation(s)
- Sowmya Shree Gopal
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shinde Vijay Sukhdeo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Department of Meat and Marine Science, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Baskaran Vallikannan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| |
Collapse
|
11
|
Liu D, Ji Y, Cheng Q, Zhu Y, Zhang H, Guo Y, Cao X, Wang H. Dietary astaxanthin-rich extract ameliorates atherosclerosis/retinopathy and restructures gut microbiome in apolipoprotein E-deficient mice fed on a high-fat diet. Food Funct 2022; 13:10461-10475. [PMID: 36134474 DOI: 10.1039/d2fo02102a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scope: Atherosclerosis (AS) is the leading cause of ischemic disease. However, the anti-AS effects of astaxanthin and its potential mechanisms remain unclear. This study is aimed to investigate the function of astaxanthin-rich extract (ASTE) on AS and gut microbiota as well as the difference from atorvastatin (ATO) in apolipoprotein E-deficient (ApoE-/-) mice. Methods and results: Wild type (WT) and ApoE-/- mice were divided into seven groups: the low-fat diet (LFD) and high-fat diet (HFD) groups (in both types) as well as three ApoE-/- groups based on HFD added with two doses of ASTE and one dose of ATO, respectively. After 30 weeks of intervention, results showed that ASTE significantly inhibited body weight increase, lipids accumulation in serum/liver, and AS-lesions in the aorta. Furthermore, fundus fluorescein angiography and retinal CD31 immunohistochemical staining showed that ASTE could alleviate the occurrence of AS-retinopathy. H&E staining showed that ASTE could protect the colon's mucosal epithelium from damage. The gas chromatographic and gene expression analyses showed that ASTE promoted the excretion of fecal acidic and neutral sterols from cholesterol by increasing LXRα, CYP7A1, and ABCG5/8 and decreasing FXR, NPC1L1, ACAT2, and MTTP expressions. Remarkably, the ASTE administration maintained the gut barrier by enhancing gene expression of JAM-A, Occludin, and mucin2 in the colon and reshaped gut microbiota with the feature of blooming Akkermansia. Conclusion: Our results suggested that ASTE could prevent AS in both macrovascular and/or microvascular as well as used as novel prebiotics by supporting the bile acid excretion and growth of Akkermansia.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Qian Cheng
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yamin Zhu
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Haibo Zhang
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin 300384, China
| | - Xiupeng Cao
- The First People's Hospital of Neijiang, Neijiang 641099, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| |
Collapse
|
12
|
Xiao L, Sun Y, Tsao R. Paradigm Shift in Phytochemicals Research: Evolution from Antioxidant Capacity to Anti-Inflammatory Effect and to Roles in Gut Health and Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8551-8568. [PMID: 35793510 DOI: 10.1021/acs.jafc.2c02326] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food bioactive components, particularly phytochemicals with antioxidant capacity, have been extensively studied over the past two decades. However, as new analytical and molecular biological tools advance, antioxidants related research has undergone significant paradigm shifts. This review is a high-level overview of the evolution of phytochemical antioxidants research. Early research used chemical models to assess the antioxidant capacity of different phytochemicals, which provided important information about the health potential, but the results were overused and misinterpreted despite the lack of biological relevance (Antioxidants v1.0). This led to findings in the anti-inflammatory properties and modulatory effects of cell signaling of phytochemicals (Antioxidants v2.0). Recent advances in the role of diet in modulating gut microbiota have suggested a new phase of food bioactives research along the phytochemicals-gut microbiota-intestinal metabolites-low-grade inflammation-metabolic syndrome axis (Antioxidants v3.0). Polyphenols and carotenoids were discussed in-depth, and future research directions were also provided.
Collapse
Affiliation(s)
- Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
13
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
14
|
Örs ED, Alkan ŞB, Öksüz A. Possible Effect of Astaxanthin on Obesity-related Increased COVID-19
Infection Morbidity and Mortality. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666211011105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract:
Obesity is defined by the World Health Organisation (WHO) as a body mass index
equal to 30 kg/m2 or greater. It is an important and escalating global public health problem.
Obesity is known to cause low-grade chronic inflammation, increasing the burden of noncommunicable
and possibly communicable diseases. There is considerable evidence that obesity is
associated with an increased risk of contracting coronavirus disease 2019 (COVID-19) infection
as well as significantly higher COVID-19 morbidity and mortality. It appears plausible
that controlling the chronic systemic low-grade inflammation associated with obesity may have
a positive impact on the symptoms and the prognosis of COVID-19 disease in obese patients.
Astaxanthin (ASTX) is a naturally occurring carotenoid with anti-inflammatory, antioxidant,
and immunomodulatory activities. As a nutraceutical agent, it is used as a preventative and a
co-treatment in a number of systemic neurological, cardiovascular, and metabolic diseases.
