1
|
Grobler CE, Mabate B, Prins A, Le Roes-Hill M, Pletschke BI. Expression, Purification, and Characterisation of Recombinant Alginate Lyase ( Flammeovirga AL2) for the Bioconversion of Alginate into Alginate Oligosaccharides. Molecules 2024; 29:5578. [PMID: 39683737 DOI: 10.3390/molecules29235578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Alginate, a polysaccharide found in brown seaweeds, has regularly gained attention for its potential use as a source of bioactive compounds. However, it is structurally complex with a high molecular weight, limiting its application. Alginate oligosaccharides (AOS) are small, soluble fragments, making them more bioavailable. Alginate hydrolysis by enzymes is the preferred method for AOS production. Commercially available alginate lyases are limited, expensive, and sometimes exhibit unsatisfactory activity, making the search for novel alginate lyases with improved activity indispensable. The aims of this study were to codon-optimise, synthesise, express, purify, and characterise a recombinant alginate lyase, AL2, from Flammeovirga sp. strain MY04 and to compare it to a commercial alginate lyase. Expression was successfully performed using Escherichia coli ArcticExpress (DE3) RP cells, and the protein was purified through affinity chromatography. The recombinant enzyme was characterised by pH optimum studies, and temperature optimum and stability experiments. The optimal reaction conditions for AL2 were pH 9.0 and 37 °C, while for the commercial enzyme, the optimal conditions were pH 8.0 and 37 °C. At optimal reaction conditions, the specific activity of AL2 was 151.6 ± 12.8 µmol h-1 mg-1 protein and 96.9 ± 13.1 µmol h-1 mg-1 protein for the commercial alginate lyase. Moreover, AL2 displayed impressive activity in breaking down alginate into AOS. Hence, AL2 shows potential for use as an industrial enzyme for the hydrolysis of alginate into alginate oligosaccharides. Additional studies should be carried out to further characterise this enzyme, improve its purity, and optimise its activity.
Collapse
Affiliation(s)
- Coleen E Grobler
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
| | - Blessing Mabate
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
| | - Alaric Prins
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
2
|
Wang J, Zhang Z, Dai T, Zhang Z, Zhang Q, Yao J, Wang L, He N, Li S. The therapeutic effect and possible mechanisms of alginate oligosaccharide on metabolic syndrome by regulating gut microbiota. Food Funct 2024; 15:9632-9661. [PMID: 39239698 DOI: 10.1039/d4fo02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metabolic syndrome (MetS) is a disease condition incorporating the abnormal accumulation of various metabolic components, including overweight or abdominal obesity, insulin resistance and abnormal glucose tolerance, hypertension, atherosclerosis, or dyslipidemia. It has been proved that the gut microbiota and microbial-derived products play an important role in regulating lipid metabolism and thus the onset and development of MetS. Previous studies have demonstrated that oligosaccharides with prebiotic effects, such as chitosan oligosaccharides, can regulate the structure of the microbial community and its derived products to control weight and reduce MetS associated with obesity. Alginate oligosaccharides (AOS), natural products extracted from degraded alginate salts with high solubility and extensive biological activity, have also been found to modulate gut microbiota. This review aims to summarize experimental evidence on the positive effects of AOS on different types of MetS while providing insights into mechanisms through which AOS regulates gut microbiota for preventing and treating MetS.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Qingfeng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Lijing Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| |
Collapse
|
3
|
Huang A, Wu X, Lu F, Liu F. Sustainable Production of Ulva Oligosaccharides via Enzymatic Hydrolysis: A Review on Ulvan Lyase. Foods 2024; 13:2820. [PMID: 39272585 PMCID: PMC11395424 DOI: 10.3390/foods13172820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Ulvan is a water-soluble sulfated polysaccharide extracted from the green algae cell wall. Compared with polysaccharides, oligosaccharides have drawn increasing attention in various industries due to their enhanced biocompatibility and solubility. Ulvan lyase degrades polysaccharides into low molecular weight oligosaccharides through the β-elimination mechanism. The elucidation of the structure, catalytic mechanism, and molecular modification of ulvan lyase will be helpful to obtain high value-added products from marine biomass resources, as well as reduce environmental pollution caused by the eutrophication of green algae. This review summarizes the structure and bioactivity of ulvan, the microbial origin of ulvan lyase, as well as its sequence, three-dimensional structure, and enzymatic mechanism. In addition, the molecular modification of ulvan lyase, prospects and challenges in the application of enzymatic methods to prepare oligosaccharides are also discussed. It provides information for the preparation of bioactive Ulva oligosaccharides through enzymatic hydrolysis, the technological bottlenecks, and possible solutions to address these issues within the enzymatic process.
Collapse
Affiliation(s)
- Ailan Huang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453000, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinming Wu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| |
Collapse
|
4
|
Chen Y, Ci F, Jiang H, Meng D, Hamouda HI, Liu C, Quan Y, Chen S, Bai X, Zhang Z, Gao X, Balah MA, Mao X. Catalytic properties characterization and degradation mode elucidation of a polyG-specific alginate lyase OUC-FaAly7. Carbohydr Polym 2024; 333:121929. [PMID: 38494211 DOI: 10.1016/j.carbpol.2024.121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Polymerized guluronates (polyG)-specific alginate lyase with lower polymerized mannuronates (polyM)-degrading activity, superior stability, and clear action mode is a powerful biotechnology tool for the preparation of AOSs rich in M blocks. In this study, we expressed and characterized a polyG-specific alginate lyase OUC-FaAly7 from Formosa agariphila KMM3901. OUC-FaAly7 belonging to polysaccharide lyase (PL) family 7 had highest activity (2743.7 ± 20.3 U/μmol) at 45 °C and pH 6.0. Surprisingly, its specific activity against polyG reached 8560.2 ± 76.7 U/μmol, whereas its polyM-degrading activity was nearly 0 within 10 min reaction. Suggesting that OUC-FaAly7 was a strict polyG-specific alginate lyase. Importantly, OUC-FaAly7 showed a wide range of temperature adaptations and remarkable temperature and pH stability. Its relative activity between 20 °C and 45 °C reached >90 % of the maximum activity. The minimum identifiable substrate of OUC-FaAly7 was guluronate tetrasaccharide (G4). Action process and mode showed that it was a novel alginate lyase digesting guluronate hexaose (G6), guluronate heptaose (G7), and polymerized guluronates, with the preferential generation of unsaturated guluronate pentasaccharide (UG5), although which could be further degraded into unsaturated guluronate disaccharide (UG3) and trisaccharide (UG2). This study contributes to illustrating the catalytic properties, substrate recognition, and action mode of novel polyG-specific alginate lyases.
