1
|
Lee SH, Lee KH, Lee SH, Lee SK, Jeon OS, Jeon YP, Hong D, Yoo YJ, Park SY, Yoo HY. Conversion of N-doped biochar from carotenoid-extracted Tetraselmis suecica and its application to produce supercapacitors. J Environ Sci (China) 2025; 151:410-423. [PMID: 39481948 DOI: 10.1016/j.jes.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 11/03/2024]
Abstract
Microalgae are one of the promising feedstocks for biorefinery, contributing significantly to net-zero emissions through carbon capture and utilization. However, the disposal of microalgal byproducts from the manufacturing process causes additional environmental pollution, thus, a new application strategy is required. In this study, the Tetraselmis suecica byproduct from the carotenoid extraction process was carbonized and converted into biochar. The converted biochar was proved to be nitrogen-doped biochar (NDB), up to 4.69%, with a specific surface area of 206.59 m2/g and was used as an electrode for a supercapacitor. The NDB electrode (NDB-E) in half-cell showed a maximum specific capacitance of 191 F/g. In a full-cell test, the NDB-E exhibited a high energy density of 7.396 Wh/kg and a high-power density of 18,100 W/kg, and maintained specific capacity of 95.5% after charge and discharge of 10,000 cycles. In conclusion, our study demonstrated that the carotenoid-extracted microalgal byproducts are a useful resource for the supercapacitor production. This approach is the first to convert T. suecica into active materials for supercapacitors.
Collapse
Affiliation(s)
- Se Hun Lee
- Advanced Institute of Convergence Technology (AICT), Seoul National University, Suwon 16229, Republic of Korea
| | - Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, 20 Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; Department of Bio-Convergence Engineering, Dongyang Mirae University, 445-8, Gyeongin-ro, Guro-gu, Seoul 08221, Republic of Korea
| | - Sang-Hwa Lee
- Advanced Institute of Convergence Technology (AICT), Seoul National University, Suwon 16229, Republic of Korea
| | - Soo Kweon Lee
- Fermentation team, Lotte R&D Center, 210 Magokjungang-Ro, Gangseo-Gu, Seoul 07594, Republic of Korea
| | - Ok Sung Jeon
- Advanced Institute of Convergence Technology (AICT), Seoul National University, Suwon 16229, Republic of Korea
| | - Young Pyo Jeon
- Advanced Institute of Convergence Technology (AICT), Seoul National University, Suwon 16229, Republic of Korea
| | - Dongpyo Hong
- Advanced Institute of Convergence Technology (AICT), Seoul National University, Suwon 16229, Republic of Korea
| | - Young Joon Yoo
- Advanced Institute of Convergence Technology (AICT), Seoul National University, Suwon 16229, Republic of Korea.
| | - Sang Yoon Park
- School of Electronic Engineering, Kyonggi University, Gyeonggi-do 16227, Republic of Korea.
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20 Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| |
Collapse
|
2
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
3
|
Wang Y, Guo X, Huang C, Shi C, Xiang X. Biomedical potency and mechanisms of marine polysaccharides and oligosaccharides: A review. Int J Biol Macromol 2024; 265:131007. [PMID: 38508566 DOI: 10.1016/j.ijbiomac.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Derived from bountiful marine organisms (predominantly algae, fauna, and microorganisms), marine polysaccharides and marine oligosaccharides are intricate macromolecules that play a significant role in the growth and development of marine life. Recently, considerable attention has been paid to marine polysaccharides and marine oligosaccharides as auspicious natural products due to their promising biological attributes. Herein, we provide an overview of recent advances in the miscellaneous biological activities of marine polysaccharides and marine oligosaccharides that encompasses their anti-cancer, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-diabetes mellitus, and anticoagulant properties. Furthermore, we furnish a concise summary of the underlying mechanisms governing the behavior of these biological macromolecules. We hope that this review inspires research on marine polysaccharides and marine oligosaccharides in medicinal applications while offering fresh perspectives on their broader facets.
