1
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
2
|
Repici A, Hasan A, Capra AP, Scuderi SA, Paterniti I, Campolo M, Ardizzone A, Esposito E. Marine Algae and Deriving Biomolecules for the Management of Inflammatory Bowel Diseases: Potential Clinical Therapeutics to Decrease Gut Inflammatory and Oxidative Stress Markers? Mar Drugs 2024; 22:336. [PMID: 39195452 DOI: 10.3390/md22080336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The term "inflammatory bowel disease" (IBD) describes a class of relapse-remitting conditions that affect the gastrointestinal (GI) tract. Among these, Crohn's disease (CD) and ulcerative colitis (UC) are two of the most globally prevalent and debilitating conditions. Several articles have brought attention to the significant role that inflammation and oxidative stress cooperatively play in the development of IBD, offering a different viewpoint both on its etiopathogenesis and on strategies for the effective treatment of these conditions. Marine ecosystems may be a significant source of physiologically active substances, supporting the search for new potential clinical therapeutics. Based on this evidence, this review aims to comprehensively evaluate the activity of marine algae and deriving biomolecules in decreasing pathological features of CD and UC. To match this purpose, a deep search of the literature on PubMed (MEDLINE) and Google Scholar was performed to highlight primary biological mechanisms, the modulation of inflammatory and oxidative stress biochemical parameters, and potential clinical benefits deriving from marine species. From our findings, both macroalgae and microalgae have shown potential as therapeutic solutions for IBD due to their bioactive compounds and their anti-inflammatory and antioxidant activities which are capable of modulating markers such as cytokines, the NF-κB pathway, reactive oxidative and nitrosative species (ROS and RNS), trefoil factor 3 (TFF3), lactoferrin, SIRT1, etc. However, while we found promising preclinical evidence, more extensive and long-term clinical studies are necessary to establish the efficacy and safety of marine algae for IBD treatment.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
- School of Advanced Studies, Center of Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
3
|
Ghallab DS, Ibrahim RS, Mohyeldin MM, Shawky E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. MARINE POLLUTION BULLETIN 2024; 199:116023. [PMID: 38211540 DOI: 10.1016/j.marpolbul.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation. Moreover, marine algae-derived compounds have exhibited immunomodulatory properties, regulating immune cell functions and attenuating inflammatory responses. Specific examples of compounds with notable anti-inflammatory activities are highlighted. This review provides valuable insights for researchers in the field of marine anti-inflammatory pharmacology and emphasizes the need for further research to harness the pharmacological benefits of marine algae-derived compounds for the development of effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
4
|
Aghaei-Zarch SM, Nia AHS, Nouri M, Mousavinasab F, Najafi S, Bagheri-Mohammadi S, Aghaei-Zarch F, Toolabi A, Rasoulzadeh H, Ghanavi J, Moghadam MN, Talebi M. The impact of particulate matters on apoptosis in various organs: Mechanistic and therapeutic perspectives. Biomed Pharmacother 2023; 165:115054. [PMID: 37379642 DOI: 10.1016/j.biopha.2023.115054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ecological air contamination is the non-homogenous suspension of insoluble particles into gas or/and liquid fluids known as particulate matter (PM). It has been discovered that exposure to PM can cause serious cellular defects, followed by tissue damage known as cellular stress. Apoptosis is a homeostatic and regulated phenomenon associated with distinguished physiological actions inclusive of organ and tissue generation, aging, and development. Moreover, it has been proposed that the deregulation of apoptotic performs an active role in the occurrence of many disorders, such as autoimmune disease, neurodegenerative, and malignant, in the human population. Recent studies have shown that PMs mainly modulate multiple signaling pathways involved in apoptosis, including MAPK, PI3K/Akt, JAK/STAT, NFκB, Endoplasmic Stress, and ATM/P53, leading to apoptosis dysregulation and apoptosis-related pathological conditions. Here, the recently published data concerning the effect of PM on the apoptosis of various organs, with a particular focus on the importance of apoptosis as a component in PM-induced toxicity and human disease development, is carefully discussed. Moreover, the review also highlighted the various therapeutic approaches, including small molecules, miRNA replacement therapy, vitamins, and PDRN, for treating diseases caused by PM toxicity. Notably, researchers have considered medicinal herbs a potential treatment for PM-induced toxicity due to their fewer side effects. So, in the final section, we analyzed the performance of some natural products for inhibition and intervention of apoptosis arising from PM-induced toxicity.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Sanjari Nia
- Division of Animal Sciences, Department of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Morteza Nouri
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Mousavinasab
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Labes A. Marine Resources Offer New Compounds and Strategies for the Treatment of Skin and Soft Tissue Infections. Mar Drugs 2023; 21:387. [PMID: 37504918 PMCID: PMC10381745 DOI: 10.3390/md21070387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Bioprospecting of the marine environment for drug development has gained much attention in recent years owing to its massive chemical and biological diversity. Drugs for the treatment of skin and soft tissue infections have become part of the search, mainly with respect to enlarging the number of available antibiotics, with a special focus on multidrug-resistant Gram-positive bacteria, being the major causative agents in this field. Marine resources offer novel natural products with distinct biological activities of pharmaceutical importance, having the chance to provide new chemical scaffolds and new modes of action. New studies advance the field by proposing new strategies derived from an ecosystemic understanding for preventive activities against biofilms and new compounds suitable as disinfectants, which sustain the natural flora of the skin. Still, the development of new compounds is often stuck at the discovery level, as marine biotechnology also needs to overcome technological bottlenecks in drug development. This review summarizes its potential and shows these bottlenecks and new approaches.
