1
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2025; 45:276-304. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
2
|
Yusof Z, Lim V, Khong NMH, Choo WS, Foo SC. Assessing the impact of temperature, pH, light and chemical oxidation on fucoxanthin colour changes, antioxidant activity and the resulting metabolites. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:93-108. [PMID: 39177277 DOI: 10.1002/jsfa.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The present study evaluated the effects of temperature, pH, light and chemical oxidation on fucoxanthin changes in terms of colour, antioxidant activity and metabolomic profile. Additionally, the correlation between antioxidant activity and identified metabolites was analysed. RESULTS It was found that colour change was significantly reduced at elevated heat (100 °C, *∆E = 0.81 ± 0.05), reduced pH (pH 3, *∆E = 0.59 ± 0.04) and length of light exposure (*∆E = 3.16 ± 0.04). Antioxidant activity decreased under all treatments. Among the temperatures tested, fucoxanthin exhibited the highest activity at 60 °C, ranging from 0.92 to 3.04 mg Trolox equivalents (TE) g-1. Significant activity reductions (P < 0.05) were observed as a result of pH changes in the 2,2-diphenyl-1-picrylhydrazyl and β-carotene bleaching assays. Exposure to light 2: warm white lamp for 120 h significantly reduced antioxidant activity (0.01 to 1.70 mg TE g-1). Chemical oxidation also led to reduced activity, ranging from 0.18 to 0.29 mg TE g-1. Multivariate data analysis revealed distinct profiles for temperature, pH, light and chemical oxidation treatments. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics analysis identified 10 metabolites, and significant correlations (P < 0.05) indicate that these metabolites contributed to the samples' antioxidant activities. CONCLUSION In conclusion, fucoxanthin tolerates well at 60 °C, within pH range 3-9, and within 8 h of light exposure, as indicated by its consistent antioxidant activity and minimal colour change. Each treatment resulted in distinct metabolite concentrations, as shown by LC-MS/MS-based metabolomics analysis. Further research into these metabolites could advance the understanding of their roles and aid in optimising processing conditions to favour beneficial metabolites. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuhaili Yusof
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Su Chern Foo
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Isaia A, Coulombier N, Le Dean L, Mériot V, Jauffrais T. Detrimental effects of UV-A radiation on antioxidant capacity and photosynthetic efficiency on a tropical microalga. J Biotechnol 2024; 396:104-115. [PMID: 39510352 DOI: 10.1016/j.jbiotec.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Antioxidants are molecules able to neutralize reactive oxygen species with potential applications in the cosmetic or nutraceutical industries. Abiotic stressors, such as light intensity, ultraviolet (UV) radiation, or nutrient availability, can influence their production. In the perspective of optimizing and understanding the antioxidant capacity of microalgae, we investigated the effects of UV-A radiation on growth, and antioxidant and photosynthetic activities on Tetraselmis, a microalga genus known for its high antioxidant capacity. Cultures were exposed to UV-A radiation alongside to photosynthetically active radiation (PAR) in photobioreactors operated in continuous culture. UV-A exposure affects both the photosynthetic and antioxidant activities of Tetraselmis. Photosynthetic parameters suggest that UV-A has a negative effect on photosynthetic efficiency, particularly on the electron transport chain on short-term exposure (1-2 days). However, a resilience of most physiological parameters was observed over the experiment (10 days) suggesting a photochemical adaption over long-term exposure to UV-A radiation. Concerning the antioxidant capacity, UV-A exposure reduced the antioxidant capacity in Tetraselmis suggesting the use of antioxidant molecules to counteract reactive oxygen species production and prevent damage to photosystem II. Finally, the highest antioxidant capacity never observed with a Tetraselmis sp. was measured in cultures without UV addition, with an IC50 of 2.87 ± 0.24 µg mL-1, a value close to the reference compounds Trolox and α-tocopherol. This study showed the great potential of Tetraselmis as a source of antioxidants under favorable culture condition and without UV-A radiations. Indeed, we discourage the use of UV-A to enhance antioxidant capacity in this species due to its negative impact on it and on the photosynthetic efficiency.
Collapse
Affiliation(s)
- Anna Isaia
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia; Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280, France.
| | - Noémie Coulombier
- ADECAL Technopole, 1 bis rue Berthelot, Noumea 98846, New Caledonia.
| | - Loïc Le Dean
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia.
| | - Vincent Mériot
- ISEA, EA7484, Université de Nouvelle Calédonie, Campus de Nouville, Nouméa 98851, New Caledonia.
