1
|
Liu Y, Lu T, Li R, Xu R, Baranenko D, Yang L, Xiao D. Discovery of Jaspamycin from marine-derived natural product based on MTA3 to inhibit hepatocellular carcinoma progression. Sci Rep 2024; 14:25294. [PMID: 39455636 PMCID: PMC11511890 DOI: 10.1038/s41598-024-75205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Studies have underscored the pivotal role of metastasis-associated protein 3 (MTA3) as a cancer regulator, yet its potential as a drug target across cancers necessitates comprehensive evaluation. In this study, we analyzed MTA3 expression profiles to ascertain its diagnostic and prognostic value in pan-cancers, probing associations with genetic variations and immunological characteristics. Notably, liver hepatocellular carcinoma (LIHC) exhibited the most significant correlation with MTA3. By transfection of siRNA, interference of MTA3 affected HepG2 and Hepa1-6 cell viability and migration. Through drug screening and drug-likeness evaluation among marine-derived natural products, Jaspamycin was identified as a potential hepatocellular carcinoma treatment by targeting MTA3. By applying in vitro and in vivo experiment, the inhibitory effects of Jaspamycin on hepatocellular carcinoma viability, migration, and tumor progression were observed. To assess the potential of MTA3 as an anticancer drug target, MTA3 overexpression plasmid was transfected together with Jaspamycin treatment, and observed that MTA3 upregulation counteracted the inhibitory effects of Jaspamycin on hepatocarcinoma cell proliferation and migration, underscoring the efficacy of MTA3 as a drug target in hepatocellular carcinoma drug screening. This study highlights the clinical significance of MTA3 in pan-cancer, particularly in hepatocellular carcinoma. Additionally, it identifies Jaspamycin, a marine-derived compound with promising pharmacological properties, as an effective inhibitor of MTA3 activity, suggesting its potential for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Yihan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150001, China
| | - Tong Lu
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Runze Li
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Rui Xu
- Cancer Hospital, Shenzhen Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Denis Baranenko
- School of Life Sciences, Faculty of Ecotechnologies, ITMO University, St. Petersburg, 197101, Russia
| | - Lida Yang
- Heilongjiang Nursing Collage, Harbin, Heilongjiang, 150086, China
| | - Dan Xiao
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450007, China.
- School of Medicine and Health, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
2
|
Pradhan B, Ki JS. Seaweed-derived laminarin and alginate as potential chemotherapeutical agents: An updated comprehensive review considering cancer treatment. Int J Biol Macromol 2024:136593. [PMID: 39426775 DOI: 10.1016/j.ijbiomac.2024.136593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Seaweed-derived bioactive substances such as polysaccharides have proven to be effective chemotherapeutic and chemopreventive agents. Laminarin and alginate antioxidant properties aid in the prevention of cancer through dynamic modulation of critical intracellular signaling pathways via apoptosis which produce low cytotoxicity and potential chemotherapeutic effects. Understanding the effects of laminarin and alginate on human cancer cells and their molecular roles in cell death pathways can help to develop a novel chemoprevention strategy. This review emphasizes the importance of apoptosis-modulating laminarin and alginate in a range of malignancies as well as their extraction, molecular structure, and weight. In addition, future nano-formulation enhancements for greater clinical efficacy are discussed. Laminarin and alginate are perfect ingredients because of their distinct physicochemical and biological characteristics and their use-based delivery systems in cancer. The effectiveness of laminarin and alginate against cancer and more preclinical and clinical trials will open up as new chemotherapeutic natural drugs which lead to established as potential cancer drugs.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea; Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
3
|
Ren Q, Chen G, Wan Q, Xiao L, Zhang Z, Feng Y. Unravelling the role of natural and synthetic products as DNA topoisomerase inhibitors in hepatocellular carcinoma. Bioorg Chem 2024; 153:107860. [PMID: 39442463 DOI: 10.1016/j.bioorg.2024.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Topoisomerase is a ubiquitous enzyme in the control of DNA chain topology. There have been extensive research on topoisomerase inhibitors derived from natural sources, which act as partial inducers of tumor cell apoptosis. However, their specific efficacy in treating hepatocellular carcinoma is relatively unexplored. Hence, this comprehensive review focuses on the structural characteristics and anti-cancer properties of topoisomerase inhibitors in hepatocellular carcinoma. Furthermore, this review is also elucidating the mechanism of action, structure-activity relationships, therapeutic limitations, stage of clinical trials of described classes of natural bioactive compounds as well as their potential application in cancer chemotherapies. This broad understanding of topoisomerase medical biology will provide indispensable framework for enhancing the efficiency of rational anti-hepatocellular carcinoma drug discovery.
Collapse
Affiliation(s)
- Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Qi Wan
- Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Liangman Xiao
- Acupuncture Rehabilitation Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhitong Zhang
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
4
|
Chagaleti BK, Baby K, Peña-Corona SI, Leyva-Gómez G, S M S, Naveen NR, Jose J, Aldahish AA, Sharifi-Rad J, Calina D. Anti-cancer properties of Sansalvamide A, its derivatives, and analogs: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7337-7351. [PMID: 38739152 DOI: 10.1007/s00210-024-03129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
As peptide-based therapies gain recognition for their potential anti-cancer activity, cyclic peptides like Sansalvamide A, a marine-derived cyclic depsipeptide, have emerged as a potential anti-cancer agent due to their potent activity against various cancer types in preclinical studies. This review offers a comprehensive overview of Sansalvamide A, including its sources, structure-activity relationship, and semi-synthetic derivatives. The review also aims to outline the mechanisms through which Sansalvamide A and its analogs exert their anti-proliferative effects and to discuss the need for enhancements in pharmacokinetic profiles for better clinical utility. An extensive literature search was conducted, focusing on studies that detailed the anti-cancer activity of Sansalvamide A, its pharmacokinetics, and mechanistic pathways. Data from both in vitro and in vivo studies were collated and analyzed. Sansalvamide A and its analogs demonstrated significant anti-cancer activity across various cancer models, mediated through Hsp 90 inhibition, Topoisomerase inhibition, and G0/G1 cell cycle arrest. However, their pharmacokinetic properties were identified as a significant limitation, requiring improvement for effective clinical translation. Despite its notable anti-cancer effects, the utility of Sansalvamide A is currently limited by its pharmacokinetic characteristics. Therefore, while Sansalvamide A exhibits promise as an anti-cancer agent, there is a compelling need for further clinical and toxicological studies and optimization of its pharmacokinetic profile to fully exploit its therapeutic potential alongside modern cancer therapies.
Collapse
Affiliation(s)
- Bharat Kumar Chagaleti
- Department of Pharmaceutical Chemistry, Akshaya Institute of Pharmacy, Tumkur, Karnataka, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sindhoor S M
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India
| | - N Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Bellur, Karnataka, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India.
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 61441, Kingdom of Saudi Arabia
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| |
Collapse
|
5
|
Ameen HM, Jayadev A, Prasad G, Nair DI. Seagrass Meadows: Prospective Candidates for Bioactive Molecules. Molecules 2024; 29:4596. [PMID: 39407526 PMCID: PMC11478234 DOI: 10.3390/molecules29194596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Seagrass meadows consist of angiosperms that thrive fully submerged in marine environments and form distinct ecosystems. They provide essential support for many organisms, acting as nursery grounds for species of economic importance. Beyond their ecological roles, seagrasses and their associated microbiomes are rich sources of bioactive compounds with the potential to address numerous human healthcare challenges. Seagrasses produce bioactive molecules responding to physical, chemical, and biological environmental changes. These activities can treat microbe-borne diseases, skin diseases, diabetes, muscle pain, helminthic diseases, and wounds. Seagrasses also offer potential secondary metabolites that can be used for societal benefits. Despite numerous results on their presence and bioactive derivatives, only a few studies have explored the functional and therapeutic properties of secondary metabolites from seagrass. With the increasing spread of epidemics and pandemics worldwide, the demand for alternative drug sources and drug discovery has become an indispensable area of research. Seagrasses present a reliable natural source, making this an opportune moment for further exploration of their pharmacological activities with minimal side effects. This review provides a comprehensive overview of the biochemical, phytochemical, and biomedical applications of seagrasses globally over the last two decades, highlighting the prospective areas of future research for identifying biomedical applications.