Collapse
Affiliation(s)
- Antje Labes
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences ZAiT, Kanzleistraße 91-93, D-24943 Flensburg, Germany
| |
Collapse
|
6
|
Pradhan B, Ki JS. Antioxidant and chemotherapeutic efficacies of seaweed-derived phlorotannins in cancer treatment: A review regarding novel anticancer drugs. Phytother Res 2023; 37:2067-2091. [PMID: 36971337 DOI: 10.1002/ptr.7809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
The ineffectiveness of traditional cancer therapies due to drug resistance, nontargeted delivery, and chemotherapy-associated adverse side effects has shifted attention to bioactive phytochemicals. Consequently, research efforts toward screening and identification of natural compounds with anticancer properties have increased in recent years. Marine seaweed-derived bioactive compounds, such as polyphenolic compounds, have exhibited anticancer properties. Phlorotannins (PTs), a major group of seaweed-derived polyphenolic compounds, have emerged as powerful chemopreventive and chemoprotective compounds, regulating apoptotic cell death pathways both in vitro and in vivo. In this context, this review focuses on the anticancer activity of polyphenols isolated from brown algae, with a special reference to PTs. Furthermore, we highlight the antioxidant effects of PTs and discuss how they can impact cell survival and tumor development and progression. Moreover, we discussed the potential therapeutic application of PTs as anticancer agents, having molecular mechanisms involving oxidative stress reduction. We have also discussed patents or patent applications that apply PTs as major components of antioxidant and antitumor products. With this review, researcher may gain new insights into the potential novel role of PTs, as well as uncover a novel cancer-prevention mechanism and improve human health.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
- School of Biological Sciences, AIPH University, Bhubaneswar, 752101, India
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| |
Collapse
|
7
|
First Insight into the Neuroprotective and Antibacterial Effects of Phlorotannins Isolated from the Cell Walls of Brown Algae Fucus vesiculosus and Pelvetia canaliculata. Antioxidants (Basel) 2023; 12:antiox12030696. [PMID: 36978944 PMCID: PMC10045267 DOI: 10.3390/antiox12030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Phaeophyceae (brown algae) essentially contribute to biotopes of cold and temperate seas. Their thalli are rich in biologically active natural products, which are strongly and universally dominated with phlorotannins—polyphenols of complex and diverse structure based on multiple differently arranged phloroglucinol units and well known as strong antioxidants with a broad spectrum of biological activities. In the algal cells, phlorotannins can either accumulate in the cytoplasm or can be secreted into the cell wall (CW). The biological activities of extractable intracellular phlorotannins have been comprehensively characterized, whereas the properties of the CW-bound polyphenol fraction are still mostly unknown. Recently, we identified dibenzodioxin bonding as the principal structural feature of the CW-bound phlorotannins in fucoid algae, whereas soluble intracellular phlorotannins rely on aryl and ether bonds. However, profiles of biological activity associated with these structural differences are still unknown. Therefore, to the best of our knowledge, for the first time we address the antioxidant, cytotoxic, neuroprotective, and antibacterial properties of the CW-bound phlorotannin fractions isolated from two representatives of the order Fucales—Fucus vesiculosus and Pelvetia canaliculata. The CW-bound phlorotannins appeared to be softer antioxidants, stronger antibacterial agents and were featured with essentially less cytotoxicity in comparison to the intracellular fraction. However, the neuroprotective effects of both sub-cellular phlorotannin fractions of F. vesiculosus and P. canaliculata were similar. Thus, due to their lower cytotoxicity, CW-bound phlorotannins can be considered as promising antioxidants and neuroprotectors.