This review article will discuss the pathogenesis of COVID-19 infection and the effect of
ASTX on obesity and obesity-related inflammation. The potential positive impact of ASTX anti-
inflammatory properties in obese COVID-19 patients will be discussed.
Collapse
Affiliation(s)
- Elif Didem Örs
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Şenay Burçin Alkan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Öksüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
15
|
Xie J, Liu M, Liu H, Jin Z, Guan F, Ge S, Yan J, Zheng M, Cai D, Liu J. Zeaxanthin ameliorates obesity by activating the β3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota. Food Funct 2021; 12:12734-12750. [PMID: 34846398 DOI: 10.1039/d1fo02863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stimulation of fat thermogenesis and modulation of the gut microbiota are promising therapeutic strategies against obesity. Zeaxanthin (ZEA), a carotenoid plant pigment, has been shown to prevent various diseases; however, the therapeutic mechanism for obesity remains unclear. Herein, whether ZEA improves obesity by activating the β3-adrenergic receptor (β3-AR) to stimulate white adipose tissue (WAT) thermogenesis and modulating the gut microbiota was investigated. C57BL6/N mice were fed a high-fat diet (HFD) supplemented with ZEA for 22 weeks. ZEA treatment reduced body weight, fat weight, adipocyte hypertrophy, liver weight, and lipid deposition, and improved dyslipidaemia, serum GPT, GOT, leptin, and irisin levels, glucose intolerance, and insulin resistance in HFD-fed mice. Mechanistically, ZEA treatment induced the expression of β3-AR and thermogenic factors, such as PRDM16, PGC-1α, and UCP1, in inguinal WAT (iWAT) and brown adipose tissue. ZEA treatment stimulated iWAT thermogenesis through the synergistic cooperation of key organelles, which manifested as an increased expression of lipid droplet degradation factors (ATGL, CGI-58 and pHSL), mitochondrial biogenesis factors (Sirt1, Nrf2, Tfam, Nampt and Cyt-C), peroxisomal biogenesis factors (Pex16, Pex19 and Pmp70), and β-oxidation factors (Cpt1, Cpt2, Acadm and Acox1). The thermogenic effect of ZEA was abolished by β3-AR antagonist (SR59230A) treatment. Additionally, dietary supplementation with ZEA reversed gut microbiota dysbiosis by regulating the abundance of Firmicutes, Clostridia, Proteobacteria, and Desulfovibrio, which were associated with the thermogenesis- and obesity-associated indices by Spearman's correlation analysis. Functional analysis of the gut microbiota indicated that ZEA treatment significantly enriched the lipid metabolism pathways. These results demonstrate that ZEA is a promising multi-target functional food for the treatment of obesity by activating β3-AR to stimulate iWAT thermogenesis, and modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Fengtao Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Sitong Ge
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jie Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
16
|
Wang M, Ma H, Guan S, Luo T, Zhao C, Cai G, Zheng Y, Jia X, Di J, Li R, Cui H. Astaxanthin from Haematococcus pluvialis alleviates obesity by modulating lipid metabolism and gut microbiota in mice fed a high-fat diet. Food Funct 2021; 12:9719-9738. [PMID: 34664590 DOI: 10.1039/d1fo01495a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity is a global chronic disease epidemic that is attributed to the abnormal accumulation of lipids in adipose tissue. Astaxanthin (AST) from Haematococcus pluvialis, a natural carotenoid, exhibits antioxidant, anti-lipogenic, anti-diabetic and other potent effects. Herein, we evaluated the effect of AST to illuminate its efficacy and mechanisms in high-fat diet-fed mice. AST supplementation not only significantly decreased body weight and lipid droplet accumulation in the liver but also modulated liver function and serum lipid levels. Lipidomic analysis revealed that 13 lipids might be potential biomarkers responsible for the effects of AST in lipid reduction, such as total free fatty acids (FFAs), triacylglycerols (TGs) and cholesterol esters (CEs). The gut microbiota sequencing results indicated that AST alleviated HFD-induced gut microbiota dysbiosis by optimizing the ratio of Firmicutes to Bacteroides and inhibiting the abundance of obesity-related pathogenic microbiota while promoting the abundance of probiotics related to glucose and lipid metabolism. In addition, qRT-PCR demonstrated that AST could regulate the gene expressions of the AMPK/SREBP1c pathway by downregulating lipogenesis correlated-genes and upregulating the lipid oxidant related-gene. The present study revealed the new function of AST in regulating lipid metabolism, which provided a theoretical basis for the development of high-quality AST functional food and the application of diet active substances in obesity, as demonstrated in mice.
Collapse
Affiliation(s)
- Meng Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Haotian Ma
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Siyu Guan
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Tao Luo
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Chunchao Zhao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Guiping Cai
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yubin Zheng
- Shandong Jinjing Biotechnology Co., Ltd, Weifang 261000, China.