Collapse
Affiliation(s)
- Hazeena M. Ameen
- Postgraduate Department of Environmental Sciences, All Saints’ College (Affiliated to the University of Kerala), Thiruvananthapuram 695007, India;
| | - Ayona Jayadev
- Postgraduate Department of Environmental Sciences, All Saints’ College (Affiliated to the University of Kerala), Thiruvananthapuram 695007, India;
| | - Geena Prasad
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 641112, India
| | - Deepa Indira Nair
- Department of Engineering Technologies, Swinburne University of Technology, Melbourne 3122, Australia;
| |
Collapse
|
6
|
Chen Z, Wu J, Wang N, Li T, Wu H, Wu H, Xiang W. Isolation, Characterization, Moisturization and Anti-HepG2 Cell Activities of a Novel Polysaccharide from Cyanobacterium aponinum. Molecules 2024; 29:4556. [PMID: 39407483 PMCID: PMC11478272 DOI: 10.3390/molecules29194556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/20/2024] Open
Abstract
Polysaccharides from cyanobacteria are extensively reported for their complex structures, good biocompatibility, and diverse bioactivities, but only a few cyanobacterial species have been exploited for the biotechnological production of polysaccharides. According to our previous study, the newly isolated marine cyanobacterium Cyanobacterium aponinum SCSIO-45682 was a good candidate for polysaccharide production. This work provided a systematic study of the extraction optimization, isolation, structural characterization, and bioactivity evaluation of polysaccharides from C. aponinum SCSIO-45682. Results showed that the crude polysaccharide yield of C. aponinum reached 17.02% by hot water extraction. The crude polysaccharides showed a porous and fibrous structure, as well as good moisture absorption and retention capacities comparable to that of sodium alginate. A homogeneous polysaccharide (Cyanobacterium aponinum polysaccharide, CAP) was obtained after cellulose DEAE-52 column and Sephadex G-100 column purification. CAP possessed a high molecular weight of 4596.64 kDa. It was mainly composed of fucose, galactose, and galacturonic acid, with a molar ratio of 15.27:11.39:8.64. The uronic acid content and sulfate content of CAP was 12.96% and 18.06%, respectively. Furthermore, CAP showed an in vitro growth inhibition effect on human hepatocellular carcinoma (HepG2) cells. The above results indicated the potential of polysaccharides from the marine cyanobacterium C. aponinum SCSIO-45682 as a moisturizer and anticancer addictive applied in cosmetical and pharmaceutical industries.
Collapse
Affiliation(s)
- Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou 511466, China
| | - Na Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Basic Medical Sciences, Heyang Medical School, University of South China, Hengyang 421001, China
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.C.); (J.W.); (N.W.); (T.L.); (H.W.)
| |
Collapse
|
7
|
Ali ML, Noushin F, Azme E, Hasan MM, Hoque N, Metu AF. Marine natural compounds as potential CBP bromodomain inhibitors for treating cancer: an in-silico approach using molecular docking, ADMET, molecular dynamics simulations and MM-PBSA binding free energy calculations. In Silico Pharmacol 2024; 12:85. [PMID: 39310674 PMCID: PMC11411048 DOI: 10.1007/s40203-024-00258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
The cAMP-responsive element binding protein (CREB) binding protein (CBP), a bromodomain-containing protein, engages with multiple transcription factors and enhances the activation of many genes. CBP bromodomain acts as an epigenetic reader and plays an important role in the CBP-chromatin interaction which makes it an important drug target for treating many diseases. Though inhibiting CBP bromodomain was reported to have great potential in cancer therapeutics, approved CBP bromodomain inhibitor is yet to come. We utilized various in silico approaches like molecular docking, ADMET, molecular dynamics (MD) simulations, MM-PBSA calculations, and in silico PASS predictions to identify potential CBP bromodomain inhibitors from marine natural compounds as they have been identified as having distinctive chemical structures and greater anticancer activities. To develop a marine natural compound library for this investigation, Lipinski's rule of five was used. Sequential investigations utilizing molecular docking, ADMET studies, 100 ns MD simulations, and MM-PBSA calculations revealed that three marine compounds-ascididemin, neoamphimedine, and stelletin A-demonstrated superior binding affinity compared to the standard inhibitor, 69 A. These compounds also exhibited suitable drug-like properties, a favorable safety profile, and formed stable protein-ligand complexes. The in-silico PASS tool predicted that these compounds have significant potential for anticancer activity. Among them, ascididemin demonstrated the highest binding affinity in both molecular docking and MM-PBSA calculations, as well as a better stability profile in MD simulations. Hence, ascididemin can be a potential inhibitor of CBP bromodomain. However, in vitro and in vivo validation is required for further confirmation of these findings. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00258-5.
Collapse
Affiliation(s)
- Md. Liakot Ali
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Fabiha Noushin
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Eva Azme
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Md. Mahmudul Hasan
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Neamul Hoque
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Afroz Fathema Metu
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| |
Collapse
|
8
|
Jeevithan L, Diao X, Hu J, Elango J, Wu W, Mate Sanchez de Val JE, Rajendran S, Sundaram T, Rajamani Sekar SK. Recent advancement of novel marine fungi derived secondary metabolite fibrinolytic compound FGFC in biomedical applications: a review. Front Cell Infect Microbiol 2024; 14:1422648. [PMID: 39359937 PMCID: PMC11445226 DOI: 10.3389/fcimb.2024.1422648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
For several decades, products derived from marine natural sources (PMN) have been widely identified for several therapeutic applications due to their rich sources of bioactive sub-stances, unique chemical diversity, biocompatibility and excellent biological activity. For the past 15 years, our research team explored several PMNs, especially fungi fibrinolytic compounds (FGFCs). FGFC is an isoindolone alkaloid derived from marine fungi, also known as staplabin analogs or Stachybotrys microspora triprenyl phenol (SMTP). For instance, our previous studies explored different types of FGFCs such as FGFC 1, 2, 3 and 4 from the marine fungi Stachybotrys longispora FG216 derived metabolites. The derivatives of FGFC are potentially employed in several disease treatments, mainly for stroke, cancer, ischemia, acute kidney injury, inflammation, cerebral infarction, thrombolysis and hemorrhagic activities, etc. Due to the increasing use of FGFCs in pharmaceutical and biomedical applications, it is important to understand the fundamental signaling concept of FGFCs. Hence, for the first time, this review collectively summarizes the background, types, mode of action and biological applications of FGFCs and their current endeavors for future therapies.
Collapse
Affiliation(s)
- Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Catolica San-Antonio de Murcia, Murcia, Spain
| | - Xiaozhen Diao
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiudong Hu
- Shanghai Sixth People’s Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Catolica San-Antonio de Murcia, Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jose Eduardo Mate Sanchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Catolica San-Antonio de Murcia, Murcia, Spain
| | | | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | |
Collapse
|
9
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Zare A, Ablakimova N, Kaliyev AA, Mussin NM, Tanideh N, Rahmanifar F, Tamadon A. An update for various applications of Artificial Intelligence (AI) for detection and identification of marine environmental pollutions: A bibliometric analysis and systematic review. MARINE POLLUTION BULLETIN 2024; 206:116751. [PMID: 39053264 DOI: 10.1016/j.marpolbul.2024.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Marine environmental pollution is one of the growing concerns of humans all over the world. Therefore, managing these marine pollutants has been a crucial matter for scientists in recent decades. Thus, researchers have tried to implement artificial intelligence (AI) to handle marine environmental pollutants. Therefore, in this manuscript, we performed a bibliometric analysis to understand the main applications of AI for managing marine environments. Therefore, we examined both PubMed online database and Google Scholar to find any research articles that discuss the applications of AI in managing marine environmental pollution. Ultimately, we found that AI can detect, locate, and even predict aquatic contaminants like oil fingerprinting, oil spills, oil spill damage, oil slicks, forecasting marine water quality, water quality development, harmful algal blooms, benthic sediment toxicity, as well as detection of marine debris with high accuracy.
Collapse
Affiliation(s)
| | - Nurgul Ablakimova
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| | - Asset Askerovich Kaliyev
- Department of Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| | - Nadiar Maratovich Mussin
- Department of Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Tamadon
- Department for Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
11
|
Makhloufi H, Pinon A, Champavier Y, Saliba J, Millot M, Fruitier-Arnaudin I, Liagre B, Chemin G, Mambu L. In Vitro Antiproliferative Activity of Echinulin Derivatives from Endolichenic Fungus Aspergillus sp. against Colorectal Cancer. Molecules 2024; 29:4117. [PMID: 39274965 PMCID: PMC11397142 DOI: 10.3390/molecules29174117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
The endolichenic fungus Aspergillus sp. was isolated from the lichen Xanthoparmelia conspersa harvested in France. Aspergillus sp. was grown on a solid culture medium to ensure the large-scale production of the fungus with a sufficient mass of secondary metabolites. The molecular network analysis of extracts and subfractions enabled the annotation of 22 molecules, guiding the purification process. The EtOAc extract displayed an antiproliferative activity of 3.2 ± 0.4 µg/mL at 48 h against human colorectal cancer cells (HT-29) and no toxicity at 30 µg/mL against human triple-negative breast cancer (TNBC) cells (MDA-MB-231) and human embryonic kidney (HEK293) non-cancerous cells. Among the five prenylated compounds isolated, of which four are echinulin derivatives, compounds 1 and 2 showed the most important activity, with IC50 values of 1.73 µM and 8.8 µM, respectively, against HT-29 cells.