Collapse
|
8
|
Jin Lim H, Cho CH, Lee SH, Seon Won Y, Gyeong Bak S, Kim M, Kim S, Yoon M, Joo Ha H, Tae Jang J, Jae Lee S. Estrogenic active Ecklonia cava extract improves bone loss and depressive behaviour in OVX mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
9
|
Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:97-152. [PMID: 36245550 PMCID: PMC9547092 DOI: 10.1007/s10311-022-01520-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 05/02/2023]
Abstract
The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Israa M. A. Mohamed
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555 Japan
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| |
Collapse
|
10
|
Moheimanian N, Mirkhani H, Purkhosrow A, Sohrabipour J, Jassbi AR. In Vitro and In Vivo Antidiabetic, α-Glucosidase Inhibition and Antibacterial Activities of Three Brown Algae, Polycladia myrica, Padina antillarum, and Sargassum boveanum, and a Red Alga, Palisada perforata from the Persian Gulf. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e133731. [PMID: 38116547 PMCID: PMC10728852 DOI: 10.5812/ijpr-133731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/04/2023] [Accepted: 04/03/2023] [Indexed: 12/21/2023]
Abstract
Background In recent decades, algae have attracted worldwide attention for their great biological activities, such as antidiabetic and antibacterial properties. Objectives We measured antibacterial and α-glucosidase inhibition potential of methanol and 80% methanol extracts of three brown algae species, Polycladia myrica, Padina antillarum, and Sargassum boveanum, and a red alga, Palisada perforata, from the Persian Gulf coasts. Methods Antibacterial activity of the algal extracts was assessed by broth dilution method against three gram-negative and -positive bacteria, including Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa; Staphylococcus epidermidis, Staphylococcus aureus, and Bacillus subtilis, respectively. Furthermore, the yeast's α-glucosidase inhibition of the algal extracts was measured via colorimetric assay. In addition, we investigated the beneficial effect of 80% MeOH extract of S. boveanum on the blood glucose levels in streptozotocin-induced diabetic rats. Results The MeOH extract of S. boveanum was the best antibacterial extract with MIC = 2.5 mg/mL against all bacterial strains except for E. coli. The MeOH and 80% MeOH extracts of P. myrica and P. antillarum inhibited α-glucosidase at most with IC50 values of 12.70 ± 1.88 µg/mL and 13.06 ± 4.44 µg/mL, respectively. The oral gavage of S. boveanum extract in streptozotocin- (STZ-) induced diabetic rats resulted in decreasing their postprandial blood glucose levels. The algae and acarbose decreased blood glucose levels after sucrose administration in 60 minutes, compared to the non-drug-treated animals, with p values of 0.03 and 0.007, respectively. Conclusions Overall, due to the in vitro and in vivo antidiabetic potential of S. boveanum, we suggest the alga as a new source for the isolation and identification of potential antidiabetic and antibacterial compounds.
Collapse
Affiliation(s)
- Niloofar Moheimanian
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Mirkhani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Purkhosrow
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jelveh Sohrabipour
- Department of Natural Resources Researches, Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Taniguchi R, Ito C, Keitoku S, Miyake Y, Itoigawa M, Matsui T, Shibata T. Analysis on the Structure of Phlorethols Isolated From the Warm-Temperate Brown Seaweed Sargassum carpophyllum and Their Antioxidant Properties. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The brown seaweed Sargassum carpophyllum J. Agardh is an unused warm-temperate species in the family Sargassaceae that has been expanding its distribution along the coastal areas of Japan in recent years. In this study, 3 types of phlorotannins were identified from the EtOAc fraction of the 80% MeOH extract of S. carpophyllum. From the spectroscopic (1H NMR, 13C NMR, and HMBC) and ESI/MS data and comparison with those of prior literature, it was demonstrated that the compounds are oligomers of phlorethol, which is one of the subclasses of phlorotannins, that is triphlorethol B (phloroglucinol trimer), tetraphlorethol C (phloroglucinol tetramer), and pentaphlorethol A (phloroglucinol pentamer). Among the phlorethols, tetraphlorethol C and pentaphlorethol A were isolated and identified for the first time from a brown seaweed collected from the East China Sea, including the coastal areas of Japan. The identified phlorethols were tested for their antioxidant properties. In the antioxidant assay using liposomes, the phlorethols showed comparable inhibitory effects to epigallocatechin gallate (tea polyphenol) and α-tocopherol (liposoluble vitamin) on lipid peroxidation by 4 mM 2,2′-azobis(2-methylpropionamidine) dihydrochloride. In addition, it was revealed that pentaphlorethol A has a superoxide anion scavenging activity (50% effective concentration: 21 μM) higher than that (50% effective concentration: 46 μM) of ascorbic acid (hydrosoluble vitamin).