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Jianbing Di
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
17
|
Polysaccharide from Patinopecten yessoensis Skirt Boosts Immune Response via Modulation of Gut Microbiota and Short-Chain Fatty Acids Metabolism in Mice. Foods 2021; 10:foods10102478. [PMID: 34681527 PMCID: PMC8535924 DOI: 10.3390/foods10102478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Polysaccharide from marine shellfish has various bioactivities. In this study, the effects of polysaccharide from Patinopecten yessoensis skirt (PS) on boosting immune response in mice were evaluated, and the potential mechanisms were explored. The results showed that PS administration effectively increased the serum IgG and IgM levels, implying that PS had immune response-boosting properties. Moreover, PS administration could modulate the composition of the gut microbiota, and significantly improve short-chain fatty acids (SCFAs) metabolism, especially butyrate metabolism. Of note, the expression of the Tlr2, Tlr7, MyD88, Tnfa, and Il1b genes in toll-like receptor (TLR) signaling pathway was significantly increased. In summary, PS could boost immune response by modulating the gut microbiota and SCFAs metabolism correlating with the activation of the TLR signaling pathway. Therefore, PS can be developed as a special ingredient for functional product.
Collapse
|
18
|
Cao Y, Yang L, Qiao X, Xue C, Xu J. Dietary astaxanthin: an excellent carotenoid with multiple health benefits. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34581210 DOI: 10.1080/10408398.2021.1983766] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Astaxanthin is a carotenoid widely found in marine organisms and microorganisms. With extensive use in nutraceuticals, cosmetics, and animal feed, astaxanthin will have the largest share in the global market for carotenoids in the near future. Owing to its unique molecular features, astaxanthin has excellent antioxidant activity and holds promise for use in biochemical studies. This review focuses on the observed health benefits of dietary astaxanthin, as well as its underlying bioactivity mechanisms. Recent studies have increased our understanding of the role of isomerization and esterification in the structure-function relationship of dietary astaxanthin. Gut microbiota may involve the fate of astaxanthin during digestion and absorption; thus, further knowledge is needed to establish accurate recommendations for dietary intake of both healthy and special populations. Associated with the regulation of redox balance and multiple biological mechanisms, astaxanthin is proposed to affect oxidative stress, inflammation, cell death, and lipid metabolism in humans, thus exerting benefits for skin condition, eye health, cardiovascular system, neurological function, exercise performance, and immune response. Additionally, preclinical trials predict its potential effects such as intestinal flora regulation and anti-diabetic activity. Therefore, astaxanthin is worthy of further investigation for boosting human health, and wide applications in the food industry.
Collapse
Affiliation(s)
- Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| |
Collapse
|
19
|
Villaró S, Ciardi M, Morillas-España A, Sánchez-Zurano A, Acién-Fernández G, Lafarga T. Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods 2021; 10:foods10102303. [PMID: 34681351 PMCID: PMC8534595 DOI: 10.3390/foods10102303] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a high-value carotenoid currently being produced by chemical synthesis and by extraction from the biomass of the microalga Haematococcus pluvialis. Other microalgae, such as Chlorella zofingiensis, have the potential for being used as sources of astaxanthin. The differences between the synthetic and the microalgae derived astaxanthin are notorious: not only their production and price but also their uses and bioactivity. Microalgae derived astaxanthin is being used as a pigment in food and feed or aquafeed production and also in cosmetic and pharmaceutical products. Several health-promoting properties have been attributed to astaxanthin, and these were summarized in the current review paper. Most of these properties are attributed to the high antioxidant capacity of this molecule, much higher than that of other known natural compounds. The aim of this review is to consider the main challenges and opportunities of microalgae derived products, such as astaxanthin as food. Moreover, the current study includes a bibliometric analysis that summarizes the current research trends related to astaxanthin. Moreover, the potential utilization of microalgae other than H. pluvialis as sources of astaxanthin as well as the health-promoting properties of this valuable compound will be discussed.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Martina Ciardi
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ainoa Morillas-España
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ana Sánchez-Zurano
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Gabriel Acién-Fernández
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
- Correspondence:
| |
Collapse
|
20
|
Liu S, Yi H, Zhan H, Wang L, Wang J, Li Y, Liu B. Gibberellic acid-induced fatty acid metabolism and ABC transporters promote astaxanthin production in Phaffia rhodozyma. J Appl Microbiol 2021; 132:390-400. [PMID: 34161638 DOI: 10.1111/jam.15187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022]
Abstract
AIMS Astaxanthin is an important natural antioxidant with various biological functions; however, the production of astaxanthin does not meet the requirements for industrialization. The aim of the present study was to identify an inducer that increases astaxanthin yield and to evaluate the regulatory mechanism of the induction of astaxanthin synthesis in Phaffia rhodozyma. METHODS AND RESULTS The effects of indole-3-acetic acid (IAA), jasmonic acid (JA) and gibberellic acid (GA) on astaxanthin synthesis were studied by fermentation kinetics analysis. Then, combined transcriptomics and metabolomics approaches were used to analyse differential metabolites and expressed genes involved in astaxanthin synthesis induced by GA. The results indicated that GA significantly increased astaxanthin production; however, IAA and JA had no significant effect on astaxanthin synthesis. The induction by GA significantly enhanced fatty acid metabolism and ABC transporters, increased the expression of fatty acid desaturase and ABC transporter genes, and elevated the contents of unsaturated fatty acids. CONCLUSIONS These results suggested that fatty acid saturation plays an important role in astaxanthin accumulation and that ABC transporters may be the efflux pumps for astaxanthin. SIGNIFICANCE AND IMPACT OF THE STUDY The present study reveals metabolic mechanism of GA-induced astaxanthin synthesis and proposes a new strategy of transporter engineering to improve astaxanthin production.