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia.
| |
Collapse
|
4
|
Gao L, Qin Y, Zhou X, Jin W, He Z, Li X, Wang Q. Microalgae as future food: Rich nutrients, safety, production costs and environmental effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172167. [PMID: 38580118 DOI: 10.1016/j.scitotenv.2024.172167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
The improvement of food security and nutrition has attracted wide attention, and microalgae as the most promising food source are being further explored. This paper comprehensively introduces basic and functional nutrients rich in microalgae by elaborated tables incorporating a wide variety of studies and summarizes factors influencing their accumulation effects. Subsequently, multiple comparisons of nutrients were conducted, indicating that microalgae have a high protein content. Moreover, controllable production costs and environmental friendliness prompt microalgae into the list that contains more promising and reliable future food. However, microalgae and -based foods approved and sold are limited strictly, showing that safety is a key factor affecting dietary consideration. Notably, sensory profiles and ingredient clarity play an important role in improving the acceptance of microalgae-based foods. Finally, based on the bottleneck in the microalgae food industry, suggestions for its future development were discussed.
Collapse
Affiliation(s)
- Le Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yujia Qin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi He
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Songserm R, Nishiyama Y, Sanevas N. Light Influences the Growth, Pigment Synthesis, Photosynthesis Capacity, and Antioxidant Activities in Scenedesmus falcatus. SCIENTIFICA 2024; 2024:1898624. [PMID: 38293704 PMCID: PMC10827371 DOI: 10.1155/2024/1898624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Light plays a significant role in microalgae cultivation, significantly influencing critical parameters, including biomass production, pigment content, and the accumulation of metabolic compounds. This study was intricately designed to optimize light intensities, explicitly targeting enhancing growth, pigmentation, and antioxidative properties in the green microalga, Scenedesmus falcatus (KU.B1). Additionally, the study delved into the photosynthetic efficiency in light responses of S. falcatus. The cultivation of S. falcatus was conducted in TRIS-acetate-phosphate medium (TAP medium) under different light intensities of 100, 500, and 1000 μmol photons m-2·s-1 within a photoperiodic cycle of 12 h of light and 12 h of dark. Results indicated a gradual increase in the growth of S. falcatus under high light conditions at 1000 μmol photons m-2·s-1, reaching a maximum optical density of 1.33 ± 0.03 and a total chlorophyll content of 22.67 ± 0.2 μg/ml at 120 h. Conversely, a slower growth rate was observed under low light at 100 μmol photons m-2·s-1. However, noteworthy reductions in the maximum quantum yield (Fv/Fm) and actual quantum yield (Y(II)) were observed under 1000 μmol photons m-2·s-1, reflecting a decline in algal photosynthetic efficiency. Interestingly, these changes under 1000 μmol photons m-2·s-1 were concurrent with a significant accumulation of a high amount of beta-carotene (919.83 ± 26.33 mg/g sample), lutein (34.56 ± 0.19 mg/g sample), and canthaxanthin (24.00 ± 0.38 mg/g sample) within algal cells. Nevertheless, it was noted that antioxidant activities and levels of total phenolic compounds (TPCs) decreased under high light at 1000 μmol photons m-2·s-1, with IC50 of DPPH assay recorded at 218.00 ± 4.24 and TPC at 230.83 ± 86.75 mg of GAE/g. The findings suggested that the elevated light intensity at 1000 μmol photons m-2·s-1 enhanced the growth and facilitated the accumulation of valuable carotenoid pigment in S. falcatus, presenting potential applications in the functional food and carotenoid industry.