Collapse
Affiliation(s)
- Yimiao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Fangfang Ci
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Weihai Institute for Food and Drug Control, Chuangxin Road 166-6, Torch Hi-tech Science Park, Weihai 264200, China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| | - Di Meng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Yongyi Quan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Suxue Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xinxue Bai
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Zhaohui Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Mohamed A Balah
- Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
5
|
Chen C, Li X, Lu C, Zhou X, Chen L, Qiu C, Jin Z, Long J. Advances in alginate lyases and the potential application of enzymatic prepared alginate oligosaccharides: A mini review. Int J Biol Macromol 2024; 260:129506. [PMID: 38244735 DOI: 10.1016/j.ijbiomac.2024.129506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Alginate is mainly a linear polysaccharide composed of randomly arranged β-D-mannuronic acid and α-L-guluronic acid linked by α, β-(1,4)-glycosidic bonds. Alginate lyases degrade alginate mainly adopting a β-elimination mechanism, breaking the glycosidic bonds between the monomers and forming a double bond between the C4 and C5 sugar rings to produce alginate oligosaccharides consisting of 2-25 monomers, which have various physiological functions. Thus, it can be used for the continuous industrial production of alginate oligosaccharides with a specific degree of polymerization, in accordance with the requirements of green exploitation of marine resources. With the development of structural analysis, the quantity of characterized alginate lyase structures is progressively growing, leading to a concomitant improvement in understanding the catalytic mechanism. Additionally, the use of molecular modification methods including rational design, truncated expression of non-catalytic domains, and recombination of conserved domains can improve the catalytic properties of the original enzyme, enabling researchers to screen out the enzyme with the expected excellent performance with high success rate and less workload. This review presents the latest findings on the catalytic mechanism of alginate lyases and outlines the methods for molecular modifications. Moreover, it explores the connection between the degree of polymerization and the physiological functions of alginate oligosaccharides, providing a reference for enzymatic preparation development and utilization.
Collapse
Affiliation(s)
- Chen Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Gu X, Fu L, Wang Z, Cao Z, Zhao L, Seswita-Zilda D, Zhang A, Zhang Q, Li J. A Novel Bifunctional Alginate Lyase and Antioxidant Activity of the Enzymatic Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4116-4126. [PMID: 38372665 DOI: 10.1021/acs.jafc.3c08638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Alginate lyase Aly448, a potential new member of the polysaccharide lyase (PL) 7 family, which was cloned and identified from the macroalgae-associated bacterial metagenomic library, showed bifunctionality. The molecular docking results revealed that Aly448 has two completely different binding sites for alginate (polyMG), poly-α-l-guluronic acid (polyG), and poly-β-d-mannuronic acid (polyM) substrates, respectively, which might be the molecular basis for the enzyme's bifunctionality. Truncational results confirmed that predicted key residues affected the bifunctionality of Aly448, but did not wholly explain. Besides, Aly448 presented excellent biochemical characteristics, such as higher thermal stability and pH tolerance. Degradation of polyMG, polyM, and polyG substrates by Aly448 produced tetrasaccharide (DP4), disaccharide (DP2), and galactose (DP1), which exhibited excellent antioxidant activity. These findings provide novel insights into the substrate recognition mechanism of bifunctional alginate lyases and pave a new path for the exploitation of natural antioxidant agents.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liping Fu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhiyan Wang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhe Cao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Luying Zhao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Dewi Seswita-Zilda
- Research Center for Deep Sea, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Jl. Pasir Putih Raya, Pademangan, North Jakarta City, Jakarta 14430, Indonesia
| | - Ao Zhang
- Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian Zhang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jiang Li
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
7
|
Cui Y, Yang M, Liu N, Wang S, Sun Y, Sun G, Mou H, Zhou D. Computer-Aided Rational Design Strategy to Improve the Thermal Stability of Alginate Lyase AlyMc. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3055-3065. [PMID: 38298105 DOI: 10.1021/acs.jafc.3c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Alginate lyase degrades alginate by the β-elimination mechanism to produce unsaturated alginate oligosaccharides (UAOS), which have better bioactivities than saturated AOS. Enhancing the thermal stability of alginate lyases is crucial for their industrial applications. In this study, a feasible and efficient rational design strategy was proposed by combining the computer-aided ΔΔG value calculation with the B-factor analysis. Two thermal stability-enhanced mutants, Q246V and K249V, were obtained by site-directed mutagenesis. Particularly, the t1/2, 50 °C for mutants Q246V and K249V was increased from 2.36 to 3.85 and 3.65 h, respectively. Remarkably, the specific activities of Q246V and K249V were enhanced to 2.41- and 2.96-fold that of alginate lyase AlyMc, respectively. Structural analysis and molecular dynamics simulations suggested that mutations enhanced the hydrogen bond networks and the overall rigidity of the molecular structure. Notably, mutant Q246V exhibited excellent thermal stability among the PL-7 alginate lyase family, especially considering the heightened enzymatic activity. Moreover, the rational design strategy used in this study can effectively improve the thermal stability of enzymes and has important significance in advancing applications of alginate lyase.