Collapse
Affiliation(s)
- Sijiao Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Hong Yi
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Honglei Zhan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Jihui Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Ying Li
- School of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Bingnan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
21
|
Fu X, Han H, Li Y, Xu B, Dai W, Zhang Y, Zhou F, Ma H, Pei X. Di-(2-ethylhexyl) phthalate exposure induces female reproductive toxicity and alters the intestinal microbiota community structure and fecal metabolite profile in mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:1226-1242. [PMID: 33665894 PMCID: PMC8251547 DOI: 10.1002/tox.23121] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/19/2021] [Indexed: 05/08/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most commonly used plasticizers, and it is widely applied in various plastic products. DEHP is an endocrine-disrupting chemical (EDC) that has been shown to disrupt the function of reproductive system in females. Although many studies have shown that DEHP potentially causes female reproductive toxicity, including depletion of the primordial follicle and decreased sex hormone production, the specific mechanisms by which DEHP affects female reproduction remain unknown. In recent years, research focused on the intestinal flora has provided an idea to eliminate our confusion, and gut bacterial dysbiosis may contribute to female reproductive toxicity. In the present study, the feces of DEHP-exposed mice were collected and analyzed using 16S rRNA amplicon sequencing and untargeted global metabolite profiling of metabolomics. DEHP obviously causes reproductive toxicity, including the ovarian organ coefficient, estradiol level, histological features of the ovary and estrus. Furthermore, DEHP exposure alters the structure of the intestinal microbiota community and fecal metabolite profile in mice, suggesting that the reproductive toxicity may be caused by gut bacterial dysbiosis and altered metabolites, such as changes in the levels of short-chain fatty acid (SCFA). Additionally, it is well known that changes in gut microbiota and fecal metabolites cause inflammation and tissue oxidative stress, expectedly, we found oxidative stress in the ovary and systemic inflammation in DEHP exposed mice. Thus, based on our findings, DEHP exposure may cause gut bacterial dysbiosis and altered metabolite profiles, particularly SCFA profiles, leading to oxidative stress in the ovary and systemic inflammation to ultimately induce female reproductive toxicity.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Yaoxu Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Feng Zhou
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of EducationNingxia Medical UniversityYinchuanChina
| |
Collapse
|
22
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
23
|
Han H, Choi JK, Park J, Im HC, Han JH, Huh MH, Lee YB. Recent innovations in processing technologies for improvement of nutritional quality of soymilk. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1893824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hwana Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Kwon Choi
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Joheun Park
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Hae Cheon Im
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Heum Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Moon Haeng Huh
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Yoon-Bok Lee
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| |
Collapse
|
24
|
Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls. Neural Regen Res 2021; 16:223-233. [PMID: 32859768 PMCID: PMC7896239 DOI: 10.4103/1673-5374.290878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Various inflammatory stimuli are able to modify or even "re-program" the mitochondrial metabolism that results in generation of reactive oxygen species. In noncommunicable chronic diseases such as atherosclerosis and other cardiovascular pathologies, type 2 diabetes and metabolic syndrome, these modifications become systemic and are characterized by chronic inflammation and, in particular, "neuroinflammation" in the central nervous system. The processes associated with chronic inflammation are frequently grouped into "vicious circles" which are able to stimulate each other constantly amplifying the pathological events. These circles are evidently observed in Alzheimer's disease, atherosclerosis, type 2 diabetes, metabolic syndrome and, possibly, other associated pathologies. Furthermore, chronic inflammation in peripheral tissues is frequently concomitant to Alzheimer's disease. This is supposedly associated with some common genetic polymorphisms, for example, Apolipoprotein-E ε4 allele carriers with Alzheimer's disease can also develop atherosclerosis. Notably, in the transgenic mice expressing the recombinant mitochondria targeted catalase, that removes hydrogen peroxide from mitochondria, demonstrates the significant pathology amelioration and health improvements. In addition, the beneficial effects of some natural products from the xanthophyll family, astaxanthin and fucoxanthin, which are able to target the reactive oxygen species at cellular or mitochondrial membranes, have been demonstrated in both animal and human studies. We propose that the normalization of mitochondrial functions could play a key role in the treatment of neurodegenerative disorders and other noncommunicable diseases associated with chronic inflammation in ageing. Furthermore, some prospective drugs based on mitochondria targeted catalase or xanthophylls could be used as an effective treatment of these pathologies, especially at early stages of their development.