Collapse
Affiliation(s)
- Hind Makhloufi
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Aline Pinon
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Yves Champavier
- Univ. Limoges, CNRS, Inserm, CHU Limoges, BISCEm, UAR 2015, US 42, F-87025 Limoges, France
| | - Jennifer Saliba
- Laboratoire LIENSs, Université de La Rochelle, UMR CNRS 7266, F-17000 La Rochelle, France
| | - Marion Millot
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | | | - Bertrand Liagre
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Guillaume Chemin
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Lengo Mambu
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| |
Collapse
|
12
|
Chuang YT, Yen CY, Tang JY, Wu KC, Chang FR, Tsai YH, Chien TM, Chang HW. Marine anticancer drugs in modulating miRNAs and antioxidant signaling. Chem Biol Interact 2024; 399:111142. [PMID: 39019423 DOI: 10.1016/j.cbi.2024.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Several marine drugs exert anticancer effects by inducing oxidative stress, which becomes overloaded and kills cancer cells when redox homeostasis is imbalanced. The downregulation of antioxidant signaling induces oxidative stress, while its upregulation attenuates oxidative stress. Marine drugs have miRNA-modulating effects against cancer cells. However, the potential antioxidant targets of such drugs have been rarely explored. This review aims to categorize the marine-drug-modulated miRNAs that downregulate their antioxidant targets, causing oxidative stress in anticancer treatments. We also categorize the downregulation of oxidative-stress-inducing miRNAs in antioxidant protection among non-cancer cells. We summarize the putative antioxidant targets of miRNA-modulating marine drugs by introducing a bioinformatics tool (miRDB). Finally, the marine drugs affecting antioxidant targets are surveyed. In this way, the connections between marine drugs and their modulating miRNA and antioxidant targets are innovatively categorized to provide a precise network for exploring their potential anticancer functions and protective effects on non-cancer cells.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, 900392, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, 907101, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
13
|
Ravichandiran P, Martyna A, Kochanowicz E, Maroli N, Kubiński K, Masłyk M, Boguszewska-Czubara A, Ramesh T. In Vitro and In Vivo Biological Evaluation of Novel 1,4-Naphthoquinone Derivatives as Potential Anticancer Agents. ChemMedChem 2024:e202400495. [PMID: 39136593 DOI: 10.1002/cmdc.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Indexed: 10/16/2024]
Abstract
A novel library of naphthoquinone derivatives (3-5 aa) was synthesized and evaluated for their anticancer properties. Specifically, compounds 5 i, 5 l, 5 o, 5 q, 5 r, 5 s, 5 t, and 5 v demonstrated superior cytotoxic activity against the cancer cell lines that were studied. All the studied compounds exhibited a higher selectivity index (SI) and a favourable safety profile than the standard drug doxorubicin. Notably, compound 5 v displayed a greater cytotoxic effect on MCF-7 cells (IC50=1.2 μM, and 0.9 μM at 24 h and 48 h, respectively) compared to the standard drug doxorubicin (IC50=2.4 μM, and 2.1 μM at 24 h and 48 h, respectively). To further investigate the mechanism of cytotoxic effect, additional anticancer studies were conducted with 5 v in MCF-7 cells. The studies are including morphological changes, AO/EB (acridine orange/ethidium bromide) double staining, apoptosis analysis, cell colony assay, SDS-PAGE and Western blotting, cell cycle analysis, and detecting reactive oxygen species (ROS) assay. The findings showed that 5 v triggered cytotoxic effects in MCF-7 cells through the initiation of cell cycle arrest at the G1/S phase and necrosis. In vivo ecotoxicity studies indicated that 5 v had lower toxicity towards zebrafish larvae (LC50=50.15 μM) and had an insignificant impact on cardiac functions. In vivo xenotransplantation of MCF-7 cells in zebrafish larvae demonstrated a significant reduction in tumour volume in the xenograft. Approximately 95 % of the zebrafish larvae with 5 v xenografts survived after 10 days of the treatment. Finally, a computational modelling study was conducted on four protein receptors, namely ER, EFGR, BRCA1, and VEFGR2. The findings highlight the importance of the aminonaphthoquinone moiety, amide linkage, and propyl thio moiety in enhancing the anticancer properties. 5 v exhibited superior drug-likeness features and docking scores (-9.1, -7.1, -8.9, and -10.9 kcal/mol) compared to doxorubicin (-7.2, -6.1, -6.9, and -7.3 kcal/mol) against ER, EFGR, BRCA1, and VEGFR2 receptors, respectively. Therefore, the notable antitumor effects of naphthoquinone derivatives (3-5 aa) suggest that these molecular frameworks may play a role in the development of promising anticancer agents for cancer treatment.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Present Address: Analytical, HP Green R & D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, Karnataka, 562114, India
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Ul. Chodźki 4 A, 20-093, Lublin, Poland
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
14
|
Shi Y, Sun XQ, Zhang JX, Zhang RH, Hong K, Xue YX, Qiu H, Liu L. New Cytotoxic γ-Lactam Alkaloids from the Mangrove-Derived Fungus Talaromyces hainanensis sp. nov. Guided by Molecular Networking Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17431-17443. [PMID: 39021257 DOI: 10.1021/acs.jafc.4c03959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The fungus Talaromyces hainanensis, isolated from the mangrove soil, was characterized as a novel species by morphology observation and phylogenetic analyses. Four new γ-lactam alkaloids talaroilactams A-D (1-4) and two reported compounds harzianic acid (5) and isoharzianic acid (6) were identified from the fungus T. hainanensis WHUF0341, assisted by OSMAC along with molecular networking approaches. Their structures were determined through ECD calculations and spectroscopic analyses. Moreover, the biosynthetic route of 1-4 was also proposed. Compound 1 displayed potent cytotoxicity against HepG2 cell lines, with an IC50 value of 10.75 ± 1.11 μM. In addition, network pharmacology was employed to dissect the probable mechanisms contributing to the antihepatocellular carcinoma effects of compound 1, revealing that cytotoxicity was mainly associated with proteolysis, negative regulation of autophagy, inflammatory response, and the renin-angiotensin system. These results not only expanded the chemical space of natural products from the mangrove associated fungi but also afforded promising lead compounds for developing the antihepatocellular carcinoma agents.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qi Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruo-Han Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Department of Radiation and Medical Oncology, Zhongnan Hospital, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ya-Xin Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Department of Radiation and Medical Oncology, Zhongnan Hospital, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Qiu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Department of Radiation and Medical Oncology, Zhongnan Hospital, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Wang S, Li X, Yang W, Huang R. Exploring the secrets of marine microorganisms: Unveiling secondary metabolites through metagenomics. Microb Biotechnol 2024; 17:e14533. [PMID: 39075735 PMCID: PMC11286668 DOI: 10.1111/1751-7915.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Marine microorganisms are increasingly recognized as primary producers of marine secondary metabolites, drawing growing research interest. Many of these organisms are unculturable, posing challenges for study. Metagenomic techniques enable research on these unculturable microorganisms, identifying various biosynthetic gene clusters (BGCs) related to marine microbial secondary metabolites, thereby unveiling their secrets. This review comprehensively analyses metagenomic methods used in discovering marine microbial secondary metabolites, highlighting tools commonly employed in BGC identification, and discussing the potential and challenges in this field. It emphasizes the key role of metagenomics in unveiling secondary metabolites, particularly in marine sponges and tunicates. The review also explores current limitations in studying these metabolites through metagenomics, noting how long-read sequencing technologies and the evolution of computational biology tools offer more possibilities for BGC discovery. Furthermore, the development of synthetic biology allows experimental validation of computationally identified BGCs, showcasing the vast potential of metagenomics in mining marine microbial secondary metabolites.
Collapse
Affiliation(s)
- Shaoyu Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
| | - Xinyan Li
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
| | - Weiqin Yang
- School of Computer Science and TechnologyShandong UniversityQingdaoShandongChina
| | - Ranran Huang
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
- Global Ocean Negative Carbon Emissions (ONCE) Program AllianceQingdaoChina
| |
Collapse
|
16
|
Visuddho V, Halim P, Helen H, Muhar AM, Iqhrammullah M, Mayulu N, Surya R, Tjandrawinata RR, Ribeiro RIMA, Tallei TE, Taslim NA, Kim B, Syahputra RA, Nurkolis F. Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy. Mar Drugs 2024; 22:338. [PMID: 39195454 DOI: 10.3390/md22080338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Marine algae, encompassing both macroalgae and microalgae, have emerged as a promising and prolific source of bioactive compounds with potent anticancer properties. Despite their significant therapeutic potential, the clinical application of these peptides is hindered by challenges such as poor bioavailability and susceptibility to enzymatic degradation. To overcome these limitations, innovative delivery systems, particularly nanocarriers, have been explored. Nanocarriers, including liposomes, nanoparticles, and micelles, have demonstrated remarkable efficacy in enhancing the stability, solubility, and bioavailability of marine algal peptides, ensuring controlled release and prolonged therapeutic effects. Marine algal peptides encapsulated in nanocarriers significantly enhance bioavailability, ensuring more efficient absorption and utilization in the body. Preclinical studies have shown promising results, indicating that nanocarrier-based delivery systems can significantly improve the pharmacokinetic profiles and therapeutic outcomes of marine algal peptides. This review delves into the diverse anticancer mechanisms of marine algal peptides, which include inducing apoptosis, disrupting cell cycle progression, and inhibiting angiogenesis. Further research focused on optimizing nanocarrier formulations, conducting comprehensive clinical trials, and continued exploration of marine algal peptides holds great promise for developing innovative, effective, and sustainable cancer therapies.