Collapse
Affiliation(s)
- Yi Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xueying Guo
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Chunxiao Huang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chuanqin Shi
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| |
Collapse
|
4
|
Yang S, Li D, Liu W, Chen X. Polysaccharides from marine biological resources and their anticancer activity on breast cancer. RSC Med Chem 2023; 14:1049-1059. [PMID: 37360387 PMCID: PMC10285744 DOI: 10.1039/d3md00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
In recent decades, natural products from marine organisms have been widely studied for the treatment of various breast cancers. Among them, polysaccharides have been favored by researchers because of their good effects and safety. In this review, polysaccharides from marine algae including macroalgae and microalgae, chitosan, microorganisms such as marine bacteria and fungi, and starfish are addressed. Their anticancer activities on different breast cancers and action mechanisms are discussed in detail. In general, polysaccharides from marine organisms are potential sources of low side-effect and high efficiency anticancer drugs for development. However, further research on animals and clinical research are needed.
Collapse
Affiliation(s)
- Shengfeng Yang
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital China
| | - Dacheng Li
- Department of Nuclear Medicine, Affiliated Hospital of Qingdao University China
| | - Weili Liu
- Department of Nuclear Medicine, Affiliated Hospital of Qingdao University China
| | - Xiaolin Chen
- Institute of Oceanology, Chinese Academy of Sciences China
| |
Collapse
|
5
|
García-Márquez J, Moreira BR, Valverde-Guillén P, Latorre-Redoli S, Caneda-Santiago CT, Acién G, Martínez-Manzanares E, Marí-Beffa M, Abdala-Díaz RT. In Vitro and In Vivo Effects of Ulvan Polysaccharides from Ulva rigida. Pharmaceuticals (Basel) 2023; 16:ph16050660. [PMID: 37242444 DOI: 10.3390/ph16050660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
One of the main bioactive compounds of interest from the Ulva species is the sulfated polysaccharide ulvan, which has recently attracted attention for its anticancer properties. This study investigated the cytotoxic activity of ulvan polysaccharides obtained from Ulva rigida in the following scenarios: (i) in vitro against healthy and carcinogenic cell lines (1064sk (human fibroblasts), HACAT (immortalized human keratinocytes), U-937 (a human leukemia cell line), G-361 (a human malignant melanoma), and HCT-116 (a colon cancer cell line)) and (ii) in vivo against zebrafish embryos. Ulvan exhibited cytotoxic effects on the three human cancer cell lines tested. However, only HCT-116 demonstrated sufficient sensitivity to this ulvan to make it relevant as a potential anticancer treatment, presenting an LC50 of 0.1 mg mL-1. The in vivo assay on the zebrafish embryos showed a linear relationship between the polysaccharide concentration and growth retardation at 7.8 hpf mL mg-1, with an LC50 of about 5.2 mg mL-1 at 48 hpf. At concentrations near the LC50, toxic effects, such as pericardial edema or chorion lysis, could be found in the experimental larvae. Our in vitro study supports the potential use of polysaccharides extracted from U. rigida as candidates for treating human colon cancer. However, the in vivo assay on zebrafish indicated that the potential use of ulvan as a promising, safe compound should be limited to specific concentrations below 0.001 mg mL-1 since it revealed side effects on the embryonic growth rate and osmolar balance.