Collapse
Affiliation(s)
- Yongyan Cui
- College of Food Science, Ocean University of Shanghai, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
8
|
Li J, Pei X, Xue C, Chang Y, Shen J, Zhang Y. A repertoire of alginate lyases in the alginate polysaccharide utilization loci of marine bacterium Wenyingzhuangia fucanilytica: biochemical properties and action pattern. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:134-140. [PMID: 37540808 DOI: 10.1002/jsfa.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Alginate lyases are important tools for alginate biodegradation and oligosaccharide production, which have great potential in food and biofuel fields. The alginate polysaccharide utilization loci (PUL) typically encode a series of alginate lyases with a synergistic action pattern. Exploring valuable alginate lyases and revealing the synergistic effect of enzymes in the PUL is of great significance. RESULTS An alginate PUL was discovered from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T , and a repertoire of alginate lyases within it was cloned, expressed and characterized. The four alginate lyases in PUL demonstrated similar optimal reaction conditions: maximum enzyme activity at 35-50 °C and pH 8.0-9.0. The results of action pattern indicated that they were two PL7 endolytic bifunctional enzymes (Aly7A and Aly7B), a PL6 exolytic bifunctional enzyme (Aly6A) and a PL17 exolytic M-specific enzyme (Aly17A). Ultra-performance liquid chromatography-mass spectrometry was employed to reveal the synergistic effect of the four enzymes. The end products of Aly7A were further degraded by Aly7B and eventually generated oligosaccharides, from disaccharide to heptasaccharide. The oligosaccharide products were completely degraded to monosaccharides by Aly6A, but it was unable to directly degrade alginate. Aly17A could also produce monosaccharides by cleaving the M-blocks of oligosaccharide products, as well as the M-blocks of polysaccharides. The combination of these enzymes resulted in the complete degradation of alginate to monosaccharides. CONCLUSION A new alginate PUL was mined and four novel alginate lyases in the PUL were expressed and characterized. The four cooperative alginate lyases provide novel tools for alginate degradation and biological fermentation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaojie Pei
- Qingdao Vland Biotech Group Co. Ltd, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
9
|
Du M, Li X, Qi W, Li Y, Wang L. Identification and characterization of a critical loop for the high activity of alginate lyase VaAly2 from the PL7_5 subfamily. Front Microbiol 2024; 14:1333597. [PMID: 38282736 PMCID: PMC10811132 DOI: 10.3389/fmicb.2023.1333597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
As the major component in the cell wall of brown algae, alginates are degradable by alginate lyases via β-elimination. Alginate lyases can be categorized into various polysaccharide lyase (PL) families, and PL7 family alginate lyases are the largest group and can be divided into six subfamilies. However, the major difference among different PL7 subfamilies is not fully understood. In this work, a marine alginate lyase, VaAly2, from Vibrio alginolyticus ATCC 17749 belonging to the PL7_5 subfamily was identified and characterized. It displayed comparatively high alginolytic activities toward different alginate substrates and functions as a bifunctional lyase. Molecular docking and biochemical analysis suggested that VaAly2 not only contains a key catalyzing motif (HQY) conserved in the PL7 family but also exhibits some specific characters limited in the PL7_5 subfamily members, such as the key residues and a long loop1 structure around the active center. Our work provides insight into a loop structure around the center site which plays an important role in the activity and substrate binding of alginate lyases belonging to the PL7_5 subfamily.
Collapse
Affiliation(s)
- Muxuan Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weipeng Qi
- Foshan Haitian (Gaoming) Flavoring & Food Co., Ltd., Foshan, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Zhang W, Ren H, Wang X, Dai Q, Liu X, Ni D, Zhu Y, Xu W, Mu W. Rational design for thermostability improvement of a novel PL-31 family alginate lyase from Paenibacillus sp. YN15. Int J Biol Macromol 2023; 253:126919. [PMID: 37717863 DOI: 10.1016/j.ijbiomac.2023.126919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Currently, alginate oligosaccharides (AOS) become attractive due to their excellent physiological effects. AOS has been widely used in food, pharmaceutical, and cosmetic industries. Generally, AOS can be produced from alginate using alginate lyase (ALyase) as the biocatalyst. However, most ALyase display poor thermostability. In this study, a thermostable ALyase from Paenibacillus sp. YN15 (Payn ALyase) was characterized. It belonged to the polysaccharide lyase (PL) 31 family and displayed poly β-D-mannuronate (Poly M) preference. Under the optimum condition (pH 8.0, 55 °C, 50 mM NaCl), it exhibited maximum activity of 90.3 U/mg and efficiently degraded alginate into monosaccharides and AOS with polymerization (DP) of 2-4. Payn ALyase was relatively stable at 55 °C, but the thermostability dropped rapidly at higher temperatures. To further improve its thermostability, rational design mutagenesis was carried out based on a combination of FireProt, Consensus Finder, and PROSS analysis. Finally, a triple-point mutant K71P/Y129G/S213G was constructed. The optimum temperature was increased from 55 to 70 °C, and the Tm was increased from 62.7 to 64.1 °C. The residual activity after 30 min incubation at 65 °C was enhanced from 36.0 % to 83.3 %. This study provided a promising ALyase mutant for AOS industrial production.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Hu Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinxiu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing 100045, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Zhang A, Cao Z, Zhao L, Zhang Q, Fu L, Li J, Liu T. Characterization of bifunctional alginate lyase Aly644 and antimicrobial activity of enzymatic hydrolysates. Appl Microbiol Biotechnol 2023; 107:6845-6857. [PMID: 37698609 DOI: 10.1007/s00253-023-12745-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
An alginate lyase gene aly644 encoding a member of polysaccharide lyase family 6 was obtained from a metagenome of Antarctic macroalgae-associated microbes. The gene was expressed heterologously in Escherichia coli, and the recombinant protein was purified using a Ni-NTA His Tag Kit. With sodium alginate as the substrate, recombinant Aly644 exhibited an optimum reaction temperature of 50°C and an optimum reaction pH of 7.0. The Vmax and Km values of Aly644 toward sodium alginate were 112.36 mg/mL·min and 16.75 mg/mL, respectively. Substrate specificity analysis showed that Aly644 was a bifunctional alginate lyase that hydrolyzed both polyguluronic acid and polymannuronic acid. The hydrolysis products of Aly644 with sodium alginate as the substrate were detected by thin-layer chromatography, and were mainly di- and trisaccharides. The oligosaccharides produced by degradation of sodium alginate by Aly644 inhibited the mycelial growth of the plant pathogens Phytophthora capsici and Fulvia fulva; the 50% maximal effective concentration (EC50) values were 297.45 and 452.89 mg/L, and the 90% maximal effective concentration (EC90) values were 1341.45 and 2693.83 mg/L, respectively. This highlights that Aly644 is a potential candidate enzyme for the industrial production of alginate oligosaccharides with low degree of polymerization. Enzyme-hydrolyzed alginate oligosaccharides could support the development of green agriculture as natural antimicrobial agents. KEY POINTS: • An alginate lyase was obtained from a metagenome of Antarctic macroalgae-associated microbes. • Aly644 is a bifunctional alginate lyase with excellent thermostability and pH stability. • The enzymatic hydrolysates of Aly644 directly inhibited Phytophthora capsici and Fulvia fulva.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhe Cao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Luying Zhao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qian Zhang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Liping Fu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Jiang Li
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Tao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
12
|
Wang X, Xu W, Dai Q, Liu X, Guang C, Zhang W, Mu W. Characterization of a thermostable PL-31 family alginate lyase from Paenibacillus ehimensis and its application for alginate oligosaccharides bioproduction. Enzyme Microb Technol 2023; 166:110221. [PMID: 36906979 DOI: 10.1016/j.enzmictec.2023.110221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Currently, people pay more attention to marine sugars, because of their unique physiological effects. Alginate oligosaccharides (AOS) are the degradation products of alginate and have been used in food, cosmetic, and medicine fields. AOS display good physical characteristics (low relative molecular weight, good solubility, high safety, and high stability) and excellent physiological functions (immunomodulatory, antioxidant, antidiabetic, and prebiotic activities). Alginate lyase plays a key role in the AOS bioproduction. In this study, a novel PL-31 family alginate lyase from Paenibacillus ehimensis (paeh-aly) was identified and characterized. It was extracellularly secreted in E. coli and exhibited a preference for the substrate poly β-D-mannuronate. Using sodium alginate as the substrate, it showed the maximum catalytic activity (125.7 U/mg) at pH 7.5 and 55 °C with 50 mM NaCl. Compared with other alginate lyases, paeh-aly exhibited good stability. About 86.6% and 61.0% residual activity could be maintained after 5 h incubation at 50 and 55 °C respectively, and its Tm value was 61.5 °C. The degradation products were AOS with DP 2-4. Paeh-aly demonstrated strong promise for AOS industrial production because of its excellent thermostability and efficiency.