Collapse
Affiliation(s)
- Visuddho Visuddho
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Muhammad Iqhrammullah
- Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh 23123, Indonesia
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado 95249, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| |
Collapse
|
17
|
Nova P, Cunha SA, Costa-Pinto AR, Gomes AM. Chemical and Antioxidant Properties of Solvent and Enzyme-Assisted Extracts of Fucus vesiculosus and Porphyra dioica. Mar Drugs 2024; 22:319. [PMID: 39057428 PMCID: PMC11278442 DOI: 10.3390/md22070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Extraction strategies impact the efficiency and nature of extracted compounds. This work assessed the chemical composition and antioxidant capacity of ethanolic, hydroethanolic, and aqueous versus enzyme-assisted extracts (isolated or with the sequential use of alcalase®, cellulase®, and viscozyme®) of the macroalgae Fucus vesiculosus (brown, Phaeophyceae) and Porphyra dioica (red, Rhodophyta. For both macroalgae, enzyme-assisted extraction (EAE) was the most efficient process compared to solvent-assisted extraction (SAE), independent of solvent. Fucus vesiculosus extraction yields were higher for EAE than for SAE (27.4% to 32.2% and 8.2% to 30.0%, respectively). Total phenolics content (TPC) was at least 10-fold higher in EAE extracts (229.2 to 311.3 GAE/gextract) than in SAE (4.34 to 19.6 GAE/gextract) counterparts and correlated well with antioxidant capacity (ABTS and ORAC methods), with EAE achieving values up to 8- and 2.6-fold higher than those achieved by SAE, respectively. Porphyra dioica followed F. vesiculosus's trend for extraction yields (37.5% to 51.6% for EAE and 5.7% to 35.1% for SAE), TPC, although of a lower magnitude, (0.77 to 8.95 GAE/gextract for SE and 9.37 to 14.73 GAE/gextract for EAE), and antioxidant capacity. Aqueous extracts registered the highest DPPH values for both macroalgae, with 2.3 µmol TE/gextract and 13.3 µmol TE/gextract for F. vesiculosus and P. dioica, respectively. EAE was a more efficient process in the extraction of soluble protein and reducing sugars in comparison to SAE. Furthermore, an improved effect of enzyme-assisted combinations was observed for almost all analyzed parameters. This study shows the promising application of enzyme-assisted extraction for the extraction of valuable compounds from F. vesiculosus and P.dioica, making them excellent functional ingredients for a wide range of health and food industrial applications.
Collapse
Affiliation(s)
- Paulo Nova
- CBQF—Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (P.N.); (S.A.C.); (A.M.G.)
- i3S—Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sara A. Cunha
- CBQF—Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (P.N.); (S.A.C.); (A.M.G.)
| | - Ana R. Costa-Pinto
- i3S—Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Instituto de Patologia Molecular e Imunologia da Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Maria Gomes
- CBQF—Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (P.N.); (S.A.C.); (A.M.G.)
| |
Collapse
|
18
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
19
|
Hoang TV, Alfarraj S, Ali Alharbi S. An investigation on antimicrobial and anticancer competence of macro red algae under in-vitro condition. ENVIRONMENTAL RESEARCH 2024; 252:119026. [PMID: 38677407 DOI: 10.1016/j.envres.2024.119026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The purpose of this study was to look into the proximate parameters (moisture, ash, total fat, protein, and total carbohydrate), mineral composition (Fe, Cu, Mg, and Zn), antimicrobial as well as cytotoxic (anticancer) properties of extracts from the marine red macro algae Gracilaria corticata, Chondrus ocellatus, and Posphyra perforata against a few prevalent microbial pathogens (Salmonella typhi, Streptococcus pneumoniae, Corynebacterium diphtheriae, Clostridium tetani, and Treponema pallidum as well as fungal pathogens such as Candida albicans, Aspergillus niger, and Cryptococcus neoformans) and two cancerous cell lines (HeLa and MCF7). The dry biomass of these red algae biomass contains considerable valuable proximate parameters and minerals. The diffusion technique on agar wells was used to evaluate the antimicrobial properties of these test red algae methanol and hexane extract; MTT assay was used to evaluate the cytotoxic effects of the methanol and hexane extracts on each cancer cell line. The methanol extracts demonstrated significant antimicrobial activity against most of the tested pathogenic organisms. Mortality of cells was effectively caused by methanol extract and it followed by hexane extract at increased dosage 10 mg mL-1. The MTT assay revealed that the methanol extract of the red algae was considerably cytotoxic to HeLa and MCF7 cells, accompanied by the hexane extract in a dose-dependent manner. These findings suggest that the methanol extract of these red algae may contain bioactive compounds with antimicrobial and anticancer properties, which could be studied for future use in the discovery of new drugs from marine ecosystems.
Collapse
Affiliation(s)
- Thi-Van Hoang
- Faculty of Pharmacy, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Vietnam; School of Pharmacy, China Medical University, Taichung, 406040, Taiwan.
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
20
|
Kavaliauskas P, Grybaitė B, Sapijanskaite-Banevič B, Anusevičius K, Jonuškienė I, Stankevičienė R, Petraitienė R, Petraitis V, Grigalevičiūtė R, Meškinytė E, Stankevičius R, Mickevičius V. Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties. Molecules 2024; 29:3125. [PMID: 38999077 PMCID: PMC11243380 DOI: 10.3390/molecules29133125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Various cancer-associated morbidities remain a growing global health challenge, resulting in a significant burden on healthcare systems worldwide due to high mortality rates and a frequent lack of novel therapeutic options for advanced and localized disease. Reactive oxygen species (ROS) play an important role in cancer pathogenesis and response to chemotherapeutics; therefore, it is crucial to develop novel compounds with both antioxidant and anticancer activity. In this study, a series of previously reported 3-((4-hydroxyphenyl)amino)propanoic acid derivatives (compounds 1-36) were evaluated for their anticancer and antioxidant activities. Compounds 12, 20-22, and 29 were able to reduce A549 cell viability by 50% and suppress A549 cell migration in vitro. These compounds also showed favorable cytotoxicity properties towards noncancerous Vero cells. The most promising candidate, compound 20, exhibited potent antioxidant properties in the DPPH radical scavenging assay. These results demonstrate that 3-((4-hydroxyphenyl)amino)propanoic acid could be further explored as an attractive scaffold for the development of novel anticancer and antioxidant candidates.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Birute Sapijanskaite-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Rima Stankevičienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Rūta Petraitienė
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
| | - Vidmantas Petraitis
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Edita Meškinytė
- Center of Animal Production Research and Innovation, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania;
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| |
Collapse
|
21
|
van der Westhuyzen A, Ashraf N, Conradie D, Loots L, Kaschula CH, Pelly SC, Frolova LV, Landfair T, Shuster CB, Betancourt T, Kornienko A, van Otterlo WAL. Improved Rigidin-Inspired Antiproliferative Agents with Modifications on the 7-Deazahypoxanthine C7/C8 Ring Systems. J Med Chem 2024; 67:9950-9975. [PMID: 38865195 PMCID: PMC11215747 DOI: 10.1021/acs.jmedchem.3c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
To improve their aqueous solubility characteristics, water-solubilizing groups were added to some antiproliferative, rigidin-inspired 7-deazahypoxanthine frameworks after molecular modeling seemed to indicate that structural modifications on the C7 and/or C8 phenyl groups would be beneficial. To this end, two sets of 7-deazahypoxanthines were synthesized by way of a multicomponent reaction approach. It was subsequently determined that their antiproliferative activity against HeLa cells was retained for those derivatives with a glycol ether at the 4'-position of the C8 aryl ring system, while also significantly improving their solubility behavior. The best of these compounds were the equipotent 6-[4-(2-ethoxyethoxy)benzoyl]-2-(pent-4-yn-1-yl)-5-phenyl-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 33 and 6-[4-(2-ethoxyethoxy)benzoyl]-5-(3-fluorophenyl)-2-(pent-4-yn-1-yl)-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 59. Similarly to the parent 1, the new derivatives were also potent inhibitors of tubulin assembly. In treated HeLa cells, live cell confocal microscopy demonstrated their impact on microtubulin dynamics and spindle morphology, which is the upstream trigger of mitotic delay and cell death.