Collapse
Affiliation(s)
- Rattanaporn Songserm
- Department of Botany, Faculty of Science, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nuttha Sanevas
- Department of Botany, Faculty of Science, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Mériot V, Roussel A, Brunet N, Chomerat N, Bilien G, Le Déan L, Berteaux-lecellier V, Coulombier N, Lebouvier N, Jauffrais T. Heterocapsa cf. bohaiensis (dinoflagellate): identification and response to nickel and iron stress revealed through chlorophyll a fluorescence. PHOTOSYNTHETICA 2024; 62:27-39. [PMID: 39650634 PMCID: PMC11609768 DOI: 10.32615/ps.2023.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 12/11/2024]
Abstract
Metal toxicity in marine ecosystems is a growing issue owing to terrestrial runoff and anthropogenic pollution. Heterocapsa cf. bohaiensis, a newly isolated dinoflagellate from New Caledonia, was cultivated in photobioreactors operating continuously with high concentrations of nickel (1.70 10-5M) (Ni2+) and/or iron (1.79 10-5M) (Fe2+) and their photosynthetic efficiency was assessed. The photosynthetic measurements indicated that H. cf. bohaiensis was tolerant to Ni2+ but sensitive to Fe2+ high concentrations. In the presence of Fe2+, maximum quantum efficiency and maximal relative electron transport rate decreased from 0.62 to 0.47 and from 156 to 102, respectively. The JIP-tests suggested a reduction of the photosynthesis in response to Fe2+ due to a disruption in the electron transport chain rather than a defect in the light absorption and trapping capacity which were on the contrary enhanced by Fe2+. These results bring new knowledge on the impact of nickel and iron on microalgae photosynthetic pathways.
Collapse
Affiliation(s)
- V. Mériot
- ISEA, EA7484, Campus de Nouville, University of New Caledonia, 98851 Nouméa, New Caledonia
- Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia
| | - A. Roussel
- ISEA, EA7484, Campus de Nouville, University of New Caledonia, 98851 Nouméa, New Caledonia
- Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia
| | - N. Brunet
- CRESICA, 98851 Nouméa, New Caledonia
| | - N. Chomerat
- Ifremer, Littoral – LERBO, Place de la Croix, Concarneau, F-29900, France
| | - G. Bilien
- Ifremer, Littoral – LERBO, Place de la Croix, Concarneau, F-29900, France
| | - L. Le Déan
- Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia
| | - V. Berteaux-lecellier
- CNRS, Ifremer, IRD, University of New Caledonia, University of La Réunion, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Nouméa, New Caledonia
| | - N. Coulombier
- ADECAL Technopole, 1 Bis Rue Berthelot, 98846 Nouméa, New Caledonia
| | - N. Lebouvier
- ISEA, EA7484, Campus de Nouville, University of New Caledonia, 98851 Nouméa, New Caledonia
| | - T. Jauffrais
- Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia
| |
Collapse
|
7
|
Kim EA, Kang N, Heo SY, Oh JY, Lee SH, Cha SH, Kim WK, Heo SJ. Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species. Mar Drugs 2023; 21:369. [PMID: 37504900 PMCID: PMC10381658 DOI: 10.3390/md21070369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Microalgae are proposed to have powerful applications for human health in the pharmaceutical and food industries. Tetraselmis species (sp.), which are green microalgae, were identified as a source of broad-spectrum health-promoting biological activities. However, the bioactivity of these species has not been elucidated. We aimed to confirm the antioxidant, antiviral, and anti-inflammatory effects of Tetraselmis sp. extract (TEE). TEE showed 2,2-diphenyl-1-picryl-hydrazyl-hydrate radical and hydrogen peroxide scavenging activities and reduced plaque formation in Vero E6 cells infected with vaccinia virus. TEE treatment also significantly inhibited nitric oxide (NO) production and improved cell viability in lipopolysaccharide (LPS)-induced RAW264.7 cells. These anti-inflammatory effects were further analyzed in LPS-induced RAW 264.7 cells and the zebrafish model. Further, TEE reduced induced NO synthase expression and proinflammatory cytokine release, including tumor necrosis factor-α, interleukin-6, and interleukin-1β, through MAPKs and NF-κB-dependent mechanisms. Further analysis revealed that TEE increased the survival rate and reduced cell death and NO production in an LPS-stimulated zebrafish model. Further, high-performance liquid chromatography revealed a strong presence of the carotenoid lutein in TEE. Overall, the results suggest that lutein-enriched TEE may be a potent antioxidant, antiviral, and anti-inflammatory agent that could be sustainably utilized in industrial applications.