Collapse
Affiliation(s)
| | - Chihiro Ito
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Saki Keitoku
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Yoshiaki Miyake
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Aichi, Japan
| | - Masataka Itoigawa
- School of Sport and Health Science, Tokai Gakuen University, Miyoshi, Aichi, Japan
| | - Takuya Matsui
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toshiyuki Shibata
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Seaweed Biorefinery Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
12
|
Pradhan B, Nayak R, Bhuyan PP, Patra S, Behera C, Sahoo S, Ki JS, Quarta A, Ragusa A, Jena M. Algal Phlorotannins as Novel Antibacterial Agents with Reference to the Antioxidant Modulation: Current Advances and Future Directions. Mar Drugs 2022; 20:403. [PMID: 35736206 PMCID: PMC9228090 DOI: 10.3390/md20060403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
The increasing drug resistance of infectious microorganisms is considered a primary concern of global health care. The screening and identification of natural compounds with antibacterial properties have gained immense popularity in recent times. It has previously been shown that several bioactive compounds derived from marine algae exhibit antibacterial activity. Similarly, polyphenolic compounds are generally known to possess promising antibacterial capacity, among other capacities. Phlorotannins (PTs), an important group of algae-derived polyphenolic compounds, have been considered potent antibacterial agents both as single drug entities and in combination with commercially available antibacterial drugs. In this context, this article reviews the antibacterial properties of polyphenols in brown algae, with particular reference to PTs. Cell death through various molecular modes of action and the specific inhibition of biofilm formation by PTs were the key discussion of this review. The synergy between drugs was also discussed in light of the potential use of PTs as adjuvants in the pharmacological antibacterial treatment.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea;
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India;
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India;
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| | - Sthitaprajna Sahoo
- Department of Botany, Berhampur University, Berhampur 760007, Odisha, India;
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea;
| | - Alessandra Quarta
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy;
| | - Andrea Ragusa
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy;
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| |
Collapse
|
13
|
Monteiro P, Lomartire S, Cotas J, Marques JC, Pereira L, Gonçalves AMM. Call the Eckols: Present and Future Potential Cancer Therapies. Mar Drugs 2022; 20:387. [PMID: 35736190 PMCID: PMC9230804 DOI: 10.3390/md20060387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, an increased interest in marine macroalgae bioactive compounds has been recorded due to their benefits to human health and welfare. Several of their bioactivities have been demonstrated, such as anti-inflammatory, antioxidant, anticarcinogenic, antibacterial and antiviral behavior. However, there still lacks a clear definition regarding how these compounds exert their bioactive properties. Of all the bioactive compounds derived from marine macroalgae, attention has been focused on phenolic compounds, specifically in phlorotannins, due to their potential for biomedical applications. Phlorotannins are a diverse and wide group of phenolic compounds, with several structural variations based on the monomer phloroglucinol. Among the diverse phlorotannin structures, the eckol-family of phlorotannins demonstrates remarkable bioactivity, notably their anti-tumoral properties. However, the molecular mechanisms by which this activity is achieved remain elusive and sparse. This review focuses on the described molecular mechanisms of anti-tumoral effects by the eckol family of compounds and the future prospects of these molecules for potential application in oncology therapies.
Collapse
Affiliation(s)
- Pedro Monteiro
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - Silvia Lomartire
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - João Cotas
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Murata N, Keitoku S, Miyake H, Tanaka R, Shibata T. Evaluation on Intestinal Permeability of Phlorotannins Using Caco-2 Cell Monolayers. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211070415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among the phlorotannins of seaweed polyphenols, eckols which have a dibenzodioxin linkage are known to have various physiological functions. The purpose of this study was to investigate the intestinal epithelial absorption of eckols using Caco-2 cell monolayers of the small intestinal membrane model. Each compound permeated from the apical (AP) side to the basolateral (BL) side in the monolayers was identified and quantitated by liquid chromatography-mass spectrometry with electrospray ionization. In the transport assays using five types of eckols (eckol, fucofuroeckol A, phlorofucofuroeckol A, dieckol, and 8,8'-bieckol), only the monomeric eckol showed limited transepithelial absorption with relatively small apparent permeability values (0.30 ± 0.04 × 10−8 cm/s). Analyzing the Hanks’ balanced salt solution in the receiver on the BL side showed that phloroglucinol was detected in all experimental sections using eckols, and it's concentration increased with time over the course of the incubation. The other molecules corresponding to the unconjugated and conjugated metabolites of eckols were not detected in the AP and BL sides through the assays. These results suggest that eckols, including monomeric eckol, may be decomposed into phloroglucinol in the intestinal epithelium and the resulting phloroglucinol permeates to the BL side.