Collapse
Affiliation(s)
| | - Naghmana Ashraf
- Department
of Biology, New Mexico State University, Las Cruces ,New Mexico 88003, United States
| | - Daleen Conradie
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
- Department
of Physiological Sciences, Stellenbosch
University, Stellenbosch 7600, South Africa
| | - Leigh Loots
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
| | - Catherine H. Kaschula
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
| | - Stephen C. Pelly
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
- Department
of Chemistry, Emory University, 1515 Dickey Drive ,Atlanta ,Georgia 30322, United States
| | - Liliya V. Frolova
- Department
of Chemistry and Biochemistry, Purdue University, 2101 East Coliseum Blvd. ,Fort Wayne ,Indiana 46805, United States
| | - Taylor Landfair
- Department
of Biology, New Mexico State University, Las Cruces ,New Mexico 88003, United States
| | - Charles B. Shuster
- Department
of Biology, New Mexico State University, Las Cruces ,New Mexico 88003, United States
| | - Tania Betancourt
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos ,Texas 78666, United States
| | - Alexander Kornienko
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos ,Texas 78666, United States
| | - Willem A. L. van Otterlo
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
| |
Collapse
|
22
|
Fadil SA, Aljoud FA, Yonbawi AR, Almalki AJ, Hareeri RH, Ashi A, AlQriqri MA, Bawazir NS, Alshangiti HH, Shaala LA, Youssef DTA, Alkhilaiwi FA. Red Sea Sponge Callyspongia siphonella Extract Induced Growth Inhibition and Apoptosis in Breast MCF-7 and Hepatic HepG-2 Cancer Cell Lines in 2D and 3D Cell Cultures. Onco Targets Ther 2024; 17:521-536. [PMID: 38948385 PMCID: PMC11214578 DOI: 10.2147/ott.s467083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The increasing incidence of cancer diseases necessitates the urgent exploration of new bioactive compounds. One of the trends in drug discovery is marine sponges which is gaining significant support due to the abundant production of natural pharmaceutical compounds obtained from marine ecosystems. This study evaluates the anticancer properties of an organic extract from the Red Sea sponge Callyspongia siphonella (C. siphonella) on HepG-2 and MCF-7 cancer cell lines. Methods C. siphonella was collected, freeze-dried, and extracted using a methanol-dichloromethane mixture. The extract was analyzed via Liquid Chromatography-Mass Spectrometry. Cytotoxic effects were assessed through cell viability assays, apoptosis detection, cell cycle analysis, mitochondrial membrane potential assays, scratch-wound healing assays, and 3D cell culture assays. Results Fifteen compounds were identified in the C. siphonella extract. The extract showed moderate cytotoxicity against MCF-7 and HepG-2 cells, with IC50 values of 35.6 ± 6.9 μg/mL and 64.4 ± 8 μg/mL, respectively, after 48 hours of treatment. It induced cell cycle arrest at the G2/M phase in MCF-7 cells and the S phase in HepG-2 cells. Apoptosis increased significantly in both cell lines, accompanied by reduced mitochondrial membrane potential. The extract inhibited cell migration, with notable reductions after 24 and 48 hours. In 3D cell cultures, the extract had IC50 values of 5.1 ± 2 μg/mL for MCF-7 and 166.4 ± 27 μg/mL for HepG-2 after 7 days of treatment, showing greater potency in MCF-7 spheres compared to HepG-2 spheres. Discussion and Conclusion The anticancer activity is attributed to the bioactive compounds. The C. siphonella extract's ability to induce apoptosis, disrupt mitochondrial membrane potential, and arrest the cell cycle highlights its potential as a novel anticancer agent. Additional research is required to investigate the underlying mechanism by which this extract functions as a highly effective anticancer agent.
Collapse
Affiliation(s)
- Sana A Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fadwa A Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Scientific Research Center, Dar Al-Hekma University, Jeddah, 22246, Saudi Arabia
| | - Ahmed R Yonbawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rawan H Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abrar Ashi
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mehal Atallah AlQriqri
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nada S Bawazir
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadeel H Alshangiti
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lamiaa A Shaala
- Suez Canal University Hospital, Suez Canal University, Ismailia, 41522, Egypt
- Natural Products Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Diaa T A Youssef
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Natural Products Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41523, Egypt
| | - Faris A Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
23
|
Bhusare N, Gade A, Kumar MS. Using nanotechnology to progress the utilization of marine natural products in combating multidrug resistance in cancer: A prospective strategy. J Biochem Mol Toxicol 2024; 38:e23732. [PMID: 38769657 DOI: 10.1002/jbt.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.
Collapse
Affiliation(s)
- Nilam Bhusare
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Anushree Gade
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| |
Collapse
|
24
|
Germoush MO, Fouda M, Aly H, Saber I, Alrashdi BM, Massoud D, Alzwain S, Altyar AE, Abdel-Daim MM, Sarhan M. Proteomic analysis of the venom of Conus flavidus from Red Sea reveals potential pharmacological applications. J Genet Eng Biotechnol 2024; 22:100375. [PMID: 38797555 PMCID: PMC11066669 DOI: 10.1016/j.jgeb.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Venomous marine cone snails produce unique neurotoxins called conopeptides or conotoxins, which are valuable for research and drug discovery. Characterizing Conus venom is important, especially for poorly studied species, as these tiny and steady molecules have considerable potential as research tools for detecting new pharmacological applications. In this study, a worm-hunting cone snail, Conus flavidus inhabiting the Red Sea coast were collected, dissected and the venom gland extraction was subjected to proteomic analysis to define the venom composition, and confirm the functional structure of conopeptides. RESULTS Analysis of C. flavidus venom identified 117 peptide fragments and assorted them to conotoxin precursors and non-conotoxin proteins. In this procedure, 65 conotoxin precursors were classified and identified to 16 conotoxin precursors and hormone superfamilies. In the venom of C. flavidus, the four conotoxin superfamilies T, A, O2, and M were the most abundant peptides, accounting for 75.8% of the total conotoxin diversity. Additionally, 19 non-conotoxin proteins were specified in the venom, as well as several potentially biologically active peptides with putative applications. CONCLUSION Our research displayed that the structure of the C. flavidus-derived proteome is similar to other Conus species and includes toxins, ionic channel inhibitors, insulin-like peptides, and hyaluronidase. This study provides a foundation for discovering new conopeptides from C. flavidus venom for pharmaceutical use.
Collapse
Affiliation(s)
- Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia.
| | - Maged Fouda
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Hamdy Aly
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt
| | - Islam Saber
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt
| | - Barakat M Alrashdi
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Sarah Alzwain
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Moustafa Sarhan
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt; Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Saudi Arabia
| |
Collapse
|
25
|
Qiu H, Qian S, Head SA, Sanchez PR, Liu JO, Jin Z. Insights into the structure-activity relationship of the anticancer compound ZJ-101: A role played by the amide moiety. Bioorg Med Chem Lett 2024; 105:129741. [PMID: 38599296 PMCID: PMC11060512 DOI: 10.1016/j.bmcl.2024.129741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
ZJ-101, a structurally simplified analog of marine natural product superstolide A, was previously designed and synthesized in our laboratory. In the present study four new analogs of ZJ-101 were designed and synthesized to investigate the structure-activity relationship of the acetamide moiety of the molecule. The biological evaluation showed that the amide moiety is important for the molecule's anticancer activity. Replacing the amide with other functional groups such as a sulfonamide group, a carbamate group, and a urea group resulted in the decrease in anticancer activity.
Collapse
Affiliation(s)
- Haibo Qiu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | - Shan Qian
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Phillip R Sanchez
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Zhendong Jin
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
26
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
27
|
Lu J, Liang W, Hu Y, Zhang X, Yu P, Cai M, Xie D, Zhou Q, Zhou X, Liu Y, Wang J, Guo J, Tang L. Metabolism characterization and toxicity of N-hydap, a marine candidate drug for lung cancer therapy by LC-MS method. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:33. [PMID: 38771401 PMCID: PMC11109052 DOI: 10.1007/s13659-024-00455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
N-Hydroxyapiosporamide (N-hydap), a marine product derived from a sponge-associated fungus, has shown promising inhibitory effects on small cell lung cancer (SCLC). However, there is limited understanding of its metabolic pathways and characteristics. This study explored the in vitro metabolic profiles of N-hydap in human recombinant cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs), as well as human/rat/mice microsomes, and also the pharmacokinetic properties by HPLC-MS/MS. Additionally, the cocktail probe method was used to investigate the potential to create drug-drug interactions (DDIs). N-Hydap was metabolically unstable in various microsomes after 1 h, with about 50% and 70% of it being eliminated by CYPs and UGTs, respectively. UGT1A3 was the main enzyme involved in glucuronidation (over 80%), making glucuronide the primary metabolite. Despite low bioavailability (0.024%), N-hydap exhibited a higher distribution in the lungs (26.26%), accounting for its efficacy against SCLC. Administering N-hydap to mice at normal doses via gavage did not result in significant toxicity. Furthermore, N-hydap was found to affect the catalytic activity of drug metabolic enzymes (DMEs), particularly increasing the activity of UGT1A3, suggesting potential for DDIs. Understanding the metabolic pathways and properties of N-hydap should improve our knowledge of its drug efficacy, toxicity, and potential for DDIs.
Collapse
Affiliation(s)
- Jindi Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xi Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meiqun Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Danni Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Jiayin Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Konstantinou EK, Gioxari A, Dimitriou M, Panoutsopoulos GI, Panagiotopoulos AA. Molecular Pathways of Genistein Activity in Breast Cancer Cells. Int J Mol Sci 2024; 25:5556. [PMID: 38791595 PMCID: PMC11122029 DOI: 10.3390/ijms25105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The most common malignancy in women is breast cancer. During the development of cancer, oncogenic transcription factors facilitate the overproduction of inflammatory cytokines and cell adhesion molecules. Antiapoptotic proteins are markedly upregulated in cancer cells, which promotes tumor development, metastasis, and cell survival. Promising findings have been found in studies on the cell cycle-mediated apoptosis pathway for medication development and treatment. Dietary phytoconstituents have been studied in great detail for their potential to prevent cancer by triggering the body's defense mechanisms. The underlying mechanisms of action may be clarified by considering the role of polyphenols in important cancer signaling pathways. Phenolic acids, flavonoids, tannins, coumarins, lignans, lignins, naphthoquinones, anthraquinones, xanthones, and stilbenes are examples of natural chemicals that are being studied for potential anticancer drugs. These substances are also vital for signaling pathways. This review focuses on innovations in the study of polyphenol genistein's effects on breast cancer cells and presents integrated chemical biology methods to harness mechanisms of action for important therapeutic advances.