Collapse
Affiliation(s)
- Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Seong-Young Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Biology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Mastropetros SG, Tsigkou K, Cladas Y, Priya AK, Kornaros M. Effect of Nitrogen, Salinity, and Light Intensity on the Biomass Composition of Nephroselmis sp.: Optimization of Lipids Accumulation (Including EPA). Mar Drugs 2023; 21:331. [PMID: 37367656 DOI: 10.3390/md21060331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Microalgal biomass is characterized by high protein, carbohydrates, and lipids concentrations. However, their qualitative and quantitative compositions depend not only on the cultivated species but also on the cultivation conditions. Focusing on the microalgae's ability to accumulate significant fatty acids (FAs) amounts, they can be valorized either as dietary supplements or for biofuel production, depending on the accumulated biomolecules. In this study, a local isolate (Nephroselmis sp.) was precultured under autotrophic conditions, while the Box-Behnken experimental design followed using the parameters of nitrogen (0-250 mg/L), salinity (30-70 ppt) and illuminance (40-260 μmol m-2 s-1) to evaluate the accumulated biomolecules, with an emphasis on the amount of FAs and its profile. Regardless of the cultivation conditions, the FAs of C14:0, C16:0, and C18:0 were found in all samples (up to 8% w/w in total), while the unsaturated C16:1 and C18:1 were also characterized by their high accumulations. Additionally, the polyunsaturated FAs, including the valuable C20:5n3 (EPA), had accumulated when the nitrogen concentration was sufficient, and the salinity levels remained low (30 ppt). Specifically, EPA approached 30% of the total FAs. Therefore, Nephroselmis sp. could be considered as an alternative EPA source compared to the already-known species used in food supplementation.
Collapse
Affiliation(s)
- Savvas Giannis Mastropetros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Konstantina Tsigkou
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Yannis Cladas
- Department of Animal Production, Fisheries & Aquaculture, University of Patras, Mesolonghi, 30200 Nea Ktiria, Greece
| | - Arun Kumar Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| |
Collapse
|
9
|
Androutsopoulou C, Makridis P. Antibacterial Activity against Four Fish Pathogenic Bacteria of Twelve Microalgae Species Isolated from Lagoons in Western Greece. Microorganisms 2023; 11:1396. [PMID: 37374898 DOI: 10.3390/microorganisms11061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Microalgae may produce a range of high-value bioactive substances, making them a promising resource for various applications. In this study, the antibacterial activity of twelve microalgae species isolated from lagoons in western Greece was examined against four fish pathogenic bacteria (Vibrio anguillarum, Aeromonas veronii, Vibrio alginolyticus, and Vibrio harveyi). Two experimental approaches were used to evaluate the inhibitory effect of microalgae on pathogenic bacteria. The first approach used bacteria-free microalgae cultures, whereas the second approach used filter-sterilized supernatant from centrifuged microalgae cultures. The results demonstrated that all microalgae had inhibitory effects against pathogenic bacteria in the first approach, particularly 4 days after inoculation, where Asteromonas gracilis and Tetraselmis sp. (red var., Pappas) exhibited the highest inhibitory activity, reducing bacterial growth by 1 to 3 log units. In the second approach, Tetraselmis sp. (red var., Pappas) showed significant inhibition against V. alginolyticus between 4 and 25 h after inoculation. Moreover, all tested cyanobacteria exhibited inhibitory activity against V. alginolyticus between 21 and 48 h after inoculation. Statistical analysis was performed using the independent samples t-test. These findings suggested that microalgae produce compounds with antibacterial activity, which could be useful in aquaculture.
Collapse
Affiliation(s)
| | - Pavlos Makridis
- Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
10
|
Nezafatian E, Farhadian O, Yegdaneh A, Safavi M, Daneshvar E, Bhatnagar A. Enhanced production of bioactive compounds from marine microalgae Tetraselmis tetrathele under salinity and light stresses: A two-stage cultivation strategy. BIORESOURCE TECHNOLOGY 2023; 376:128899. [PMID: 36933578 DOI: 10.1016/j.biortech.2023.128899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
This study leveraged the salinity and light intensity stresses during the stationary phase for enhancing the pigment contents and antioxidant capacity of Tetraselmis tetrathele. The highest pigments content was obtained in cultures under salinity stress (40 g L-1) illuminated using fluorescent light. Furthermore, the best inhibitory concentration (IC50) for scavenging the 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals was found as 79.53 µg mL-1 in ethanol extract and cultures under red LED light stress (300 µmol m-2 s-1). The highest antioxidant capacity in a ferric-reducing antioxidant power (FRAP) assay (1,778.6 µM Fe+2) was found in ethanol extract and cultures under salinity stress illuminated using fluorescent light. Maximum scavenging of the 2.2-diphenyl-1-picrylhydrazyl (DPPH) radical was found in ethyl acetate extracts under light and salinity stresses. These results indicated that abiotic stresses could enhance the pigment and antioxidant components of T. tetrathele, which are value-added compounds in the pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Elham Nezafatian