Collapse
Affiliation(s)
- Xinxiu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing 100045, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Dang YR, Zhang XY, Liu SS, Li PY, Ren XB, Qin QL. Genomic analysis of Marinimicrobium sp. C6131 reveals its genetic potential involved in chitin metabolism. Mar Genomics 2023; 67:101007. [PMID: 36682850 DOI: 10.1016/j.margen.2022.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Marinimicrobium sp. C6131, which had the ability to degrade chitin, was isolated from deep-sea sediment of the southwest Indian Ocean. Here, the genome of strain C6131 was sequenced and the chitin metabolic pathways were constructed. The genome contained a circular chromosome of 4,207,651 bp with a G + C content of 58.50%. A total of 3471 protein-coding sequences were predicted. Gene annotation and metabolic pathway reconstruction showed that strain C6131 possessed genes and two metabolic pathways involved in chitin catabolism: the hydrolytic chitin utilization pathway initiated by chitinases and the oxidative chitin utilization pathway initiated by lytic polysaccharide monooxygenases. Chitin is the most abundant polysaccharide in the ocean. Degradation and recycling of chitin driven by marine bacteria are crucial for biogeochemical cycles of carbon and nitrogen in the ocean. The genomic information of strain C6131 revealed its genetic potential involved in chitin metabolism. The strain C6131 could grow with colloidal chitin as the sole carbon source, indicating that these genes would have functions in chitin degradation and utilization. The genomic sequence of Marinimicrobium sp. C6131 could provide fundamental information for future studies on chitin degradation, and help to improve our understanding of the chitin degradation process in deep-sea environments.
Collapse
Affiliation(s)
- Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
14
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2023; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Li H, Huang X, Yao S, Zhang C, Hong X, Wu T, Jiang Z, Ni H, Zhu Y. Characterization of a bifunctional and endolytic alginate lyase from Microbulbifer sp. ALW1 and its application in alginate oligosaccharides production from Laminaria japonica. Protein Expr Purif 2022; 200:106171. [PMID: 36103937 DOI: 10.1016/j.pep.2022.106171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
The diverse biological activities of alginate oligosaccharides attracted extensive exploration of alginate lyases with various substrate specificity and enzymatic properties. In this study, an alginate lyase from Microbulbifer sp. ALW1, namely AlgL7, was phylogenetically classified into the polysaccharide lyase family 7 (PL7). The conserved amino acid residues Tyr606 and His499 in AlgL7 were predicted to act as the general acid/base catalysts. The enzyme was enzymatically characterized after heterologous expression and purification in E. coli. AlgL7 displayed optimal activity at 40 °C and pH 7.0. It had good stability at temperature below 35 °C and within a pH range of 5.0-10.0. AlgL7 exhibited good stability against the reducing reagent β-ME and the surfactants of Tween-20 and Triton X-100. The degradation profiles of alginate indicated AlgL7 was a bifunctional endolytic alginate lyase generating alginate oligosaccharides with the degrees of polymerization 2-4. The degradation products of sodium alginate exhibited stronger antioxidant activities than the untreated polysaccharide. In addition, AlgL7 could directly digest Laminaria japonica to produce alginate oligosaccharides. These characteristics of AlgL7 offer a great potential of its application in high-value utilization of brown algae resources.
Collapse
Affiliation(s)
- Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008, China
| | - Xiaoyi Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shuxiang Yao
- Xiamen Institute of Software Technology, Xiamen, 361024, China
| | - Chenghao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xuan Hong
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008, China
| | - Ting Wu
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
16
|
Zhou L, Meng Q, Zhang R, Jiang B, Liu X, Chen J, Zhang T. Characterization of a Novel Polysaccharide Lyase Family 5 Alginate Lyase with PolyM Substrate Specificity. Foods 2022; 11:3527. [PMID: 36360141 PMCID: PMC9655155 DOI: 10.3390/foods11213527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
Alginate lyases (ALyases) have been widely applied in enzymatically degrading alginate for the preparation of alginate oligosaccharides (AOS), which possess a range of excellent physiological benefits including immunoregulatory, antivirus, and antidiabetic properties. Among the characterized ALyases, the number of ALyases with strict substrate specificity which possess potential in directed preparation of AOS is quite small. ALyases of polysaccharides lyase (PL) 5 family have been reported to perform poly-β-D-mannuronic acid (Poly-M) substrate specificity. However, there have been fewer studies with a comprehensive characterization and comparison of PL 5 family ALyases. In this study, a putative PL 5 family ALyase PMD was cloned from Pseudomonas mendocina and expressed in Escherichia coli. The novel ALyase presented maximum activity at 30 °C and pH 7.0. PMD displayed pH stability properties under the range of pH 5 to pH 9, which retained more than 80% relative activity, even when incubated for 48 h. Product analysis indicated that PMD might be an endolytic ALyase with strict Poly M substrate specificity and yield disaccharide and trisaccharide as main products. In addition, residues K58, R66, Y248, and R344 were proposed to be the potential key residues for catalysis via site-directed mutation. Detailed characterization of PMD and comprehensive comparisons could supply some different information about properties of PL 5 ALyases which might be helpful for its application in the directed production of AOS.