Collapse
Affiliation(s)
| | | | | | | | - Athanasios A. Panagiotopoulos
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.G.); (M.D.); (G.I.P.)
| |
Collapse
|
29
|
Marasinghe CK, Yoon SD, Je JY. Two peptides LLRLTDL and GYALPCDCL inhibit foam cell formation through activating PPAR-γ/LXR-α signaling pathway in oxLDL-treated RAW264.7 macrophages. Biofactors 2024. [PMID: 38760074 DOI: 10.1002/biof.2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
Foam cell formation plays a pivotal role in atherosclerosis-associated cardiovascular diseases. Bioactive peptides generated from marine sources have been found to provide multifunctional health advantages. In the present study, we investigated the anti-atherosclerotic effects of LLRLTDL (Bu1) and GYALPCDCL (Bu2) peptides, isolated from ark shell protein hydrolysates by assessing their inhibitory effect on oxidized LDL (oxLDL)-induced foam cell formation. The two peptides showed a promising anti-atherosclerotic effect by inhibiting foam cell formation, which was evidenced by inhibiting lipid accumulation in oxLDL-treated RAW264.7 macrophages and oxLDL-treated primary human aortic smooth muscle cells (HASMC). Two peptides effectively reduced total cholesterol, free cholesterol, cholesterol ester, and triglyceride levels by upregulating cholesterol efflux and downregulating cholesterol influx. Expression of cholesterol influx-related proteins such as SR-A1 and CD36 were reduced, whereas cholesterol efflux-related proteins such as ATP-binding cassette transporter ABCA-1 and ABCG-1 were highly expressed. In addition, Bu1 and Bu2 peptides increased PPAR-γ and LXR-α expression. However, PPAR-γ siRNA transfection reversed the foam cell formation inhibitory activity of Bu1 and Bu2 peptides. Furthermore, the synergistic effect of Bu1 and Bu2 peptides on foam cell formation inhibition was observed with PPAR-γ agonist thiazolidinediones, indicating that PPAR-γ signaling pathway plays a key role in foam cell formation of macrophages. Beyond their impact on foam cell formation, Bu1 and Bu2 peptides demonstrated anti-inflammatory potential by inhibiting the generation of pro-inflammatory cytokines and nitric oxide and NF-κB nuclear activation. Taken together, these results suggest that Bu1 and Bu2 peptides may be useful for atherosclerosis and associated anti-inflammatory therapies.
Collapse
Affiliation(s)
| | - Soon-Do Yoon
- Department of Biomolecular and Chemical Engineering, Chonnam National University, Yeosu, Jeonnam, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
30
|
Eydelkhani M, Kiabi S, Nowruzi B. In vitro assessment of the effect of magnetic fields on efficacy of biosynthesized selenium nanoparticles by Alborzia kermanshahica. BMC Biotechnol 2024; 24:27. [PMID: 38725019 PMCID: PMC11080146 DOI: 10.1186/s12896-024-00855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.
Collapse
Affiliation(s)
- Melika Eydelkhani
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadi Kiabi
- Department of Biology, Tonekabon branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
31
|
Yang QB, Liang LF. Spongia Sponges: Unabated Sources of Novel Secondary Metabolites. Mar Drugs 2024; 22:213. [PMID: 38786604 PMCID: PMC11123444 DOI: 10.3390/md22050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Marine sponges of the genus Spongia have proven to be unabated sources of novel secondary metabolites with remarkable scaffold diversities and significant bioactivities. The discovery of chemical substances from Spongia sponges has continued to increase over the last few years. The current work provides an up-to-date literature survey and comprehensive insight into the reported metabolites from the members of the genus Spongia, as well as their structural features, biological activities, and structure-activity relationships when available. In this review, 222 metabolites are discussed based on published data from the period from mid-2015 to the beginning of 2024. The compounds are categorized into sesquiterpenes, diterpenes, sesterterpenes, meroterpenes, linear furanoterpenes, steroids, alkaloids, and other miscellaneous substances. The biological effects of these chemical compositions on a vast array of pharmacological assays including cytotoxic, anti-inflammatory, antibacterial, neuroprotective, protein tyrosine phosphatase 1B (PTP1B)-inhibitory, and phytoregulating activities are also presented.
Collapse
Affiliation(s)
| | - Lin-Fu Liang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
32
|
Venkatachalam J, Jeyadoss VS, Bose KSC, Subramanian R. Marine seaweed endophytic fungi-derived active metabolites promote reactive oxygen species-induced cell cycle arrest and apoptosis in human breast cancer cells. Mol Biol Rep 2024; 51:611. [PMID: 38704796 DOI: 10.1007/s11033-024-09511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells. METHODS In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment. RESULTS The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis. CONCLUSION Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Raghunandhakumar Subramanian
- Cancer and Stem cell Research Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, Tamilnadu, India.
| |
Collapse
|
33
|
Jalili C, Abbasi A, Rahmani-Kukia N, Andarzi S, Kakebaraie S, Zamir Nasta T. The relationship between aflatoxin B1 with the induction of extrinsic/intrinsic pathways of apoptosis and the protective role of taraxasterol in TM3 leydig cell line. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116316. [PMID: 38615640 DOI: 10.1016/j.ecoenv.2024.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salar Andarzi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyran Kakebaraie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R, Iran
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R, Iran.
| |
Collapse
|
34
|
Hardhiyuna M, Arbi UY, Zuraida Z, Ahmadi P. Aaptamine-rich Fraction from the Indonesian Marine Sponge, Aaptos suberitoides, Exhibits a Cytotoxic Effect on DLD-1 Colorectal Cancer Cells. Asian Pac J Cancer Prev 2024; 25:1737-1743. [PMID: 38809646 PMCID: PMC11318826 DOI: 10.31557/apjcp.2024.25.5.1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the cytotoxicity effect of the ethyl acetate extract of Aaptos suberitoides on colorectal cancer cells (DLD-1) and murine fibroblast cells (NIH-3T3). METHODS A. suberitoides was collected from Putus Island, Bunaken National Park, North Sulawesi, Indonesia, and was processed with maceration and ethyl acetate extraction. The sponge extract was characterized based on Thin Layer Chromatography (TLC) and then identified by using LCMS/MS analysis. DLD-1 and NIH-3T3 cells were treated with the ethyl acetate extract and then followed by 3- [4, 5-dimethylthiazol-2-yl] -2.5 diphenyl tetrazolium bromide (MTT) assay to assess their cytotoxicity effect. RESULTS LCMS/MS analysis showed that the most abundant compounds in this extract were identified as aaptamine (1). Furthermore, this study revealed that the active ethyl acetate fraction of A. suberitoides has cytotoxic effects in colorectal cancer DLD-1 cells with an IC50 value of 9.597 µg/mL, higher than NIH-3T3 cells with an IC50 value of 12.23 µg/mL Thus, the active ethyl acetate fraction of A. suberitoides is considered more toxic to cancer cells than normal cells. CONCLUSION This study provides the first evidence to support the role of the ethyl acetate extract of A. suberitoides sponge extracts to be developed as a colorectal anticancer agent.
Collapse
Affiliation(s)
- Mutia Hardhiyuna
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km.46, Cibinong, 16911, Indonesia.
| | - Ucu Yanu Arbi
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jl. Pasir Putih Raya No.1, North Jakarta, 14430, Indonesia.
| | - Zuraida Zuraida
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km.46, Cibinong, 16911, Indonesia.
| | - Peni Ahmadi
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km.46, Cibinong, 16911, Indonesia.
| |
Collapse
|
35
|
Nova P, Gomes AM, Costa-Pinto AR. It comes from the sea: macroalgae-derived bioactive compounds with anti-cancer potential. Crit Rev Biotechnol 2024; 44:462-476. [PMID: 36842998 DOI: 10.1080/07388551.2023.2174068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/14/2023] [Indexed: 02/28/2023]
Abstract
Nature derived compounds represent a valuable source of bioactive molecules with enormous potential. The sea is one of the richest environments, full of skilled organisms, where algae stand out due to their unique characteristics. Marine macroalgae adapt their phenotypic characteristics, such as chemical composition, depending on the environmental conditions where they live. The compounds produced by these organisms show tremendous potential to be used in the biomedical field, due to their antioxidant, anti-inflammatory, immunomodulatory, and anti-cancer properties.Cancer is one of the deadliest diseases in the world, and the lack of effective treatments highlights the urgent need for the development of new therapeutic strategies. This review provides an overview of the current advances regarding the anti-cancer activity of the three major groups of marine macroalgae, i.e., red algae (Rhodophyta), brown algae (Phaeophyceae), and green algae (Chlorophyta) on pancreatic, lung, breast, cervical, colorectal, liver, and gastric cancers as well as leukemia and melanoma. In addition, future perspectives, and limitations regarding this field of work are also discussed.