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Omidvar Farhadian
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), 3353-5111 Tehran, Iran
| | - Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
11
|
Bioactivity and Digestibility of Microalgae Tetraselmis sp. and Nannochloropsis sp. as Basis of Their Potential as Novel Functional Foods. Nutrients 2023; 15:nu15020477. [PMID: 36678348 PMCID: PMC9861193 DOI: 10.3390/nu15020477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
It is estimated that by 2050, the world's population will exceed 10 billion people, which will lead to a deterioration in global food security. To avoid aggravating this problem, FAO and WHO have recommended dietary changes to reduce the intake of animal calories and increase the consumption of sustainable, nutrient-rich, and calorie-efficient products. Moreover, due to the worldwide rising incidence of non-communicable diseases and the demonstrated impact of diet on the risk of these disorders, the current established food pattern is focused on the consumption of foods that have functionality for health. Among promising sources of functional foods, microalgae are gaining worldwide attention because of their richness in high-value compounds with potential health benefits. However, despite the great opportunities to exploit microalgae in functional food industry, their use remains limited by challenges related to species diversity and variations in cultivation factors, changes in functional composition during extraction procedures, and limited evidence on the safety and bioavailability of microalgae bioactives. The aim of this review is to provide an updated and comprehensive discussion on the nutritional value, biological effects, and digestibility of two microalgae genera, Tetraselmis and Nannochloropsis, as basis of their potential as ingredients for the development of functional foods.
Collapse
|
12
|
Zhuang GD, Gu WT, Xu SH, Cao DM, Deng SM, Chen YS, Wang SM, Tang D. Rapid screening of antioxidant from natural products by AAPH-Incubating HPLC-DAD-HR MS/MS method: A case study of Gardenia jasminoides fruit. Food Chem 2022; 401:134091. [PMID: 36116299 DOI: 10.1016/j.foodchem.2022.134091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
A new AAPH-Incubating HPLC-DAD-HR MS/MS method was developed for the rapid and high-throughput screening of antioxidants directly in natural products and applied to Gardenia jasminoides fruit. This method was assumed that the peak areas of compounds with potential antioxidant activity in HPLC chromatograms would be significantly reduced or disappeared after incubating with the AAPH which can release ROO at physiological conditions (37 °C, pH 7.4). Additionally, the activity of antioxidants can be evaluated by comparing the peak reduction rates and the screened components can be further identified by HRMS/MS. Then, 17 potential natural antioxidants from the crude extract of GJF was screened. Among them, three major components including crocin I, crocin II and crocetin showed excellent ROO scavenging activity, which were further validated by the ORAC assay. In conclusion, our study provided a simple and effective strategy to rapidly screen antioxidants in natural products.
Collapse
Affiliation(s)
- Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shu-Hong Xu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dong-Min Cao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Si-Min Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yong-Sheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Promising Biomolecules with High Antioxidant Capacity Derived from Cryptophyte Algae Grown under Different Light Conditions. BIOLOGY 2022; 11:biology11081112. [PMID: 35892969 PMCID: PMC9331842 DOI: 10.3390/biology11081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
The accumulation and production of biochemical compounds in microalgae are influenced by available light quality and algal species-specific features. In this study, four freshwater cryptophyte strains (Cryptomonas ozolinii, C. pyrenoidifera, C. curvata, and C. sp. (CPCC 336)) and one marine strain (Rhodomonas salina) were cultivated under white (control), blue, and green (experimental conditions) lights. Species-specific responses to light quality were detected, i.e., the color of light significantly affected cryptophyte biomass productivity and biochemical compositions, but the optimal light for the highest chemical composition with high antioxidant capacity was different for each algal strain. Overall, the highest phycoerythrin (PE) content (345 mg g−1 dry weight; DW) was reached by C. pyrenoidifera under green light. The highest phenolic (PC) contents (74, 69, and 66 mg g−1 DW) were detected in C. curvata under control conditions, in C. pyrenoidifera under green light, and in C. ozolinii under blue light, respectively. The highest exopolysaccharide (EPS) content (452 mg g−1 DW) was found in C. curvata under the control light. In terms of antioxidant activity, the biochemical compounds from the studied cryptophytes were highly active, with IC50 -values < 50 µg mL−1. Thus, in comparison to well-known commercial microalgal species, cryptophytes could be considered a possible candidate for producing beneficial biochemical compounds.