Collapse
Affiliation(s)
- Licheng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qing Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Ran Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd., Weihai 264333, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
18
|
Zhang X, Li W, Pan L, Yang L, Li H, Ji F, Zhang Y, Tang H, Yang D. Improving the thermostability of alginate lyase FlAlyA with high expression by computer-aided rational design for industrial preparation of alginate oligosaccharides. Front Bioeng Biotechnol 2022; 10:1011273. [PMID: 36159669 PMCID: PMC9490058 DOI: 10.3389/fbioe.2022.1011273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
FlAlyA, a PL7 alginate lyase with industrial potential, is widely applied in the preparation the alginate oligosaccharide because of its high activity of degradation the alginate. However, heat inactivation still limits the industrial application of FlAlyA. To further enhance its thermostability, a group of mutants were designed, according to evaluating the B-factor value and free energy change via computer-aided calculation. 25 single-point mutants and one double-points mutant were carried out by site-directed mutagenesis. The optimal two single-point mutants H176D and H71K showed 1.20 and 0.3°C increases in the values of T m, while 7.58 and 1.73 min increases in the values of half-life (t 1/2) at 50°C, respectively, compared with that of the wild-type enzyme. Interestingly, H71K exhibits the comprehensive improvement than WT, including expression level, thermal stability and specific activity. In addition, the mechanism of these two mutants is speculated by multiple sequence alignment, structural basis and molecular dynamics simulation, which is likely to be involved in the formation of new hydrogen bonds and decrease the SASA of the mutants. These results indicate that B-factor is an efficient approach to improves the thermostability of alginate lyase composed of β-sheet unit. Furthermore, the highest yield of the mutant reached about 650 mg/L, which was nearly 36 times that of previous studies. The high expression, excellent activity and good thermal stability make FlAlyA a potential candidate for the industrial production of alginate oligosaccharides.
Collapse
Affiliation(s)
- Xiu Zhang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Wei Li
- Viticulture and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Lixia Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Liyan Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hongliang Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Feng Ji
- Institute of Medicine and Health Research, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Hongzhen Tang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
19
|
Sha L, Huang M, Huang X, Huang Y, Shao E, Guan X, Huang Z. Cloning and Characterization of a Novel Endo-Type Metal-Independent Alginate Lyase from the Marine Bacteria Vibrio sp. Ni1. Mar Drugs 2022; 20:md20080479. [PMID: 35892947 PMCID: PMC9331746 DOI: 10.3390/md20080479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023] Open
Abstract
The applications of alginate lyase are diverse, but efficient commercial enzymes are still unavailable. In this study, a novel alginate lyase with high activity was obtained from the marine bacteria Vibrio sp. Ni1. The ORF of the algB gene has 1824 bp, encoding 607 amino acids. Homology analysis shows that AlgB belongs to the PL7 family. There are two catalytic domains with the typical region of QIH found in AlgB. The purified recombinant enzyme of AlgB shows highest activity at 35 °C, pH 8.0, and 50 mmol/L Tris-HCl without any metal ions. Only K+ slightly enhances the activity, while Fe2+ and Cu2+ strongly inhibit the activity. The AlgB preferred polyM as substrate. The end products of enzymatic mixture are DP2 and DP3, without any metal ion to assist them. This enzyme has good industrial application prospects.
Collapse
Affiliation(s)
- Li Sha
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (M.H.); (Y.H.)
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minghai Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (M.H.); (Y.H.)
| | - Xiaonan Huang
- Fuzhou Ocean and Fisheries Technology Center, Fuzhou 350007, China;
| | - Yongtong Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (M.H.); (Y.H.)
| | - Ensi Shao
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiong Guan
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhipeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (M.H.); (Y.H.)
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-591-83789259
| |
Collapse
|
20
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
21
|
Lu S, Na K, Wei J, Zhang L, Guo X. Alginate oligosaccharides: The structure-function relationships and the directional preparation for application. Carbohydr Polym 2022; 284:119225. [PMID: 35287920 DOI: 10.1016/j.carbpol.2022.119225] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/02/2023]
Abstract
Alginate oligosaccharides (AOS) are degradation products of alginate extracted from brown algae. With low molecular weight, high water solubility, and good biological activity, AOS present anti-inflammatory, antimicrobial, antioxidant, and antitumor properties. They also exert growth-promoting effects in animals and plants. Three types of AOS, mannuronate oligosaccharides (MAOS), guluronate oligosaccharides (GAOS), and heterozygous mannuronate and guluronate oligosaccharides (HAOS), can be produced from alginate by enzymatic hydrolysis. Thus far, most studies on the applications and biological activities of AOS have been based mainly on a hybrid form of HAOS. To improve the directional production of AOS for practical applications, systematic studies on the structures and related biological activities of AOS are needed. This review provides a summary of current understanding of structure-function relationships and advances in the production of AOS. The current challenges and opportunities in the application of AOS is suggested to guide the precise application of AOS in practice.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Kai Na
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Jiani Wei
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China.
| |
Collapse
|
22
|
Tang L, Bao M, Wang Y, Fu Z, Han F, Yu W. Effects of Module Truncation of a New Alginate Lyase VxAly7C from Marine Vibrio xiamenensis QY104 on Biochemical Characteristics and Product Distribution. Int J Mol Sci 2022; 23:ijms23094795. [PMID: 35563187 PMCID: PMC9102848 DOI: 10.3390/ijms23094795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alginate lyase has received extensive attention as an important tool for oligosaccharide preparation, pharmaceutical production, and energy biotransformation. Noncatalytic module carbohydrate-binding modules (CBM) have a major impact on the function of alginate lyases. Although the effects of two different families of CBMs on enzyme characteristics have been reported, the effect of two combined CBM32s on enzyme function has not been elucidated. Herein, we cloned and expressed a new multimodular alginate lyase, VxAly7C, from Vibrioxiamenensis QY104, consisting of two CBM32s at N-terminus and a polysaccharide lyase family 7 (PL7) at C-terminus. To explore the function of CBM32s in VxAly7C, full-length (VxAly7C-FL) and two truncated mutants, VxAly7C-TM1 (with the first CBM32 deleted) and VxAly7C-TM2 (with both CBM32s deleted), were characterized. The catalytic efficiency of recombinant VxAly7C-TM2 was 1.82 and 4.25 times higher than that of VxAly7C-TM1 and VxAly7C-FL, respectively, indicating that CBM32s had an antagonistic effect. However, CBM32s improved the temperature stability, the adaptability in an alkaline environment, and the preference for polyG. Moreover, CBM32s contributed to the production of tri- and tetrasaccharides, significantly affecting the end-product distribution. This study advances the understanding of module function and provides a reference for broader enzymatic applications and further enzymatic improvement and assembly.
Collapse
Affiliation(s)
- Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Bao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Ying Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Correspondence: (F.H.); (W.Y.); Tel.: +86-532-82032067 (F.H.); +86-532-82031680 (W.Y.)