Collapse
Affiliation(s)
- Jorge García-Márquez
- Department of Microbiology, Faculty of Science, Andalusian Institute of Blue Biotechnology and Development (IBYDA), Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Bruna Rodrigues Moreira
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Piedad Valverde-Guillén
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, Andalusian Institute of Blue Biotechnology and Development (IBYDA), Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Sofía Latorre-Redoli
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, Andalusian Institute of Blue Biotechnology and Development (IBYDA), Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Candela T Caneda-Santiago
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, Andalusian Institute of Blue Biotechnology and Development (IBYDA), Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, Almería University, 04120 Almería, Spain
| | - Eduardo Martínez-Manzanares
- Department of Microbiology, Faculty of Science, Andalusian Institute of Blue Biotechnology and Development (IBYDA), Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, Andalusian Institute of Blue Biotechnology and Development (IBYDA), Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga Biomedical Research Institute and Nanomedicine Platform (IBIMA BIONAND Platform), 29071 Málaga, Spain
| | - Roberto T Abdala-Díaz
- Department of Ecology and Geology, Faculty of Science, Andalusian Institute of Blue Biotechnology and Development (IBYDA), Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| |
Collapse
|
6
|
Bioactivity and Digestibility of Microalgae Tetraselmis sp. and Nannochloropsis sp. as Basis of Their Potential as Novel Functional Foods. Nutrients 2023; 15:nu15020477. [PMID: 36678348 PMCID: PMC9861193 DOI: 10.3390/nu15020477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
It is estimated that by 2050, the world's population will exceed 10 billion people, which will lead to a deterioration in global food security. To avoid aggravating this problem, FAO and WHO have recommended dietary changes to reduce the intake of animal calories and increase the consumption of sustainable, nutrient-rich, and calorie-efficient products. Moreover, due to the worldwide rising incidence of non-communicable diseases and the demonstrated impact of diet on the risk of these disorders, the current established food pattern is focused on the consumption of foods that have functionality for health. Among promising sources of functional foods, microalgae are gaining worldwide attention because of their richness in high-value compounds with potential health benefits. However, despite the great opportunities to exploit microalgae in functional food industry, their use remains limited by challenges related to species diversity and variations in cultivation factors, changes in functional composition during extraction procedures, and limited evidence on the safety and bioavailability of microalgae bioactives. The aim of this review is to provide an updated and comprehensive discussion on the nutritional value, biological effects, and digestibility of two microalgae genera, Tetraselmis and Nannochloropsis, as basis of their potential as ingredients for the development of functional foods.
Collapse
|
7
|
Taroncher M, Rodríguez-Carrasco Y, Barba FJ, Ruiz MJ. Evaluation of cytotoxicity, analysis of metals and cumulative risk assessment in microalgae. Toxicol Mech Methods 2022:1-13. [DOI: 10.1080/15376516.2022.2152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mercedes Taroncher
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Yelko Rodríguez-Carrasco
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María José Ruiz
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Casas-Arrojo V, Arrojo Agudo MDLÁ, Cárdenas García C, Carrillo P, Pérez Manríquez C, Martínez-Manzanares E, Abdala Díaz RT. Antioxidant, Immunomodulatory and Potential Anticancer Capacity of Polysaccharides (Glucans) from Euglena gracilis G.A. Klebs. Pharmaceuticals (Basel) 2022; 15:ph15111379. [PMID: 36355551 PMCID: PMC9693019 DOI: 10.3390/ph15111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The present study was carried out to determine the bioactivity of polysaccharides extracted from Euglena gracilis (EgPs). These were characterized by FT-IR and GC-MS. Cytotoxicity analyses (MTT) were performed on healthy human gingival fibroblast cell lines (HGF-1), obtaining an IC50 of 228.66 µg mL-1, and cell lines with anticancer activity for colon cancer (HCT-116), breast cancer (MCF-7), human leukemia (U-937, HL-60) and lung cancer (NCl-H460), showing that EgPs have anticancer activity, mainly in HTC-116 cells (IC50 = 26.1 µg mL-1). The immunological assay determined the immunomodulatory capacity of polysaccharides for the production of proinflammatory cytokines IL-6 and TNF-α in murine macrophages (RAW 264.7) and TNF-α in human monocytes (THP-1). It was observed that the EgPs had a stimulating capacity in the synthesis of these interleukins. The antioxidant capacity of polysaccharides and their biomass were analyzed using the ABTS method (18.30 ± 0.14% and (5.40 ± 0.56%, respectively, and the DPPH method for biomass (17.79 ± 0.57%). We quantitatively profiled HGF-1 proteins by liquid chromatography-tandem mass spectrometry analysis, coupled with 2-plex tandem mass tag labelling, in normal cells. In total, 1346 proteins were identified and quantified with high confidence, of which five were considered to be overexpressed. The data is available through ProteomeXchange, under identifier PXD029076.