Collapse
Affiliation(s)
- Naoki Murata
- Graduate school of Bioresources, Mie University, Tsu, Mie, Japan
| | - Saki Keitoku
- Graduate school of Bioresources, Mie University, Tsu, Mie, Japan
| | - Hideo Miyake
- Graduate school of Bioresources, Mie University, Tsu, Mie, Japan
- Seaweed Biorefinery Research Center, Mie University, Tsu, Mie, Japan
| | - Reiji Tanaka
- Graduate school of Bioresources, Mie University, Tsu, Mie, Japan
- Seaweed Biorefinery Research Center, Mie University, Tsu, Mie, Japan
| | - Toshiyuki Shibata
- Graduate school of Bioresources, Mie University, Tsu, Mie, Japan
- Seaweed Biorefinery Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
15
|
Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar Drugs 2021; 19:md19100552. [PMID: 34677451 PMCID: PMC8539943 DOI: 10.3390/md19100552] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
The interest in seaweeds for cosmetic, cosmeceutics, and nutricosmetics is increasing based on the demand for natural ingredients. Seaweeds offer advantages in relation to their renewable character, wide distribution, and the richness and versatility of their valuable bioactive compounds, which can be used as ingredients, as additives, and as active agents in the formulation of skin care products. Bioactive compounds, such as polyphenols, polysaccharides, proteins, peptides, amino acids, lipids, vitamins, and minerals, are responsible for the biological properties associated with seaweeds. Seaweed fractions can also offer technical features, such as thickening, gelling, emulsifying, texturizing, or moistening to develop cohesive matrices. Furthermore, the possibility of valorizing industrial waste streams and algal blooms makes them an attractive, low cost, raw and renewable material. This review presents an updated summary of the activities of different seaweed compounds and fractions based on scientific and patent literature.
Collapse
|
16
|
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M, Khotimchenko Y. Bioactive Compounds with Antiglioma Activity from Marine Species. Biomedicines 2021; 9:biomedicines9080886. [PMID: 34440090 PMCID: PMC8389718 DOI: 10.3390/biomedicines9080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.
Collapse
Affiliation(s)
- Rodion Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Igor Bryukhovetskiy
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Maksim Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
- Laboratory of Pharmacology, A. V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
17
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
18
|
Kim JE, Choi YJ, Lee SJ, Gong JE, Lee YJ, Sung JE, Jung YS, Lee HS, Hong JT, Hwang DY. Antioxidant activity and laxative effects of tannin-enriched extract of Ecklonia cava in loperamide-induced constipation of SD rats. PLoS One 2021; 16:e0246363. [PMID: 33626068 PMCID: PMC7904174 DOI: 10.1371/journal.pone.0246363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
To investigate the role of tannin-enriched extracts of Ecklonia cava (TEE) on the regulation of oxidative balance and laxative activity in chronic constipation, we investigated alterations after exposure to TEE, on constipation phenotypes, muscarinic cholinergic regulation, and oxidative stress responses in the transverse colons of SD rats with loperamide (Lop)-induced constipation. This extract contains high levels of total condensed tannin content (326.5 mg/g), and exhibited high inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. TEE treatment induced significant improvements in reactive oxygen species (ROS) production, superoxide dismutase (SOD) expression and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation in primary smooth muscles of rat intestine cells (pRISMCs) and transverse colon of constipation model. Also, Lop+TEE treated groups showed alleviated outcomes for the following: most stool parameters, gastrointestinal transit, and intestine length were remarkably recovered; a similar recovery pattern was observed in the histopathological structure, mucin secretion, water channel expression and gastrointestinal hormones secretion in the transverse colon; expressions of muscarinic acetylcholine receptors M2/M3 (mAChR M2/M3) and their mediators on muscarinic cholinergic regulation were significantly recovered. Taken together, these results provide the first evidence that TEE stimulates oxidative stress modulation and muscarinic cholinergic regulation when exerting its laxative effects in chronic constipation models.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Young Ju Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Ji Eun Sung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| | - Young Suk Jung
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Hee Seob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, Miryang, Korea
| |
Collapse
|
19
|
Shikov AN, Flisyuk EV, Obluchinskaya ED, Pozharitskaya ON. Pharmacokinetics of Marine-Derived Drugs. Mar Drugs 2020; 18:E557. [PMID: 33182407 PMCID: PMC7698100 DOI: 10.3390/md18110557] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Marine organisms represent an excellent source of innovative compounds that have the potential for the development of new drugs. The pharmacokinetics of marine drugs has attracted increasing interest in recent decades due to its effective and potential contribution to the selection of rational dosage recommendations and the optimal use of the therapeutic arsenal. In general, pharmacokinetics studies how drugs change after administration via the processes of absorption, distribution, metabolism, and excretion (ADME). This review provides a summary of the pharmacokinetics studies of marine-derived active compounds, with a particular focus on their ADME. The pharmacokinetics of compounds derived from algae, crustaceans, sea cucumber, fungus, sea urchins, sponges, mollusks, tunicate, and bryozoan is discussed, and the pharmacokinetics data in human experiments are analyzed. In-depth characterization using pharmacokinetics is useful for obtaining information for understanding the molecular basis of pharmacological activity, for correct doses and treatment schemes selection, and for more effective drug application. Thus, an increase in pharmacokinetic research on marine-derived compounds is expected in the near future.