Collapse
|
14
|
Parkes R, Barone ME, Herbert H, Gillespie E, Touzet N. Antioxidant Activity and Carotenoid Content Responses of Three Haematococcus sp. (Chlorophyta) Strains Exposed to Multiple Stressors. Appl Biochem Biotechnol 2022; 194:4492-4510. [PMID: 35467238 DOI: 10.1007/s12010-022-03926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
There has been increasing demands worldwide for bioactive compounds of natural origins, especially for the nutraceutical and food-supplement sectors. In this context, microalgae are viewed as sustainable sources of molecules with an array of health benefits. For instance, astaxanthin is a xanthophyll pigment with powerful antioxidant capacity produced by microalgae such as the chlorophyte Haematococcus sp., which is regarded as the most suitable organism for the mass production of this pigment. In this study, three Haematococcus sp. strains were cultivated using a batch mode under favourable conditions to promote vegetative growth. Their environment was altered in a second phase using a higher and constant illumination regime combined with either exposure to blue LED light, an osmotic shock (with NaCl addition) or supplementation with a phytohormone (gibberellic acid, GA3), a plant extract (ginger), an herbicide (molinate) or an oxidant reagent (hydrogen peroxide). The effects of these stressors were evaluated in terms of antioxidant response and astaxanthin and β-carotene accumulation. Overall, strain CCAP 34/7 returned the highest Trolox Equivalent Antioxidant Capacity (TEAC) response (14.1-49.1 µmoL Trolox eq. g- 1 of DW), while the highest antioxidant response with the Folin-Ciocalteu (FC) was obtained for strain RPFW01 (62.5-155 µmoL Trolox eq. g- 1 of DW). The highest β-β-carotene content was found in strain LAFW15 when supplemented with the ginger extract (4.8 mg. g- 1). Strain RPFW01 exposed to blue light returned the highest astaxanthin yield (2.8 mg. g- 1), 5-fold that of strain CCAP 34/7 on average. This study documents the importance of screening several strains when prospecting for species with potential to produce high-value metabolites. It highlights that strain-specific responses can ensue from exposure of cells to a variety of stressors, which is important for the adequate tailoring of a biorefinery pipeline.
Collapse
Affiliation(s)
- Rachel Parkes
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland.
| | - Maria Elena Barone
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Helen Herbert
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Eoin Gillespie
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| |
Collapse
|
15
|
Zan L, Song W, Wang W, He G, Li X, Pei J. Purification, antioxidant activities, encapsulation, and release profile of total flavonoids in Peony seed meal. Food Sci Nutr 2022; 10:1051-1057. [PMID: 35432975 PMCID: PMC9007303 DOI: 10.1002/fsn3.2731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022] Open
Abstract
As potential biomass resources, biomass waste products have been considered worldwide in recent decades. Peony seed meal (PSM) is a kind of agricultural resource waste containing polyphenols, in particular flavonoids. In this study, the total flavonoids of PSM were extracted and purified by AB‐8 macroporous resin (MR), the antioxidant activities of three extract fractions were evaluated, and the total flavonoids were encapsulated with alginate and chitosan by the complex coacervation method. After purification, the yield of total flavonoids was 11.32% and the content in the product increased to 42.89% ± 2.66. The antioxidant activities of three fractions on ·OH, DPPH, and ABTS assays exhibited the following descending order: ethanol elution fraction (ELF) > ethyl acetate extract fraction (EAF) > ethanol extract fraction (EEF). The single‐factor assay showed that the encapsulated total flavonoid microcapsules (EFMs) were prepared with a chitosan concentration of 10 mg/ml, a sodium alginate concentration of 30 mg/ml, a calcium chloride concentration of 50 mg/ml, a ratio of sodium alginate to total flavonoids of 1:3, a flavonoid concentration of 40 mg/ml, and an encapsulation yield of 80.7%. Most microcapsules are smooth‐faced, spherical and uniform in size ranging from 2 to 3 mm in diameter. In vitro release studies suggested that the EFM was stable at pH 1.2 and dissolved at pH 7.5. The result indicated that the EFM is worthy for the development of functional foods and supplements, and PSM could be a potential resource in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lixia Zan
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| | - Wangting Song
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| | - Weiwei Wang
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| | - Gang He
- College of Life Sciences Northwest University Xi'an China
| | - Xinsheng Li
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| | - Jinjin Pei
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| |
Collapse
|
16
|
Grubišić M, Šantek B, Zorić Z, Čošić Z, Vrana I, Gašparović B, Čož-Rakovac R, Ivančić Šantek M. Bioprospecting of Microalgae Isolated from the Adriatic Sea: Characterization of Biomass, Pigment, Lipid and Fatty Acid Composition, and Antioxidant and Antimicrobial Activity. Molecules 2022; 27:molecules27041248. [PMID: 35209036 PMCID: PMC8875609 DOI: 10.3390/molecules27041248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h−1), had biomass productivity of 33.98 ± 0.02 mg L−1 day−1. Proteins were the most abundant macromolecule in the biomass (32.83–57.94%, g g−1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.