Collapse
Affiliation(s)
| | | | | | - Vasily V. Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
25
|
Rodríguez-Sifuentes L, Marszalek JE, Hernández-Carbajal G, Chuck-Hernández C. Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.601483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Astaxanthin (ASX) is a xanthophyll pigment considered as a nutraceutical with high antioxidant activity. Several clinical trials have shown the multiple health benefits of this molecule; therefore, it has various pharmaceutical industry applications. Commercial astaxanthin can be produced by chemical synthesis or through biosynthesis within different microorganisms. The molecule produced by the microorganisms is highly preferred due to its zero toxicity and superior therapeutic properties. However, the biotechnological production of the xanthophyll is not competitive against the chemical synthesis, since the downstream process may represent 70–80% of the process production cost. These operations denote then an opportunity to optimize the process and make this alternative more competitive. Since ASX is produced intracellularly by the microorganisms, high investment and high operational costs, like centrifugation and bead milling or high-pressure homogenization, are mainly used. In cell recovery, flocculation and flotation may represent low energy demanding techniques, whereas, after cell disruption, an efficient extraction technique is necessary to extract the highest percentage of ASX produced by the cell. Solvent extraction is the traditional method, but large-scale ASX production has adopted supercritical CO2 (SC-CO2), an efficient and environmentally friendly technology. On the other hand, assisted technologies are extensively reported since the cell disruption, and ASX extraction can be carried out in a single step. Because a high-purity product is required in pharmaceuticals and nutraceutical applications, the use of chromatography is necessary for the downstream process. Traditionally liquid-solid chromatography techniques are applied; however, the recent emergence of liquid-liquid chromatography like high-speed countercurrent chromatography (HSCCC) coupled with liquid-solid chromatography allows high productivity and purity up to 99% of ASX. Additionally, the use of SC-CO2, coupled with two-dimensional chromatography, is very promising. Finally, the purified ASX needs to be formulated to ensure its stability and bioavailability; thus, encapsulation is widely employed. In this review, we focus on the processes of cell recovery, cell disruption, drying, extraction, purification, and formulation of ASX mainly produced in Haematococcus pluvialis, Phaffia rhodozyma, and Paracoccus carotinifaciens. We discuss the current technologies that are being developed to make downstream operations more efficient and competitive in the biotechnological production process of this carotenoid.
Collapse
|
26
|
Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int J Mol Med 2021; 47:37-48. [PMID: 33155666 PMCID: PMC7723678 DOI: 10.3892/ijmm.2020.4783] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases are the most common cause of mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases; thus, anti‑inflammatory and antioxidant agents that modulate redox balance have become research targets so as to evaluate their molecular mechanisms of action and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant properties due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also has prominent anti‑inflammatory activity, possibly interrelated with its antioxidant effect, and is also involved in the modulation of lipid and glucose metabolism. Considering the potential beneficial effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, the aim of the present review was to describe the molecular and cellular mechanisms associated with the antioxidant and anti‑inflammatory properties of this carotenoid in cardiovascular diseases, particularly atherosclerosis. The beneficial properties and safety profile of astaxanthin indicate that this compound may be used for preventing progression or as an adjuvant in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo, SP 01311-100
| |
Collapse
|
27
|
Han H, Lim JW, Kim H. Astaxanthin Inhibits Helicobacter pylori-induced Inflammatory and Oncogenic Responses in Gastric Mucosal Tissues of Mice. J Cancer Prev 2020; 25:244-251. [PMID: 33409257 PMCID: PMC7783239 DOI: 10.15430/jcp.2020.25.4.244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is recognized as a risk factor for gastric carcinogenesis. The chronic exposure of gastric epithelium to H. pylori induces a prolonged inflammatory state that may progress to gastric cancer. Astaxanthin, a pinkish antioxidant carotenoid, abundant in marine organisms, is known for its protective effect against inflammation and multiple types of cancer. The purpose of this study was to examine the effect of astaxanthin on H. pylori-induced oxidative injury, inflammation, and oncogene expression in gastric mucosal tissues of the infected mice. Mice were inoculated using oral gavage with H. pylori suspension (108 colony forming unit of H. pylori/0.1 mL) for three days, after which they were fed astaxanthin-supplemented diet (5 mg/kg body weight/day for seven weeks). The effects of astaxanthin on H. pylori-induced increase in lipid peroxide (LPO) production, myeloperoxidase (MPO) activity, expression of the inflammatory cytokine IFN-γ and oncogenes (c-myc and cyclin D1), and the accompanying histologic changes in gastric mucosal tissues were evaluated. H. pylori infection increased the level of LPO, MPO activity, and the expression of IFN-γ, c-myc, and cyclin D1 in gastric mucosal tissues of mice. H. pylori infection induced neutrophil infiltration and hyperplasia of gastric mucosa. Astaxanthin supplementation attenuated these effects. In conclusion, consumption of astaxanthin-rich foods may prevent H. pylori-associated oxidative damage and inflammatory and oncogenic responses in gastric mucosal tissues.