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Correspondence: (F.H.); (W.Y.); Tel.: +86-532-82032067 (F.H.); +86-532-82031680 (W.Y.)
| |
Collapse
|
23
|
Biochemical Characterization and Cold-Adaption Mechanism of A PL-17 Family Alginate Lyase Aly23 from Marine Bacterium Pseudoalteromonas sp. ASY5 and Its Application for Oligosaccharides Production. Mar Drugs 2022; 20:md20020126. [PMID: 35200655 PMCID: PMC8876620 DOI: 10.3390/md20020126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
As an important enzyme involved in the marine carbon cycle, alginate lyase has received extensive attention because of its excellent degradation ability on brown algae, which is widely utilized for alginate oligosaccharide preparation or bioethanol production. In comparison with endo-type alginate lyases (PL-5, PL-7, and PL-18 families), limited studies have focused on PL-17 family alginate lyases, especially for those with special characteristics. In this study, a novel PL-17 family alginate lyase, Aly23, was identified and cloned from the marine bacterium Pseudoalteromonas carrageenovora ASY5. Aly23 exhibited maximum activity at 35 °C and retained 48.93% of its highest activity at 4 °C, representing an excellent cold-adaptation property. Comparative molecular dynamics analysis was implemented to explore the structural basis for the cold-adaptation property of Aly23. Aly23 had a high substrate preference for poly β-D-mannuronate and exhibited both endolytic and exolytic activities; its hydrolysis reaction mainly produced monosaccharides, disaccharides, and trisaccharides. Furthermore, the enzymatic hydrolyzed oligosaccharides displayed good antioxidant activities to reduce ferric and scavenge radicals, such as hydroxyl, ABTS+, and DPPH. Our work demonstrated that Aly23 is a promising cold-adapted biocatalyst for the preparation of natural antioxidants from brown algae.
Collapse
|
24
|
Cao S, Li Q, Xu Y, Tang T, Ning L, Zhu B. Evolving strategies for marine enzyme engineering: recent advances on the molecular modification of alginate lyase. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:106-116. [PMID: 37073348 PMCID: PMC10077200 DOI: 10.1007/s42995-021-00122-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 05/03/2023]
Abstract
Alginate, an acidic polysaccharide, is formed by β-d-mannuronate (M) and α-l-guluronate (G). As a type of polysaccharide lyase, alginate lyase can efficiently degrade alginate into alginate oligosaccharides, having potential applications in the food, medicine, and agriculture fields. However, the application of alginate lyase has been limited due to its low catalytic efficiency and poor temperature stability. In recent years, various structural features of alginate lyase have been determined, resulting in modification strategies that can increase the applicability of alginate lyase, making it important to summarize and discuss the current evidence. In this review, we summarized the structural features and catalytic mechanisms of alginate lyase. Molecular modification strategies, such as rational design, directed evolution, conserved domain recombination, and non-catalytic domain truncation, are also described in detail. Lastly, the application of alginate lyase is discussed. This comprehensive summary can inform future applications of alginate lyases.
Collapse
Affiliation(s)
- Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Yinxiao Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Limin Ning
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
25
|
Tang L, Guo E, Zhang L, Wang Y, Gao S, Bao M, Han F, Yu W. The Function of CBM32 in Alginate Lyase VxAly7B on the Activity on Both Soluble Sodium Alginate and Alginate Gel. Front Microbiol 2022; 12:798819. [PMID: 35069502 PMCID: PMC8776709 DOI: 10.3389/fmicb.2021.798819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Carbohydrate-binding modules (CBMs), as an important auxiliary module, play a key role in degrading soluble alginate by alginate lyase, but the function on alginate gel has not been elucidated. Recently, we reported alginate lyase VxAly7B containing a CBM32 and a polysaccharide lyase family 7 (PL7). To investigate the specific function of CBM32, we characterized the full-length alginate lyase VxAly7B (VxAly7B-FL) and truncated mutants VxAly7B-CM (PL7) and VxAly7B-CBM (CBM32). Both VxAly7B-FL and native VxAly7B can spontaneously cleavage between CBM32 and PL7. The substrate-binding capacity and activity of VxAly7B-CM to soluble alginate were 0.86- and 1.97-fold those of VxAly7B-FL, respectively. Moreover, CBM32 could accelerate the expansion and cleavage of alginate gel beads, and the degradation rate of VxAly7B-FL to alginate gel beads was threefold that of VxAly7B-CM. Results showed that CBM32 is not conducive to the degradation of soluble alginate by VxAly7B but is helpful for binding and degradation of insoluble alginate gel. This study provides new insights into the function of CBM32 on alginate gel, which may inspire the application strategy of CBMs in insoluble substrates.
Collapse
Affiliation(s)
- Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Enwen Guo
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Bao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Zeng L, Li J, Cheng Y, Wang D, Gu J, Li F, Han W. Comparison of Biochemical Characteristics, Action Models, and Enzymatic Mechanisms of a Novel Exolytic and Two Endolytic Lyases with Mannuronate Preference. Mar Drugs 2021; 19:md19120706. [PMID: 34940705 PMCID: PMC8705907 DOI: 10.3390/md19120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Recent explorations of tool-like alginate lyases have been focused on their oligosaccharide-yielding properties and corresponding mechanisms, whereas most were reported as endo-type with α-L-guluronate (G) preference. Less is known about the β-D-mannuronate (M) preference, whose commercial production and enzyme application is limited. In this study, we elucidated Aly6 of Flammeovirga sp. strain MY04 as a novel M-preferred exolytic bifunctional lyase and compared it with AlgLs of Pseudomonas aeruginosa (Pae-AlgL) and Azotobacter vinelandii (Avi-AlgL), two typical M-specific endolytic lyases. This study demonstrated that the AlgL and heparinase_II_III modules play indispensable roles in determining the characteristics of the recombinant exo-type enzyme rAly6, which is preferred to degrade M-enriched substrates by continuously cleaving various monosaccharide units from the nonreducing end, thus yielding various size-defined ΔG-terminated oligosaccharides as intermediate products. By contrast, the endolytic enzymes Pae-rAlgL and Avi-rAlgL varied their action modes specifically against M-enriched substrates and finally degraded associated substrate chains into various size-defined oligosaccharides with a succession rule, changing from ΔM to ΔG-terminus when the product size increased. Furthermore, site-directed mutations and further protein structure tests indicated that H195NHSTW is an active, half-conserved, and essential enzyme motif. This study provided new insights into M-preferring lyases for novel resource discoveries, oligosaccharide preparations, and sequence determinations.