Collapse
Affiliation(s)
- Virginia Casas-Arrojo
- Departamento de Ecología, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | | | - Casimiro Cárdenas García
- Servicios Centrales de Apoyo a la Investigación (SCAI), Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | - Paloma Carrillo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), 29590 Málaga, Spain
| | - Claudia Pérez Manríquez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Concepción 4190000, Chile
| | - Eduardo Martínez-Manzanares
- Departamento de Microbiología, Facultad de Medicina, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | - Roberto T. Abdala Díaz
- Departamento de Ecología, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence: ; Tel.: +34-952-13-66-52
| |
Collapse
|
9
|
Khaligh SF, Asoodeh A. Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech 2022; 12:260. [PMID: 36072963 PMCID: PMC9441132 DOI: 10.1007/s13205-022-03327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Microalgae are microscopic algae in sizes ranging from a few micrometers to several hundred micrometers. On average, half of the oxygen in the atmosphere is produced by the photosynthetic process of microalgae, so the role of these microorganisms in the life cycle of the planet is very significant. Pharmaceutical products derived from microalgae and commercial developments of a variety of supplements extracted from them originate from a variety of their specific secondary metabolites. Many of these microalgae are a reservoir of unique biological compounds including carotenoids, antioxidants, fatty acids, polysaccharides, enzymes, polymers, peptides, pigments, toxins and sterols with antimicrobial, antiviral, antifungal, antiparasitic, anticoagulant, and anticancer properties. The present work begins with an introduction of the importance of microalgae in renewable fuels and biodiesel production, the development of healthy food industry, and the creation of optimal conditions for efficient biomass yield. This paper provides the latest research related to microalgae-derived substances in the field of improving drug delivery, immunomodulatory, and anticancer attributes. Also, the latest advances in algal biocompounds to combat the COVID-19 pandemic are presented. In the subject of cultivation and growth of microalgae, the characteristics of different types of photobioreactors, especially their latest forms, are fully discussed along with their advantages and obstacles. Finally, the potential of microalgae biomass in biotechnological applications, biofuel production, as well as various biomass harvesting methods are described.
Collapse
Affiliation(s)
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Kuschmierz L, Meyer M, Bräsen C, Wingender J, Schmitz OJ, Siebers B. Exopolysaccharide composition and size in Sulfolobus acidocaldarius biofilms. Front Microbiol 2022; 13:982745. [PMID: 36225367 PMCID: PMC9549778 DOI: 10.3389/fmicb.2022.982745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular polymeric substances (EPS) comprise mainly carbohydrates, proteins and extracellular DNA (eDNA) in biofilms formed by the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. However, detailed information on the carbohydrates in the S. acidocaldarius biofilm EPS, i.e., the exopolysaccharides (PS), in terms of identity, composition and size were missing. In this study, a set of methods was developed and applied to study the PS in S. acidocaldarius biofilms. It was initially shown that addition of sugars, most significantly of glucose, to the basal N-Z-amine-based growth medium enhanced biofilm formation. For the generation of sufficient amounts of biomass suitable for chemical analyses, biofilm growth was established and optimized on the surface of membrane filters. EPS were isolated and the contents of carbohydrates, proteins and eDNA were determined. PS purification was achieved by enzymatic digestion of other EPS components (nucleic acids and proteins). After trifluoroacetic acid-mediated hydrolysis of the PS fraction, the monosaccharide composition was analyzed by reversed-phase liquid chromatography (RP-LC) coupled to mass spectrometry (MS). Main sugar constituents detected were mannose, glucose and ribose, as well as minor proportions of rhamnose, N-acetylglucosamine, glucosamine and galactosamine. Size exclusion chromatography (SEC) revealed the presence of one single PS fraction with a molecular mass of 4-9 × 104 Da. This study provides detailed information on the PS composition and size of S. acidocaldarius MW001 biofilms and methodological tools for future studies on PS biosynthesis and secretion.
Collapse
Affiliation(s)
- Laura Kuschmierz
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Martin Meyer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Oliver J. Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
- Oliver J. Schmitz,
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Bettina Siebers,
| |
Collapse
|
11
|
Qi M, Zheng C, Wu W, Yu G, Wang P. Exopolysaccharides from Marine Microbes: Source, Structure and Application. Mar Drugs 2022; 20:md20080512. [PMID: 36005515 PMCID: PMC9409974 DOI: 10.3390/md20080512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
The unique living environment of marine microorganisms endows them with the potential to produce novel chemical compounds with various biological activities. Among them, the exopolysaccharides produced by marine microbes are an important factor for them to survive in these extreme environments. Up to now, exopolysaccharides from marine microbes, especially from extremophiles, have attracted more and more attention due to their structural complexity, biodegradability, biological activities, and biocompatibility. With the development of culture and separation methods, an increasing number of novel exopolysaccharides are being found and investigated. Here, the source, structure and biological activities of exopolysaccharides, as well as their potential applications in environmental restoration fields of the last decade are summarized, indicating the commercial potential of these versatile EPS in different areas, such as food, cosmetic, and biomedical industries, and also in environmental remediation.