Collapse
Affiliation(s)
- Hwana Han
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
28
|
Eukaryotic and Prokaryotic Microbiota Interactions. Microorganisms 2020; 8:microorganisms8122018. [PMID: 33348551 PMCID: PMC7767281 DOI: 10.3390/microorganisms8122018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
The nature of the relationship between the communities of microorganisms making up the microbiota in and on a host body has been increasingly explored in recent years. Microorganisms, including bacteria, archaea, viruses, parasites and fungi, have often long co-evolved with their hosts. In human, the structure and diversity of microbiota vary according to the host’s immunity, diet, environment, age, physiological and metabolic status, medical practices (e.g., antibiotic treatment), climate, season and host genetics. The recent advent of next generation sequencing (NGS) technologies enhanced observational capacities and allowed for a better understanding of the relationship between distinct microorganisms within microbiota. The interaction between the host and their microbiota has become a field of research into microorganisms with therapeutic and preventive interest for public health applications. This review aims at assessing the current knowledge on interactions between prokaryotic and eukaryotic communities. After a brief description of the metagenomic methods used in the studies were analysed, we summarise the findings of available publications describing the interaction between the bacterial communities and protozoa, helminths and fungi, either in vitro, in experimental models, or in humans. Overall, we observed the existence of a beneficial effect in situations where some microorganisms can improve the health status of the host, while the presence of other microorganisms has been associated with pathologies, resulting in an adverse effect on human health.
Collapse
|
29
|
Abstract
Obesity has become a worldwide issue and is accompanied by serious complications. Western high energy diet has been identified to be a major factor contributing to the current obesity pandemic. Thus, it is important to optimize dietary composition, bioactive substances, and agents to prevent and treat obesity. To date, extracts from plants, such as vegetables, tea, fruits, and Chinese herbal medicine, have been showed to have the abilities of regulating adipogenesis and attenuating obesity. These plant extracts mainly contain polyphenols, alkaloids, and terpenoids, which could play a significant role in anti-obesity through various signaling pathways and gut microbiota. Those reported anti-obesity mechanisms mainly include inhibiting white adipose tissue growth and lipogenesis, promoting lipolysis, brown/beige adipose tissue development, and muscle thermogenesis. In this review, we summarize the plant extracts and their possible mechanisms responsible for their anti-obesity effects. Based on the current findings, dietary plant extracts and foods containing these bioactive compounds can be potential preventive or therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Han-Ning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jin-Zhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhi Qi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
30
|
Ikarashi N, Kon R, Nagoya C, Ishikura A, Sugiyama Y, Takahashi J, Sugiyama K. Effect of Astaxanthin on the Expression and Activity of Aquaporin-3 in Skin in an In-Vitro Study. Life (Basel) 2020; 10:life10090193. [PMID: 32932769 PMCID: PMC7554991 DOI: 10.3390/life10090193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) is a red lipophilic pigment with strong antioxidant action. Oral or topical administration of astaxanthin has been reported to improve skin function, including increasing skin moisture. In this study, we examined the mechanism by which astaxanthin improves skin function by focusing on the water channel aquaporin-3 (AQP3), which plays important roles in maintaining skin moisture and function. When astaxanthin was added to PHK16-0b or HaCaT cells, the mRNA expression level of AQP3 increased significantly in a concentration-dependent manner in both cell lines. The AQP3 protein expression level was also confirmed to increase when astaxanthin was added to HaCaT cells. Similarly, when astaxanthin was added to 3D human epidermis model EpiSkin, AQP3 expression increased. Furthermore, when glycerol and astaxanthin were simultaneously added to EpiSkin, glycerol permeability increased significantly compared with that observed for the addition of glycerol alone. We demonstrated that astaxanthin increases AQP3 expression in the skin and enhances AQP3 activity. This result suggests that the increased AQP3 expression in the skin is associated with the increase in skin moisture by astaxanthin. Thus, we consider astaxanthin useful for treating dry skin caused by decreased AQP3 due to factors such as diabetes mellitus and aging.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
| | - Chika Nagoya
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Airi Ishikura
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Yuri Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (C.N.); (A.I.); (Y.S.)