Collapse
Affiliation(s)
- Marina Grubišić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zrinka Čošić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Ivna Vrana
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Blaženka Gašparović
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
- Correspondence:
| |
Collapse
|
17
|
Antimicrobial and Antioxidant Potential of Scenedesmus obliquus Microalgae in the Context of Integral Biorefinery Concept. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020519. [PMID: 35056838 PMCID: PMC8778625 DOI: 10.3390/molecules27020519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Small-scale photobioreactors (PBRs) in the inoculum stage were designed with internal (red or green) and external white LED light as an initial step of a larger-scale installation aimed at fulfilling the integral biorefinery concept for maximum utilization of microalgal biomass in a multifunctional laboratory. The specific growth rate of Scenedesmus obliquus (Turpin) Kützing biomass for given cultural conditions was analyzed by using MAPLE software. For the determination of total polyphenols, flavonoids, chlorophyll “a” and “b”, carotenoids and lipids, UHPLC-HRMS, ISO-20776/1, ISO-10993-5 and CUPRAC tests were carried out. Under red light growing, a higher content of polyphenols was found, while the green light favoured the flavonoid accumulation in the biomass. Chlorophylls, carotenoids and lipids were in the same order of magnitude in both samples. The dichloromethane extracts obtained from the biomass of each PBR synergistically potentiated at low concentrations (0.01–0.05 mg/mL) the antibacterial activity of penicillin, fluoroquinolones or oregano essential oil against the selected food-borne pathogens (Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) without showing any in vitro cytotoxicity. Both extracts exhibited good cupric ion-reducing antioxidant capacity at concentrations above 0.042–0.08 mg/mL. The UHPLC-HRMS analysis revealed that both extracts contained long chain fatty acids and carotenoids thus explaining their antibacterial and antioxidant potential. The applied engineering approach showed a great potential to modify microalgae metabolism for the synthesis of target compounds by S. obliquus with capacity for the development of health-promoting nutraceuticals for poultry farming.
Collapse
|
18
|
Coulombier N, Jauffrais T, Lebouvier N. Antioxidant Compounds from Microalgae: A Review. Mar Drugs 2021; 19:549. [PMID: 34677448 PMCID: PMC8537667 DOI: 10.3390/md19100549] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The demand for natural products isolated from microalgae has increased over the last decade and has drawn the attention from the food, cosmetic and nutraceutical industries. Among these natural products, the demand for natural antioxidants as an alternative to synthetic antioxidants has increased. In addition, microalgae combine several advantages for the development of biotechnological applications: high biodiversity, photosynthetic yield, growth, productivity and a metabolic plasticity that can be orientated using culture conditions. Regarding the wide diversity of antioxidant compounds and mode of action combined with the diversity of reactive oxygen species (ROS), this review covers a brief presentation of antioxidant molecules with their role and mode of action, to summarize and evaluate common and recent assays used to assess antioxidant activity of microalgae. The aim is to improve our ability to choose the right assay to assess microalgae antioxidant activity regarding the antioxidant molecules studied.