Collapse
Affiliation(s)
- Alexander N. Shikov
- Department of Technology of Pharmacutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14a, Saint-Petersburg 197376, Russia;
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| | - Elena V. Flisyuk
- Department of Technology of Pharmacutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14a, Saint-Petersburg 197376, Russia;
| | - Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| |
Collapse
|
20
|
Erpel F, Mateos R, Pérez-Jiménez J, Pérez-Correa JR. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int 2020; 137:109589. [PMID: 33233195 DOI: 10.1016/j.foodres.2020.109589] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Phlorotannins are phenolic characteristic compounds of brown seaweeds that are only constituted by phloroglucinol (1,3,5-trihydroxybenzene). They are chain- and net-like structures of diverse molecular weights and have been widely identified in Ecklonia, Eisenia, and Ishige species. Since the time they were discovered in the '70 s, phlorotannins have been suggested as a main factor responsible for the antimicrobial activities attributed to algae extracts. Currently, cumulative in vitro and in vivo research evidence the diverse bioactivities of phlorotannin extracts -such as antidiabetic, anticancer, and antibacterial- pointing out their potential pharmacological and food applications. However, metabolomic studies and clinical trials are scarce, and thus many phlorotannins health-beneficial effects in humans are not yet confirmed. This article reviews recent studies assessing the antidiabetic and anticancer activities of phlorotannins. Particularly, their potential to prevent and control the progression of these non-communicable diseases is discussed, considering in vitro and animal studies, as well as clinical interventions. In contrast to other approaches, we only included investigations with isolated phlorotannins or phlorotannin-rich extracts. Thus, phlorotannin extraction, purification and characterization procedures are briefly addressed. Overall, although considerable research showing the antidiabetic and anticancer potential of phlorotannins is now available, further clinical trials are still necessary to conclusively demonstrate the efficacy of these compounds as adjuvants for diabetes and cancer prevention or treatment.
Collapse
Affiliation(s)
- Fernanda Erpel
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| |
Collapse
|
21
|
Eckol protects against acute experimental colitis in mice: Possible involvement of Reg3g. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Birkemeyer C, Lemesheva V, Billig S, Tarakhovskaya E. Composition of Intracellular and Cell Wall-Bound Phlorotannin Fractions in Fucoid Algae Indicates Specific Functions of These Metabolites Dependent on the Chemical Structure. Metabolites 2020; 10:E369. [PMID: 32933101 PMCID: PMC7570113 DOI: 10.3390/metabo10090369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/03/2023] Open
Abstract
Accumulation of biologically active metabolites is a specific feature of plant biochemistry, directing the use of plants in numerous applications in the pharmaceutical and food industries. Among these substances, the plethora of phenolic compounds has attracted particular interest among researchers. Here, we report on new findings in phlorotannin research, a large group of multifunctional phenolic substances, produced in brown algae. Comprehensive LC-MS profiling of three algal species allowed us to depict the complex pattern of this structurally diverse compound group across different tissues and subcellular compartments. We compiled more than 30 different phlorotannin series in one sample and used accurate mass spectrometry to assign tentative structures to the observed ions based on the confirmed sum formulas. From that, we found that acetylation, hydroxylation, and oxidation are likely to be the most common in vivo modifications to phlorotannins. Using an alternative data mining strategy to cope with extensive coelution and structural isomers, we quantitatively compared the intensity of different phlorotannin series in species, tissues, and subcellular compartments to learn more about their physiological functions. The structure and intra-thallus profiles of cell wall-bound phlorotannins were studied here for the first time. We suggest that one of the major dibenzodioxin-type phlorotannin series may exclusively target integration into the cell wall of fucoid algae.
Collapse
Affiliation(s)
- Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Valeriya Lemesheva
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Susan Billig
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
- Department of Scientific Information, Russian Academy of Sciences Library, 199034 St. Petersburg, Russia
| |
Collapse
|
23
|
Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Kuznetsova TA, Fedyanina LN, Makarenkova ID, Zvyagintseva TN. Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current Achievements and Immediate Prospects. Biomedicines 2020; 8:E342. [PMID: 32932759 PMCID: PMC7554682 DOI: 10.3390/biomedicines8090342] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
The increasing drug resistance of pathogenic microorganisms raises concern worldwide and necessitates the search for new natural compounds with antibacterial properties. Marine algae are considered a natural and attractive biotechnological source of novel antibiotics. The high antimicrobial activity of their polyphenolic compounds is a promising basis for designing innovative pharmaceuticals. They can become both a serious alternative to traditional antimicrobial agents and an effective supplement to antibiotic therapy. The present review summarizes the results of numerous studies on polyphenols from algae and the range of biological activities that determine their biomedical significance. The main focus is put on a group of the polyphenolic metabolites referred to as phlorotannins and, particularly, on their structural diversity and mechanisms of antimicrobial effects. Brown algae are an almost inexhaustible resource with a high biotechnological potential for obtaining these polyfunctional compounds. An opinion is expressed that the effectiveness of the antibacterial activity of phlorotannins depends on the methods of their extraction aimed at preserving the phenolic structure. The use of modern analytical tools opens up a broad range of opportunities for studying the metabolic pathways of phlorotannins and identifying their structural and functional relationships. The high antimicrobial activity of phlorotannins against both Gram-positive and Gram-negative bacteria provides a promising framework for creating novel drugs to be used in the treatment and prevention of infectious diseases.