Collapse
Affiliation(s)
- Mingxing Qi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| | - Peipei Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| |
Collapse
|
12
|
Krohn I, Menanteau‐Ledouble S, Hageskal G, Astafyeva Y, Jouannais P, Nielsen JL, Pizzol M, Wentzel A, Streit WR. Health benefits of microalgae and their microbiomes. Microb Biotechnol 2022; 15:1966-1983. [PMID: 35644921 PMCID: PMC9249335 DOI: 10.1111/1751-7915.14082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Microalgae comprise a phylogenetically very diverse group of photosynthetic unicellular pro‐ and eukaryotic organisms growing in marine and other aquatic environments. While they are well explored for the generation of biofuels, their potential as a source of antimicrobial and prebiotic substances have recently received increasing interest. Within this framework, microalgae may offer solutions to the societal challenge we face, concerning the lack of antibiotics treating the growing level of antimicrobial resistant bacteria and fungi in clinical settings. While the vast majority of microalgae and their associated microbiota remain unstudied, they may be a fascinating and rewarding source for novel and more sustainable antimicrobials and alternative molecules and compounds. In this review, we present an overview of the current knowledge on health benefits of microalgae and their associated microbiota. Finally, we describe remaining issues and limitation, and suggest several promising research potentials that should be given attention.
Collapse
Affiliation(s)
- Ines Krohn
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| | | | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| | | | - Jeppe Lund Nielsen
- Department for Chemistry and Bioscience Aalborg University Aalborg Denmark
| | - Massimo Pizzol
- Department of Planning Aalborg University Aalborg Denmark
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| |
Collapse
|
13
|
Li Z, Wei Y, Wang Y, Zhang R, Zhang C, Wang C, Yan X. Preparation of Highly Substituted Sulfated Alfalfa Polysaccharides and Evaluation of Their Biological Activity. Foods 2022; 11:foods11050737. [PMID: 35267371 PMCID: PMC8909867 DOI: 10.3390/foods11050737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alfalfa polysaccharides (AP) receive wide attention in the field of medicine, because of their anti-inflammatory property. However, AP has high molecular weight and poor water solubility, resulting in low biological activity. We wanted to obtain highly bioactive alfalfa polysaccharides for further research. Herein, we successfully synthesized highly substituted sulfated alfalfa polysaccharides (SAP) via the chlorosulfonic acid (CSA)-pyridine (Pyr) method, which was optimized using response surface methodology (RSM). Under the best reaction conditions, that is, the reaction temperature, time, and ratio of CSA to Pyr being 55 °C, 2.25 h, and 1.5:1, respectively, the maximum degree of substitution of SAP can reach up to 0.724. Fourier transform infrared spectroscopy also confirmed the existence of sulfonic acid groups on SAP. Despite the increased average molecular weight of SAP, its water solubility is improved, which is beneficial for its biological activity. Further in vitro results showed that SAP exhibited better antioxidant activity and antibacterial ability than AP. Besides, the former can efficiently enhance the viability of oxidatively stressed intestinal epithelial cells compared with the latter. Furthermore, SAP has the potential to inhibit obesity. It is concluded that sulfation modification could improve the antioxidant, antibacterial, bovine intestinal epithelial cells’ proliferation-promoting, and the obesity inhibition abilities of AP. The improvement of AP biological activity may provide references for the utilization of plant extracts that have weaker biological activity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Yuanhao Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Yawen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Ran Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Chuanjie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Caixing Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China
- Correspondence: (C.W.); (X.Y.); Tel./Fax: +86-514-8797-2208 (X.Y.)
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.W.); (X.Y.); Tel./Fax: +86-514-8797-2208 (X.Y.)
| |
Collapse
|