| | - Jiro Takahashi
- Fuji Chemical Industries Co., Ltd., 1 Gohkakizawa, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0405, Japan;
| | - Kiyoshi Sugiyama
- Department of Functional Molecular Kinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Correspondence: (N.I.); (K.S.); Tel.: +81-3-5498-5918 (N.I.)
| |
Collapse
|
31
|
Wu L, Lyu Y, Srinivasagan R, Wu J, Ojo B, Tang M, El-Rassi GD, Metzinger K, Smith BJ, Lucas EA, Clarke SL, Chowanadisai W, Shen X, He H, Conway T, von Lintig J, Lin D. Astaxanthin-Shifted Gut Microbiota Is Associated with Inflammation and Metabolic Homeostasis in Mice. J Nutr 2020; 150:2687-2698. [PMID: 32810865 PMCID: PMC8023541 DOI: 10.1093/jn/nxaa222] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Astaxanthin is a red lipophilic carotenoid that is often undetectable in human plasma due to the limited supply in typical Western diets. Despite its presence at lower than detectable concentrations, previous clinical feeding studies have reported that astaxanthin exhibits potent antioxidant properties. OBJECTIVE We examined astaxanthin accumulation and its effects on gut microbiota, inflammation, and whole-body metabolic homeostasis in wild-type C57BL/6 J (WT) and β-carotene oxygenase 2 (BCO2) knockout (KO) mice. METHODS Six-wk-old male and female BCO2 KO and WT mice were provided with either nonpurified AIN93M (e.g., control diet) or the control diet supplemented with 0.04% astaxanthin (wt/wt) ad libitum for 8 wk. Whole-body energy expenditure was measured by indirect calorimetry. Feces were collected from individual mice for short-chain fatty acid assessment. Hepatic astaxanthin concentrations and liver metabolic markers, cecal gut microbiota profiling, inflammation markers in colonic lamina propria, and plasma samples were assessed. Data were analyzed by 3-way ANOVA followed by Tukey's post hoc analysis. RESULTS BCO2 KO but not WT mice fed astaxanthin had ∼10-fold more of this compound in liver than controls (P < 0.05). In terms of the microbiota composition, deletion of BCO2 was associated with a significantly increased abundance of Mucispirillum schaedleri in mice regardless of gender. In addition to more liver astaxanthin in male KO compared with WT mice fed astaxanthin, the abundance of gut Akkermansia muciniphila was 385% greater, plasma glucagon-like peptide 1 was 27% greater, plasma glucagon and IL-1β were 53% and 30% lower, respectively, and colon NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation was 23% lower (all P < 0.05) in male KO mice than the WT mice. CONCLUSIONS Astaxanthin affects the gut microbiota composition in both genders, but the association with reductions in local and systemic inflammation, oxidative stress, and improvement of metabolic homeostasis only occurs in male mice.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinlong Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Babajide Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Minghua Tang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Katherine Metzinger
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Hui He
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
32
|
Ni Y, Ni L, Zhuge F, Fu Z. The Gut Microbiota and Its Metabolites, Novel Targets for Treating and Preventing Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2020; 64:e2000375. [PMID: 32738185 DOI: 10.1002/mnfr.202000375] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent metabolic disorders worldwide, along with obesity and type 2 diabetes. NAFLD involves a series of liver abnormalities from simple hepatic steatosis to non-alcoholic steatohepatitis, which can ultimately lead to liver cirrhosis and cancer. The gut-liver axis plays an important role in the development of NAFLD, which depends mainly on regulation of the gut microbiota and its bacterial products. These intestinal bacterial species and their metabolites, including bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis and contribute to the pathogenesis of NAFLD/non-alcoholic steatohepatitis. In this review, the current evidence regarding the key role of the gut microbiota and its metabolites in the pathogenesis and development of NAFLD is highlighted, and the advances in the progression and applied prospects of gut microbiota-targeted dietary and exercise therapies is also discussed.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| |
Collapse
|
33
|
Structures of Astaxanthin and Their Consequences for Therapeutic Application. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:2156582. [PMID: 32775406 PMCID: PMC7391096 DOI: 10.1155/2020/2156582] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated as a by-product of normal aerobic metabolism. Elevated ROS formation leads to potential damage of biological structures and is implicated in various diseases. Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite responsible for the red-orange color of a number of marine animals and microorganisms. There is mounting evidence that astaxanthin has powerful antioxidant, anti-inflammatory, and antiapoptotic activities. Hence, its consumption can result in various health benefits, with potential for therapeutic application. Astaxanthin contains both a hydroxyl and a keto group, and this unique structure plays important roles in neutralizing ROS. The molecule quenches harmful singlet oxygen, scavenges peroxyl and hydroxyl radicals and converts them into more stable compounds, prevents the formation of free radicals, and inhibits the autoxidation chain reaction. It also acts as a metal chelator and converts metal prooxidants into harmless molecules. However, like many other carotenoids, astaxanthin is affected by the environmental conditions, e.g., pH, heat, or exposure to light. It is hence susceptible to structural modification, i.e., via isomerization, aggregation, or esterification, which alters its physiochemical properties. Here, we provide a concise overview of the distribution of astaxanthin in tissues, and astaxanthin structures, and their role in tackling singlet oxygen and free radicals. We highlight the effect of structural modification of astaxanthin molecules on the bioavailability and biological activity. These studies suggested that astaxanthin would be a promising dietary supplement for health applications.