Collapse
Affiliation(s)
- Paulo Nova
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana R Costa-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Nova M, Citterio S, Martegani E, Colombo S. Unraveling the Anti-Aging Properties of Phycocyanin from the Cyanobacterium Spirulina ( Arthrospira platensis). Int J Mol Sci 2024; 25:4215. [PMID: 38673801 PMCID: PMC11050328 DOI: 10.3390/ijms25084215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, marine natural products have become one of the most important resources of novel lead compounds for critical diseases associated with age. Spirulina, a dietary supplement made from blue-green algae (cyanobacteria: scientific name Arthrospira platensis), is particularly rich in phycocyanin, a phycobiliprotein, which accounts for up to 20% of this cyanobacterium's dry weight and is considered responsible for its anti-cancer, anti-inflammatory and antioxidant activities. Although the anti-aging activity of phycocyanin has been investigated, how exactly this compound works against aging remains elusive. The aim of our research is to use the yeast Saccharomyces cerevisiae as a model organism to investigate the anti-aging properties of phycocyanin from A. platensis. Our results show that phycocyanin has a powerful anti-aging effect, greatly extending the chronological life span of yeast cells in a dose-dependent way, as the effect was also pronounced when cells were grown in SD medium under calorie restriction conditions (0.2% glucose). Both ROS and accumulation of dead cells were followed by staining chronologically aged cells with dihydrorhodamine 123 (DHR123) and propidium iodide (PI). Interestingly, we found that most of the aged phycocyanin-treated cells, which were unable to form colonies, were actually ROS+/PI-. Finally, we show that the moment in which phycocyanin is added to the culture does not substantially influence its effectiveness in counteracting chronological aging.
Collapse
Affiliation(s)
| | | | | | - Sonia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (M.N.); (S.C.); (E.M.)
| |
Collapse
|
37
|
Madrid Mendoza MF, Almeida Mota J, de Cassia Evangelista de Oliveira F, Cavalcanti BC, Fabio Turco J, Reyes Torres Y, Ferreira PMP, Barros-Nepomuceno FWA, Rocha DD, Pessoa C, de Moraes Filho MO. Ethanolic extract from leaves of tithonia diversifolia induces apoptosis in HCT-116 cells through oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:275-293. [PMID: 38285019 DOI: 10.1080/15287394.2024.2308256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Tithonia diversifolia is a perennial bushy plant found in South America with significant ethnopharmacological importance as an antimalarial, antidiabetic, antibacterial, and anticancer agent. The aim of the present study was to determine the cytotoxicity of the ethanolic extract from leaves of T. diversifolia (TdE) on human cancer cell lines (HCT-116, SNB-19, NCIH-460 and MCF-7), as well as the mechanism of action involved in cell death and cellular modulation of oxidative stress. The TdE exhibited significant activity with IC50 values ranging from 7.12 to 38.41 μg/ml, with HCT-116 being the most sensitive cell line. Subsequent experiments were conducted with HCT-116 cell line. TdE decreased the number of viable cells, followed by induction of apoptotic events, increase in mitochondrial membrane permeabilization, and enhanced G2/M phase of the cell cycle. Pro-oxidative effects including elevated acidic vesicular organelle formation, lipid peroxidation, and nitric oxide by-products, as well as reduced levels of intracellular glutathione and reactive oxygen species production were also observed following incubation with TdE, which may lead to DNA damage followed by apoptotic cell death. These results demonstrate the potential of TdE ethanolic leaf extraction for biological activity and enhance the importance of continuing to study natural sources of plants for the development of anticancer agents.
Collapse
Affiliation(s)
| | - Jessica Almeida Mota
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - João Fabio Turco
- Department of Chemistry, Midwestern State University of Guarapuava, Guarapuava, Brazil
| | - Yohandra Reyes Torres
- Department of Chemistry, Midwestern State University of Guarapuava, Guarapuava, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | - Danilo Damasceno Rocha
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
38
|
Ramya S, Manivannan HP, Veeraraghavan VP, Francis AP. In Silico Analysis of Selective Bioactive Compounds from Acronychia Pedunculata as a Potential Inhibitor of HER2 in Colorectal Cancer. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1281-S1286. [PMID: 38882725 PMCID: PMC11174219 DOI: 10.4103/jpbs.jpbs_570_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 06/18/2024] Open
Abstract
Colorectal cancer (CRC) is a pervasive malignancy that stands as a prominent contributor to global cancer-related mortality. Among the numerous causative factors, the overexpression of human epidermal growth factor receptor 2 (HER2) is notably linked to CRC progression. Acronychia (A.) pedunculata has a longstanding history in folk medicine due to its multifaceted medicinal attributes. This study aimed to assess the potential of specific bioactive compounds derived from A. pedunculata for their inhibition of HER2 in CRC, utilizing in silico analysis. The compounds were systematically evaluated through a series of computational analyses. Drug-likeness assessment, pharmacokinetic evaluation, and toxicity analysis were conducted. Molecular docking studies were performed to investigate binding affinities with the HER2 target. Additionally, bioavailability radar analysis was employed to predict oral bioavailability, while molecular target prediction provided insights into potential protein interactions. All 12 compounds demonstrated favorable drug-likeness properties and adherence to Lipinski's rule of five, indicative of the potential for good oral bioavailability. Four compounds were found to have no toxicological endpoints. Molecular docking revealed two compounds, namely caryophylla-4 (14), 8 (15)-dien-5alpha-ol and (-)-globulol, which showed promising binding affinities between several compounds and HER2. From this study, two leads were identified from A. pedunculata. Further experimental studies are required to validate the action of leads.
Collapse
Affiliation(s)
- S Ramya
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Hema P Manivannan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Vishnu P Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arul P Francis
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
39
|
Sadeghi A, Rajabiyan A, Meygoli Nezhad N, Nabizade N, Alvani A, Zarei-Ahmady A. A review on Persian Gulf brown algae as potential source for anticancer drugs. ALGAL RES 2024; 79:103446. [DOI: 10.1016/j.algal.2024.103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
40
|
Niu S, Huang S, Wang J, He J, Chen M, Zhang G, Hong B. Malfilanol C, a new sesquiterpenoid isolated from the deep-sea-derived Aspergillus puniceus A2 fungus. Nat Prod Res 2024; 38:1362-1368. [PMID: 36373717 DOI: 10.1080/14786419.2022.2144299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
The chemical examination of the rice solid fermentation products of the deep-sea-derived fungus Aspergillus puniceus A2 resulted in the isolation of one new sesquiterpenoid malfilanol C (1), together with a rare analogue malfilanol B (2). The planar structure of 1 was resolved on the basis of the extensive analyses of the spectroscopic data (HRESIMS and NMR spectra), and its absolute configuration was assigned by quantum chemical calculation of the ECD data. Compound 1, featuring a bicyclo[5.4.0]-undecane nucleus skeleton, was the third example of this subclass sesquiterpenoids found from nature. Additionally, the subclass sesquiterpenoids 1 and 2 were discovered from marine-derived-fungi for the first time. All the isolated metabolites were evaluated the antibacterial activities against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922. Compound 1 exhibited weak antibacterial activity against S. aureus ATCC 29213.
Collapse
Affiliation(s)
- Siwen Niu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Shuhuan Huang
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Juan Wang
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Jianlin He
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Meixiang Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Gaiyun Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Bihong Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| |
Collapse
|
41
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
43
|
Kaftan G, Erdoğan MA, El-Shazly M, Lu MC, Shih SP, Lin HY, Saso L, Armagan G. Heteronemin promotes iron-dependent cell death in pancreatic cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1865-1874. [PMID: 37773525 DOI: 10.1007/s00210-023-02736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
The marine environment has been recognized as a prolific source of potent bioactive compounds with significant anticancer properties. Among these, heteronemin, a sesterterpenoid-type natural product, has shown promise. This study delves into the potential of heteronemin as a ferroptotic agent against pancreatic cancer, using the Panc-1 cell line as a model. The cytotoxic potential of heteronemin was assessed using cell viability assays. Furthermore, its effect on lipid peroxidation was determined spectrophotometrically, while the changes it induced in autophagy- and ferritin-related protein expressions were evaluated using immunoblotting techniques. Various cell-based tests were employed to scrutinize its anticancer efficacy. Heteronemin displayed a notable cytotoxic effect, reducing cell viability by 50% at a concentration of 55 nM. This cytotoxicity was discernibly linked to ferroptosis, as evidenced by the reversal of cell death upon treatment with the ferroptosis inhibitor, ferrostatin-1. Heteronemin treatment led to a marked increase in ferroptosis markers and malondialdehyde (MDA) levels. Conversely, the expression of glutathione peroxidase-4 (GPX4), a key anti-ferroptotic protein, was suppressed. Furthermore, significant modulations in the expression of ferritinophagy- and iron-related proteins such as Atg5, Atg7, FTL, STEAP3, and DMT-1 were evident post-treatment (p < 0.05). This study underscores the potential of heteronemin as a ferroptosis inducer in pancreatic cancer cells. Given its robust cytotoxicity, heteronemin emerges as a promising lead compound for further exploration in cancer therapeutics.
Collapse
Affiliation(s)
- Gizem Kaftan
- Doctoral Degree Program in Biochemistry, Graduate School of Health Sciences, Ege University, 35100, Bornova, Izmir, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03100, Afyonkarahisar, Turkey
| | - Mümin Alper Erdoğan
- Department of Physiology, Faculty of Medicine, Izmir Katip Çelebi University, Çiğli, Izmir, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, 11566, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung, 944, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University (NSYSU), 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| | - Hung-Yu Lin
- School of Medicine, College of Medicine, I-SHOU University, Kaohsiung, Taiwan
- Division of Urology, Department of Surgery, E-Da Cancer & E-Da Hospital, Kaohsiung, 824, Taiwan
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. Le Aldo Moro 5, 00185, Rome, Italy
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
44
|
Zhang H, Wang H, Qin L, Lin S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phytother Res 2024; 38:1329-1344. [PMID: 38194996 DOI: 10.1002/ptr.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.