Collapse
Affiliation(s)
- Noémie Coulombier
- ADECAL Technopole, 1 Bis Rue Berthelot, 98846 Nouméa, New Caledonia, France
| | - Thierry Jauffrais
- Ifremer, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia, France;
| | - Nicolas Lebouvier
- ISEA, EA7484, Campus de Nouville, Université de Nouvelle Calédonie, 98851 Nouméa, New Caledonia, France;
| |
Collapse
|
19
|
Coulombier N, Blanchier P, Le Dean L, Barthelemy V, Lebouvier N, Jauffrais T. The effects of CO 2-induced acidification on Tetraselmis biomass production, photophysiology and antioxidant activity: A comparison using batch and continuous culture. J Biotechnol 2020; 325:312-324. [PMID: 33038474 DOI: 10.1016/j.jbiotec.2020.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
A Tetraselmis sp. was selected for its antioxidant activity owing to its high lipid peroxidation inhibition capacity. With the aim to monitor culture conditions to improve antioxidant activity, effects of CO2-induced acidification on Tetraselmis growth, elemental composition, photosynthetic parameters and antioxidant activity were determined. Two pH values were tested (6.5 and 8.5) in batch and continuous cultures in photobioreactors. Acidification enhanced cell growth under both culture methods. However, the microalgae physiological state was healthier at pH 8.5 than at pH 6.5. Indeed, photosynthetic parameters measured with pulse amplitude modulated (PAM) fluorometry showed a decrease in the photosystem II (PSII) efficiency at pH 6.5 in batch culture. Yet, with the exception of the PSII recovering capacity, photosynthetic parameters were similar in continuous culture at both pH. These results suggest that lowering pH through CO2-induced acidification may induce a lower conversion of light to chemical energy especially when coupled with N-limitation and/or under un-balanced culture conditions. The highest antioxidant activity was measured in continuous culture at pH 6.5 with an IC50 of 3.44 ± 0.6 μg mL-1, which is close to the IC50 of reference compounds (trolox and α-tocopherol). In addition, the principal component analysis revealed a strong link between the antioxidant activity and the culture method, the photophysiological state and the nitrogen cell quota and C:N ratio of Tetraselmis sp.. These results highlight Tetraselmis sp. as a species of interest for natural antioxidant production and the potential of PAM fluorometry to monitor culture for production of biomass with a high antioxidant activity.
Collapse
Affiliation(s)
- Noémie Coulombier
- ADECAL Technopole, 1 bis rue Berthelot, 98846, Noumea, New Caledonia, France.
| | - Paul Blanchier
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Loïc Le Dean
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Vanille Barthelemy
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de la Nouvelle Calédonie, Campus de Nouville, 98851, Nouméa, New Caledonia, France
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France.
| |
Collapse
|
20
|
Coulombier N, Nicolau E, Le Déan L, Barthelemy V, Schreiber N, Brun P, Lebouvier N, Jauffrais T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp. Mar Drugs 2020; 18:E453. [PMID: 32872415 PMCID: PMC7551860 DOI: 10.3390/md18090453] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites' production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated in batch and continuous culture conditions in stirred closed photobioreactors under different nitrogen conditions (N-repletion, N-limitation, and N-starvation). The aim was to determine the influence of nitrogen availability on the peroxyl radical scavenging activity (oxygen radical absorbance capacity (ORAC) assay) and carotenoid content of Nephroselmis sp. Pigment analysis revealed a specific and unusual photosynthetic system with siphonaxanthin-type light harvesting complexes found in primitive green algae, but also high lutein content and xanthophyll cycle pigments (i.e., violaxanthin, antheraxanthin, and zeaxanthin), as observed in most advanced chlorophytes. The results indicated that N-replete conditions enhance carotenoid biosynthesis, which would correspond to a higher antioxidant capacity measured in Nephroselmis sp. Indeed, peroxyl radical scavenging activity and total carotenoids were higher under N-replete conditions and decreased sharply under N-limitation or starvation conditions. Considering individual carotenoids, siphonaxanthin, neoxanthin, xanthophyll cycle pigments, and lycopene followed the same trend as total carotenoids, while β-carotene and lutein stayed stable regardless of the nitrogen availability. Carotenoid productivities were also higher under N-replete treatment. The peroxyl radical scavenging activity measured with ORAC assay (63.6 to 154.9 µmol TE g-1 DW) and the lutein content (5.22 to 7.97 mg g-1 DW) were within the upper ranges of values reported previously for other microalgae. Furthermore, contents of siphonaxanthin ere 6 to 20% higher than in previous identified sources (siphonous green algae). These results highlight the potential of Nephroselmis sp. as a source of natural antioxidant and as a pigment of interest.
Collapse
Affiliation(s)
| | - Elodie Nicolau
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Loïc Le Déan
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Vanille Barthelemy
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nathalie Schreiber
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Pierre Brun
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de la Nouvelle Calédonie, Campus de Nouville, 98851 Nouméa, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| |
Collapse
|