Collapse
|
34
|
Landon R, Gueguen V, Petite H, Letourneur D, Pavon-Djavid G, Anagnostou F. Impact of Astaxanthin on Diabetes Pathogenesis and Chronic Complications. Mar Drugs 2020; 18:md18070357. [PMID: 32660119 PMCID: PMC7401277 DOI: 10.3390/md18070357] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) plays a pivotal role in diabetes mellitus (DM) onset, progression, and chronic complications. Hyperglycemia-induced reactive oxygen species (ROS) have been shown to reduce insulin secretion from pancreatic β-cells, to impair insulin sensitivity and signaling in insulin-responsive tissues, and to alter endothelial cells function in both type 1 and type 2 DM. As a powerful antioxidant without side effects, astaxanthin (ASX), a xanthophyll carotenoid, has been suggested to contribute to the prevention and treatment of DM-associated pathologies. ASX reduces inflammation, OS, and apoptosis by regulating different OS pathways though the exact mechanism remains elusive. Based on several studies conducted on type 1 and type 2 DM animal models, orally or parenterally administrated ASX improves insulin resistance and insulin secretion; reduces hyperglycemia; and exerts protective effects against retinopathy, nephropathy, and neuropathy. However, more experimental support is needed to define conditions for its use. Moreover, its efficacy in diabetic patients is poorly explored. In the present review, we aimed to identify the up-to-date biological effects and underlying mechanisms of ASX on the ROS-induced DM-associated metabolic disorders and subsequent complications. The development of an in-depth research to better understand the biological mechanisms involved and to identify the most effective ASX dosage and route of administration is deemed necessary.
Collapse
Affiliation(s)
- Rebecca Landon
- CNRS UMR7052-INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Paris Diderot University, 10 Avenue de Verdun, 75010 Paris, France; (R.L.); (H.P.)
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Sorbonne University Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (D.L.); (G.P.-D.)
| | - Hervé Petite
- CNRS UMR7052-INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Paris Diderot University, 10 Avenue de Verdun, 75010 Paris, France; (R.L.); (H.P.)
| | - Didier Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Sorbonne University Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (D.L.); (G.P.-D.)
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Sorbonne University Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (D.L.); (G.P.-D.)
| | - Fani Anagnostou
- CNRS UMR7052-INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Paris Diderot University, 10 Avenue de Verdun, 75010 Paris, France; (R.L.); (H.P.)
- Service of Odontology, Hôpital Pitié-Salpêtrière APHP, U.F.R. of Odontology, Denis-Diderot University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France
- Correspondence: ; Tel.: +33-(0)1-57-27-85-70
| |
Collapse
|
35
|
Aoun A, Darwish F, Hamod N. The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Prev Nutr Food Sci 2020; 25:113-123. [PMID: 32676461 PMCID: PMC7333005 DOI: 10.3746/pnf.2020.25.2.113] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
The link between the gut microbiome and obesity is not well defined. Understanding of the role of the gut microbiome in weight and health management may lead to future revolutionary changes for treating obesity. This review examined the relationship between obesity and the gut microbiome, and the role of probiotics, prebiotics, and synbiotics for preventing and treating obesity. We used PubMed and Google Scholar to collect appropriate articles for the review. We showed that the gut microbiome has an impact on nutrient metabolism and energy expenditure. Moreover, different modalities of obesity treatment have been shown to change the diversity and composition of the gut microbiome; this raises questions about the role these changes may play in weight loss. In addition, studies have shown that supplementation with probiotics, prebiotics, and synbiotics may alter the secretion of hormones, neurotransmitters, and inflammatory factors, thus preventing food intake triggers that lead to weight gain. Further clinical studies are needed to better understand how different species of bacteria in the gut microbiome may affect weight gain, and to determine the most appropriate doses, compositions, and regimens of probiotics, prebiotics, and synbiotics supplementation for long-term weight control.
Collapse
Affiliation(s)
- Antoine Aoun
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| | - Fatima Darwish
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| | - Natacha Hamod
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| |
Collapse
|
36
|
Fang N, Wang C, Liu X, Zhao X, Liu Y, Liu X, Du Y, Zhang Z, Zhang H. De novo synthesis of astaxanthin: From organisms to genes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|