Collapse
Affiliation(s)
- Lianghuan Zeng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Junge Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Yuanyuan Cheng
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
- Department of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Dandan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
| | - Jingyan Gu
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
| | - Wenjun Han
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
- Activity Biotechnology Co., Ltd., Jinan 250100, China
- Correspondence: ; Tel.: +86-15763908639
| |
Collapse
|
27
|
Gao SK, Yin R, Wang XC, Jiang HN, Liu XX, Lv W, Ma Y, Zhou YX. Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases. Mar Drugs 2021; 19:628. [PMID: 34822499 PMCID: PMC8618178 DOI: 10.3390/md19110628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure-substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (S.-K.G.); (R.Y.); (X.-C.W.); (H.-N.J.); (X.-X.L.); (W.L.); (Y.M.)
| |
Collapse
|
28
|
Purification and Characterization of a Novel Alginate Lyase from a Marine Streptomyces Species Isolated from Seaweed. Mar Drugs 2021; 19:md19110590. [PMID: 34822461 PMCID: PMC8621082 DOI: 10.3390/md19110590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Alginate, a natural polysaccharide derived from brown seaweed, is finding multiple applications in biomedicine via its transformation through chemical, physical, and, increasingly, enzymatic processes. In this study a novel alginate lyase, AlyDS44, was purified and characterized from a marine actinobacterium, Streptomyces luridiscabiei, which was isolated from decomposing seaweed. The purified enzyme had a specific activity of 108.6 U/mg, with a molecular weight of 28.6 kDa, and was composed of 260 amino acid residues. AlyDS44 is a bifunctional alginate lyase, active on both polyguluronate and polymannuronate, though it preferentially degrades polyguluronate. The optimal pH of this enzyme is 8.5 and the optimal temperature is 45 °C. It is a salt-tolerant alginate lyase with an optimal activity at 0.6 M NaCl. Metal ions Mn2+, Co2+, and Fe2+ increased the alginate degrading activity, but it was inhibited in the presence of Zn2+ and Cu2+. The highly conserved regions of its amino acid sequences indicated that AlyDS44 belongs to the polysaccharide lyase family 7. The main breakdown products of the enzyme on alginate were disaccharides, trisaccharides, and tetrasaccharides, which demonstrated that this enzyme acted as an endo-type alginate lyase. AlyDS44 is a novel enzyme, with the potential for efficient production of alginate oligosaccharides with low degrees of polymerization.
Collapse
|
29
|
Liu L, Wang Z, Zheng Z, Li Z, Ji X, Cong H, Wang H. Secretory Expression of an Alkaline Alginate Lyase With Heat Recovery Property in Yarrowia lipolytica. Front Microbiol 2021; 12:710533. [PMID: 34434178 PMCID: PMC8381381 DOI: 10.3389/fmicb.2021.710533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022] Open
Abstract
Alginate lyase possesses wide application prospects for the degradation of brown algae and preparation of alginate oligosaccharides, and its degradation products display a variety of biological activities. Although many enzymes of this type have been reported, alginate lyases with unique properties are still relatively rare. In the present work, an alginate lyase abbreviated as Alyw203 has been cloned from Vibrio sp. W2 and expressed in food-grade Yarrowia lipolytica. The Alyw203 gene consists of an open reading frame (ORF) of 1,566 bp containing 521 amino acids, of which the first 17 amino acids are considered signal peptides, corresponding to secretory features. The peak activity of the current enzyme appears at 45°C with a molecular weight of approximately 57.0 kDa. Interestingly, Alyw203 exhibits unique heat recovery performance, returning above 90% of its initial activity in the subsequent incubation for 20 min at 10°C, which is conducive to the recovery of current enzymes at low-temperature conditions. Meanwhile, the highest activity is obtained under alkaline conditions of pH 10.0, showing outstanding pH stability. Additionally, as an alginate lyase independent of NaCl and resistant to metal ions, Alyw203 is highly active in various ionic environments. Moreover, the hydrolyzates of present enzymes are mainly concentrated in the oligosaccharides of DP1–DP2, displaying perfect product specificity. The alkali suitability, heat recovery performance, and high oligosaccharide yield of Alyw203 make it a potential candidate for industrial production of the monosaccharide and disaccharide.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhipeng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhihong Zheng
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Ze Li
- College of Advanced Agricultural Sciences, Linyi Vocational University of Science and Technology, Linyi, China
| | - Xiaofeng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haihua Cong
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Haiying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
30
|
Zhang F, Fu Z, Tang L, Zhang Z, Han F, Yu W. Biochemical Characterization of a Novel Exo-Type PL7 Alginate Lyase VsAly7D from Marine Vibrio sp. QY108. Int J Mol Sci 2021; 22:8402. [PMID: 34445107 PMCID: PMC8395142 DOI: 10.3390/ijms22168402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
Brown algae is a kind of renewable resource for biofuels production. As the major component of carbohydrate in the cell walls of brown algae, alginate can be degraded into unsaturated monosaccharide by exo-type alginate lyases, then converted into 4-deoxy-L-erythro-5-hexoseulose uronate (DEH) by a non-enzyme reaction, which is an important raw material for the preparation of bioethanol. In our research, a novel exo-type alginate lyase, VsAly7D, belonging to the PL7 family was isolated from marine bacterium Vibrio sp. QY108 and recombinantly expressed in Escherichia coli. The purified VsAly7D demonstrated the highest activity at 35 °C, whereas it still maintained 46.5% and 83.1% of its initial activity at 20 °C and 30 °C, respectively. In addition, VsAly7D exhibited the maximum activity under alkaline conditions (pH 8.0), with the simultaneously remaining stability between pH 8.0 and 10.0. Compared with other reported exo-type enzymes, VsAly7D could efficiently degrade alginate, poly-β-D-mannuronate (polyM) and poly-α-L-guluronate (polyG) with highest specific activities (663.0 U/mg, 913.6 U/mg and 894.4 U/mg, respectively). These results showed that recombinant VsAly7D is a suitable tool enzyme for unsaturated alginate monosaccharide preparation and holds great promise for producing bioethanol from brown algae.