Collapse
Affiliation(s)
- Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, China
| | - Lin Qin
- Department of Endoscopic Diagnosis and Treatment, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
45
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
46
|
Wang D, Jiang W, Churiwal M, Jia K, Senadeera SPD, Bokesch HR, Woldemichael GM, Kim Y, Hawley RG, Wei JS, Khan J, O'Keefe BR, Beutler JA, Gustafson KR. Neopetrotaurines A-C, Isoquinoline Alkaloids with an Unprecedented Taurine Bridge from the Sponge Neopetrosia sp. JOURNAL OF NATURAL PRODUCTS 2024; 87:332-339. [PMID: 38294825 DOI: 10.1021/acs.jnatprod.3c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neopetrotaurines A-C (1-3), unusual alkaloids possessing two isoquinoline-derived moieties that are linked via a unique taurine bridge, were isolated from a Neopetrosia sp. marine sponge. These new compounds have proton-deficient structural scaffolds that are difficult to unambiguously assign using only conventional 2- and 3-bond 1H-13C and 1H-15N heteronuclear correlation data. Thus, the application of LR-HSQMBC and HMBC NMR experiments optimized to detect 4- and 5-bond long-range 1H-13C heteronuclear correlations facilitated the structure elucidation of these unusual taurine-bridged marine metabolites. Neopetrotaurines A-C (1-3) showed significant inhibition of transcription driven by the oncogenic fusion protein PAX3-FOXO1, which is associated with alveolar rhabdomyosarcoma, and cytotoxic activity against PAX3-FOXO1-positive cell lines.
Collapse
Affiliation(s)
- Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Wei Jiang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Mehal Churiwal
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Katrina Jia
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sarath P D Senadeera
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Heidi R Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Girma M Woldemichael
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
- Basic Science Program, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Yong Kim
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Robert G Hawley
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
47
|
Ortigosa-Palomo A, Quiñonero F, Ortiz R, Sarabia F, Prados J, Melguizo C. Natural Products Derived from Marine Sponges with Antitumor Potential against Lung Cancer: A Systematic Review. Mar Drugs 2024; 22:101. [PMID: 38535442 PMCID: PMC10971797 DOI: 10.3390/md22030101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 07/23/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC), the most commonly diagnosed cancer and the leading cause of cancer-related death worldwide, has been extensively investigated in the last decade in terms of developing new therapeutic options that increase patient survival. In this context, marine animals are a source of new, interesting bioactive molecules that have been applied to the treatment of different types of cancer. Many efforts have been made to search for new therapeutic strategies to improve the prognosis of lung cancer patients, including new bioactive compounds and cytotoxic drugs from marine sponges. Their antitumoral effect can be explained by several cellular and molecular mechanisms, such as modulation of the cell cycle or induction of apoptosis. Thus, this systematic review aims to summarize the bioactive compounds derived from marine sponges and the mechanisms by which they show antitumor effects against lung cancer, exploring their limitations and the challenges associated with their discovery. The search process was performed in three databases (PubMed, SCOPUS, and Web of Science), yielding a total of 105 articles identified in the last 10 years, and after a screening process, 33 articles were included in this systematic review. The results showed that these natural sponge-derived compounds are a valuable source of inspiration for the development of new drugs. However, more research in this field is needed for the translation of these novel compounds to the clinic.
Collapse
Affiliation(s)
- Alba Ortigosa-Palomo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain;
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
48
|
Meng XY, Wang KJ, Ye SZ, Chen JF, Chen ZY, Zhang ZY, Yin WQ, Jia XL, Li Y, Yu R, Ma Q. Sinularin stabilizes FOXO3 protein to trigger prostate cancer cell intrinsic apoptosis. Biochem Pharmacol 2024; 220:116011. [PMID: 38154548 DOI: 10.1016/j.bcp.2023.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Sinularin, a natural product that purified from soft coral, exhibits anti-tumor effects against various human cancers. However, the mechanisms are not well understood. In this study, we demonstrated that Sinularin inhibited the viability of human prostate cancer cells in a dose-dependent manner and displayed significant cytotoxicity only at high concentration against normal prostate epithelial cell RWPE-1. Flow cytometry assay demonstrated that Sinularin induced tumor cell apoptosis. Further investigations revealed that Sinularin exerted anti-tumor activity through intrinsic apoptotic pathway along with up-regulation of pro-apoptotic protein Bax and PUMA, inhibition of anti-apoptotic protein Bcl-2, mitochondrial membrane potential collapses, and release of mitochondrial proteins. Furthermore, we illustrated that Sinularin induced cell apoptosis via up-regulating PUMA through inhibition of FOXO3 degradation by the ubiquitin-proteasome pathway. To explore how Sinularin suppress FOXO3 ubiquitin-proteasome degradation, we tested two important protein kinases AKT and ERK that regulate FOXO3 stabilization. The results revealed that Sinularin stabilized and up-regulated FOXO3 via inhibition of AKT- and ERK1/2-mediated FOXO3 phosphorylation and subsequent ubiquitin-proteasome degradation. Our findings illustrated the potential mechanisms by which Sinularin induced cell apoptosis and Sinularin may be applied as a therapeutic agent for human prostate cancer.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Jun-Feng Chen
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Zhao-Yu Chen
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Zuo-Yan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Wei-Qi Yin
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Xiao-Long Jia
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Yi Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, #818 Fenghua Road, Ningbo 315211, Zhejiang, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Yi-Huan Genitourinary Cancer Group, Ningbo 315010, Zhejiang, China.
| |
Collapse
|
49
|
Reis MBE, Maximo AI, Magno JM, de Lima Bellan D, Buzzo JLA, Simas FF, Rocha HAO, da Silva Trindade E, Camargo de Oliveira C. A Fucose-Containing Sulfated Polysaccharide from Spatoglossum schröederi Potentially Targets Tumor Growth Rather Than Cytotoxicity: Distinguishing Action on Human Melanoma Cell Lines. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:181-198. [PMID: 38273163 DOI: 10.1007/s10126-024-10287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Natural substances are strategic candidates for drug development in cancer research. Marine-derived molecules are of special interest due to their wide range of biological activities and sustainable large-scale production. Melanoma is a type of skin cancer that originates from genetic mutations in melanocytes. BRAF, RAS, and NF1 mutations are described as the major melanoma drivers, but approximately 20% of patients lack these mutations and are included in the triple wild-type (tripleWT) classification. Recent advances in targeted therapy directed at driver mutations along with immunotherapy have only partially improved patients' overall survival, and consequently, melanoma remains deadly when in advanced stages. Fucose-containing sulfated polysaccharides (FCSP) are potential candidates to treat melanoma; therefore, we investigated Fucan A, a FCSP from Spatoglossum schröederi brown seaweed, in vitro in human melanoma cell lines presenting different mutations. Up to 72 h Fucan A treatment was not cytotoxic either to normal melanocytes or melanoma cell lines. Interestingly, it was able to impair the tripleWT CHL-1 cell proliferation (57%), comparable to the chemotherapeutic cytotoxic drug cisplatin results, with the advantage of not causing cytotoxicity. Fucan A increased CHL-1 doubling time, an effect attributed to cell cycle arrest. Vascular mimicry, a close related angiogenesis process, was also impaired (73%). Fucan A mode of action could be related to gene expression modulation, in special β-catenin downregulation, a molecule with protagonist roles in important signaling pathways. Taken together, results indicate that Fucan A is a potential anticancer molecule and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- Maíra Barbosa E Reis
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Jessica Maria Magno
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Daniel de Lima Bellan
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | | | - Hugo Alexandre Oliveira Rocha
- Biochemistry Department, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | | | |
Collapse
|
50
|
Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L, Wu N. Opportunities and challenges of fucoidan for tumors therapy. Carbohydr Polym 2024; 324:121555. [PMID: 37985117 DOI: 10.1016/j.carbpol.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
The large-scale collections, screening and discovery of biologically active and pharmacologically significant marine-derived natural products have garnered tremendous attraction. Edible brown algae are rich in fucoidan. Importantly, fucoidan has been reported to inhibit carcinogenesis and metastasis mainly through the regulation of deregulated cell signaling pathways. This review summarizes the structural features of fucoidan, including monosaccharide type, sulfate content, and main chain structure. We have set spotlight on fucoidan-mediated tumor suppressive effects in cell cultures studies and tumor-bearing rodent models. Fucoidan exerts anti-tumor effects primarily through the inhibition of tumor cell viability, proliferation and metastatic dissemination of cancer cells from primary tumor sites to distant secondary sites. Fucoidan not only promotes immunological responses in tumor microenvironment but also induces apoptotic death in cancer cells. In addition, fucoidan can be used as a dietary supplement for preventive purposes, in combination with other drugs as complementary and alternative medicine or with nanoparticle modifications will be the future of fucoidan use. Cutting-edge research related to fucoidan has catalyzed the transition of fucoidan from preclinical studies to different phases of clinical trials. Rationally designed clinical trials for the critical evaluation of fucoidan against different cancers will be valuable to reap full benefits.
Collapse
Affiliation(s)
- Haoyu Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|