Collapse
Affiliation(s)
- Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
| | - Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Ilona D. Makarenkova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
| | - Tatyana N. Zvyagintseva
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| |
Collapse
|
24
|
Murata N, Azuma M, Yamauchi K, Miyake H, Tanaka R, Shibata T. Phlorotannins Remarkably Suppress the Formation of Nε-(Carboxymethyl)lysine in a Collagen-Glyoxal Environment. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20941655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
N ε-(Carboxymethyl)lysine (CML), which is formed by the glycation of collagen, is a skin-accumulating advanced glycation end product and has been shown to be deeply involved in diabetic osteopenia and skin aging. In this study, we prepared the phlorotannins of marine algal polyphenols from Japanese Lessoniaceae ( Ecklonia cava, Ecklonia kurome, cultured E. kurome, Ecklonia stolonifera, Eisenia nipponica, and Eisenia bicyclis) and evaluated their inhibitory activities against CML formation in a collagen-glyoxal environment. The level of CML formed from the glycation of collagen by glyoxal was detected using an enzyme-linked immunosorbent assay. Except for E. stolonifera, the level of CML formation in the treatment with crude phlorotannins at 0.16 µg/mL was found to be comparable to that in the treatment with 0.40 mM aminoguanidine hydrochloride (AG) which is a typical antiglycation agent. In the test using phloroglucinol and isolated eckols (eckol, fucofuroeckol A, phlorofucofuroeckol A, dieckol, and 8,8’-bieckol) at a concentration of 0.80 µg/mL, the level of CML formed was lower for each compound, except for phlorofucofuroeckol A, than the data obtained with the addition of 2.0 mM AG. The mass concentration of 0.80 µg/mL was converted to 6.3 µM for phloroglucinol, 2.2 µM for eckol, 1.7 µM for fucofuroeckol A, 1.3 µM for phlorofucofuroeckol A, and 1.1 µM for dieckol and 8,8’-bieckol. From a comparison of the molar concentrations, it was found that phloroglucinol and the eckols inhibited the formation of CML resulting from glycation of collagen by glyoxal at concentrations of approximately 317 to 1818 times lower than AG.
Collapse
Affiliation(s)
- Naoki Murata
- Department of Life Sciences, Graduate school of Bioresources, Mie University, Tsu, Japan
| | | | | | - Hideo Miyake
- Department of Life Sciences, Graduate school of Bioresources, Mie University, Tsu, Japan
- Seaweed Biorefinery Resarch Center, Mie University, Tsu, Japan
| | - Reiji Tanaka
- Department of Life Sciences, Graduate school of Bioresources, Mie University, Tsu, Japan
- Seaweed Biorefinery Resarch Center, Mie University, Tsu, Japan
| | - Toshiyuki Shibata
- Department of Life Sciences, Graduate school of Bioresources, Mie University, Tsu, Japan
- Seaweed Biorefinery Resarch Center, Mie University, Tsu, Japan
| |
Collapse
|
25
|
Han EJ, Kim HS, Sanjeewa K, Herath K, Jeon YJ, Jee Y, Lee J, Kim T, Shim SY, Ahn G. Eckol from Ecklonia cava Suppresses Immunoglobulin E-mediated Mast Cell Activation and Passive Cutaneous Anaphylaxis in Mice. Nutrients 2020; 12:E1361. [PMID: 32397556 PMCID: PMC7284712 DOI: 10.3390/nu12051361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eckol, a precursor compound belonging to the dibenzo-1,4-dioxin class of phlorotannins, is a phloroglucinol derivative that exerts various activities. In the present study, we investigated the antiallergic effects of eckol isolated from the marine brown algae, Ecklonia cava using immunoglobulin E (IgE)/bovine serum albumin (BSA)-stimulated mouse bone marrow-derived cultured mast cells (BMCMC) and a mouse model of anaphylaxis. Eckol inhibited IgE/BSA-induced BMCMC degranulation by reducing β-hexosaminidase release. A flow cytometric analysis revealed that eckol decreases FcεRI expression on cell surface and IgE binding to the FcεRI in BMCMC. Moreover, eckol suppressed the production of the cytokines, interleukin (IL)-4, IL-5, IL-6, and IL-13 and the chemokine, thymus activation-regulated chemokine (TARC) by downregulating, IκB-α degradation and NF-κB nuclear translocation. Furthermore, it attenuated the passive cutaneous anaphylactic reaction induced by IgE/BSA-stimulation in the ear of BALB/c mice. These results suggest that eckol is a potential therapeutic candidate for the prevention and treatment of allergic disorders.