Collapse
Affiliation(s)
- Fengchao Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Zhelun Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| |
Collapse
|
31
|
Li Q, Zheng L, Guo Z, Tang T, Zhu B. Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases. Crit Rev Biotechnol 2021; 41:953-968. [PMID: 34015998 DOI: 10.1080/07388551.2021.1898330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alginate, a kind of linear acidic polysaccharide, consists of α-L-guluronate (G) and β-D-mannuronate (M). Both alginate and its degradation products (alginate oligosaccharides) possess abundant biological activities such as antioxidant activity, antitumor activity, and antimicrobial activity. Therefore, alginate and alginate oligosaccharides have great value in food, pharmaceutical, and agricultural fields. Alginate lyase can degrade alginate into alginate oligosaccharides via the β-elimination reaction. It plays an important role in marine carbon recycling and the deep utilization of brown algae. Elucidating the structural features of alginate lyase can improve our knowledge of its catalytic mechanisms. With the development of structural analysis techniques, increasing numbers of alginate lyases have been characterized at the structural level. Hence, it is essential and helpful to summarize and discuss the up-to-date findings. In this review, we have summarized progress on the structural features and the catalytic mechanisms of alginate lyases. Furthermore, the molecular modification strategies and the applications of alginate lyases have also been discussed. This comprehensive information should be helpful to expand the applications of alginate lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zilong Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
32
|
Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydr Polym 2021; 267:118158. [PMID: 34119132 DOI: 10.1016/j.carbpol.2021.118158] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
33
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
34
|
Characterization of a New Intracellular Alginate Lyase with Metal Ions-Tolerant and pH-Stable Properties. Mar Drugs 2020; 18:md18080416. [PMID: 32784864 PMCID: PMC7460510 DOI: 10.3390/md18080416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022] Open
Abstract
Alginate lyases play an important role in alginate oligosaccharides (AOS) preparation and brown seaweed processing. Many extracellular alginate lyases have been characterized to develop efficient degradation tools needed for industrial applications. However, few studies focusing on intracellular alginate lyases have been conducted. In this work, a novel intracellular alkaline alginate lyase Alyw202 from Vibrio sp. W2 was cloned, expressed and characterized. Secretory expression was performed in a food-grade host, Yarrowia lipolytica. Recombinant Alyw202 with a molecular weight of approximately 38.3 kDa exhibited the highest activity at 45 °C and more than 60% of the activity in a broad pH range of 3.0 to 10.0. Furthermore, Alyw202 showed remarkable metal ion-tolerance, NaCl independence and the capacity of degrading alginate into oligosaccharides of DP2-DP4. Due to the unique pH-stable and high salt-tolerant properties, Alyw202 has potential applications in the food and pharmaceutical industries.
Collapse
|
35
|
Zhou HX, Xu SS, Yin XJ, Wang FL, Li Y. Characterization of a New Bifunctional and Cold-Adapted Polysaccharide Lyase (PL) Family 7 Alginate Lyase from Flavobacterium sp. Mar Drugs 2020; 18:E388. [PMID: 32722647 PMCID: PMC7460543 DOI: 10.3390/md18080388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alginate oligosaccharides produced by enzymatic degradation show versatile physiological functions and biological activities. In this study, a new alginate lyase encoding gene alyS02 from Flavobacterium sp. S02 was recombinantly expressed at a high level in Yarrowia lipolytica, with the highest extracellular activity in the supernatant reaching 36.8 ± 2.1 U/mL. AlyS02 was classified in the polysaccharide lyase (PL) family 7. The optimal reaction temperature and pH of this enzyme were 30 °C and 7.6, respectively, indicating that AlyS02 is a cold-adapted enzyme. Interestingly, AlyS02 contained more than 90% enzyme activity at 25 °C, higher than other cold-adapted enzymes. Moreover, AlyS02 is a bifunctional alginate lyase that degrades both polyG and polyM, producing di- and trisaccharides from alginate. These findings suggest that AlyS02 would be a potent tool for the industrial applications.
Collapse
Affiliation(s)
- Hai-Xiang Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Shan-Shan Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Xue-Jing Yin
- Qingdao Mental Health Center, Qingdao University, Qingdao 266034, China;
| | - Feng-Long Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Expression and Characterization of an Alginate Lyase and Its Thermostable Mutant in Pichia pastoris. Mar Drugs 2020; 18:md18060305. [PMID: 32545157 PMCID: PMC7345639 DOI: 10.3390/md18060305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 01/25/2023] Open
Abstract
Alginate is one of the most abundant polysaccharides in algae. Alginate lyase degrades alginate through a β-elimination mechanism to produce alginate oligosaccharides with special bioactivities. Improving enzyme activity and thermal stability can promote the application of alginate lyase in the industrial preparation of alginate oligosaccharides. In this study, the recombinant alginate lyase cAlyM and its thermostable mutant 102C300C were expressed and characterized in Pichia pastoris. The specific activities of cAlyM and 102C300C were 277.1 U/mg and 249.6 U/mg, respectively. Both enzymes showed maximal activity at 50 °C and pH 8.0 and polyG preference. The half-life values of 102C300C at 45 °C and 50 °C were 2.6 times and 11.7 times the values of cAlyM, respectively. The degradation products of 102C300C with a lower degree of polymerization contained more guluronate. The oligosaccharides with a polymerization degree of 2–4 were the final hydrolytic products. Therefore, 102C300C is potentially valuable in the production of alginate oligosaccharides with specific M/G ratio and molecular weights.
Collapse
|
37
|
Dharani SR, Srinivasan R, Sarath R, Ramya M. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications. Folia Microbiol (Praha) 2020; 65:937-954. [DOI: 10.1007/s12223-020-00802-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
|
38
|
Wang ZP, Cao M, Li B, Ji XF, Zhang XY, Zhang YQ, Wang HY. Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Mar Drugs 2020; 18:E189. [PMID: 32244721 PMCID: PMC7230187 DOI: 10.3390/md18040189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cold-adapted alginate lyases have unique advantages for alginate oligosaccharide (AOS) preparation and brown seaweed processing. Robust and cold-adapted alginate lyases are urgently needed for industrial applications. In this study, a cold-adapted alginate lyase-producing strain Vibrio sp. W2 was screened. Then, the gene ALYW201 was cloned from Vibrio sp. W2 and expressed in a food-grade host, Yarrowia lipolytica. The secreted Alyw201 showed the activity of 64.2 U/mL, with a molecular weight of approximate 38.0 kDa, and a specific activity of 876.4 U/mg. Alyw201 performed the highest activity at 30 °C, and more than 80% activity at 25-40 °C. Furthermore, more than 70% of the activity was obtained in a broad pH range of 5.0-10.0. Alyw201 was also NaCl-independent and salt-tolerant. The degraded product was that of the oligosaccharides of DP (Degree of polymerization) 2-6. Due to its robustness and its unique pH-stable property, Alyw201 can be an efficient tool for industrial production.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Min Cao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Xiao-Feng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Laboratory of Enzyme Engineering, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
| | - Xin-Yue Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Yue-Qi Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Laboratory of Enzyme Engineering, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|