Collapse
Affiliation(s)
- Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea;
| | - K.K.A. Sanjeewa
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (K.K.A.S.); (Y.-J.J.)
| | - K.H.I.N.M. Herath
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (Y.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (K.K.A.S.); (Y.-J.J.)
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (Y.J.)
| | - Jeongjun Lee
- Naturetech, 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungbuk 27858, Korea; (J.L.); (T.K.)
| | - Taehee Kim
- Naturetech, 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungbuk 27858, Korea; (J.L.); (T.K.)
| | - Sun-Yup Shim
- Fisheries Science Institute, Chonnam National University, Daehak-Ro, Yeosu 59626, Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
26
|
Rosa GP, Tavares WR, Sousa PMC, Pagès AK, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites with Beneficial Health Effects: An Overview of Successes in In Vivo Studies and Clinical Trials. Mar Drugs 2019; 18:E8. [PMID: 31861879 PMCID: PMC7024274 DOI: 10.3390/md18010008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Macroalgae are increasingly viewed as a source of secondary metabolites with great potential for the development of new drugs. In this development, in vitro studies are only the first step in a long process, while in vivo studies and clinical trials are the most revealing stages of the true potential and limitations that a given metabolite may have as a new drug. This literature review aims to give a critical overview of the secondary metabolites that reveal the most interesting results in these two steps. Phlorotannins show great pharmaceutical potential in in vivo models and, among the several examples, the anti-dyslipidemia activity of dieckol must be highlighted because it was more effective than lovastatin in an in vivo model. The IRLIIVLMPILMA tridecapeptide that exhibits an in vivo level of activity similar to the hypotensive clinical drug captopril should still be stressed, as well as griffithsin which showed such stunning results over a variety of animal models and which will probably move onto clinical trials soon. Regarding clinical trials, studies with pure algal metabolites are scarce, limited to those carried out with kahalalide F and fucoxanthin. The majority of clinical trials currently aim to ascertain the effect of algae consumption, as extracts or fractions, on obesity and diabetes.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
| | - Wilson R. Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Aida K. Pagès
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Kwon S, Jung JH, Cho S, Moon KD, Lee J. Dieckol is a natural positive allosteric modulator of GABAA-benzodiazepine receptors and enhances inhibitory synaptic activity in cultured neurons. Nutr Neurosci 2019; 24:835-842. [DOI: 10.1080/1028415x.2019.1681089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sangoh Kwon
- S&D Research and Development Institute, Cheongju, Republic of Korea
- Major in Food Biotechnology, School of Food Science & Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Hoon Jung
- Research group of Functional Food Materials, Division of Functional Food, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Kwang-Deog Moon
- Major in Food Biotechnology, School of Food Science & Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jaekwang Lee
- Research group of Functional Food Materials, Division of Functional Food, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| |
Collapse
|
28
|
Eckol Inhibits Particulate Matter 2.5-Induced Skin Keratinocyte Damage via MAPK Signaling Pathway. Mar Drugs 2019; 17:md17080444. [PMID: 31357588 PMCID: PMC6723658 DOI: 10.3390/md17080444] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/17/2023] Open
Abstract
Toxicity of particulate matter (PM) towards the epidermis has been well established in many epidemiological studies. It is manifested in cancer, aging, and skin damage. In this study, we aimed to show the mechanism underlying the protective effects of eckol, a phlorotannin isolated from brown seaweed, on human HaCaT keratinocytes against PM2.5-induced cell damage. First, to elucidate the underlying mechanism of toxicity of PM2.5, we checked the reactive oxygen species (ROS) level, which contributed significantly to cell damage. Experimental data indicate that excessive ROS caused damage to lipids, proteins, and DNA and induced mitochondrial dysfunction. Furthermore, eckol (30 μM) decreased ROS generation, ensuring the stability of molecules, and maintaining a steady mitochondrial state. The western blot analysis showed that PM2.5 promoted apoptosis-related protein levels and activated MAPK signaling pathway, whereas eckol protected cells from apoptosis by inhibiting MAPK signaling pathway. This was further reinforced by detailed investigations using MAPK inhibitors. Thus, our results demonstrated that inhibition of PM2.5-induced cell apoptosis by eckol was through MAPK signaling pathway. In conclusion, eckol could protect skin HaCaT cells from PM2.5-induced apoptosis via inhibiting ROS generation.
Collapse
|