1
|
Rizzo C, Caruso G, Maimone G, Patrolecco L, Termine M, Bertolino M, Giannarelli S, Rappazzo AC, Elster J, Lena A, Papale M, Pescatore T, Rauseo J, Soldano R, Spataro F, Aspholm PE, Azzaro M, Lo Giudice A. Microbiome and pollutants in the freshwater sponges Ephydatia muelleri (Lieberkühn, 1856) and Spongilla lacustris (Linnaeus, 1758) from the sub-Arctic Pasvik river (Northern Fennoscandia). ENVIRONMENTAL RESEARCH 2025; 273:121126. [PMID: 39978622 DOI: 10.1016/j.envres.2025.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Despite the ecosystem functions offered by sponges in freshwater habitats, fragmentary studies have targeted their microbiome and the bioaccumulation of legacy and emerging organic micropollutants, making it difficult to test hypotheses about sponge-microbe specificity and response to environmental factors and stressors. The sponge species Ephydatia muelleri and Spongilla lacustris, coexisting in two sites of the Pasvik River (northern Fennoscandia), were analyzed for persistent organic pollutant (POPs) and chemicals of emerging concern (CECs), along with quali-quantitative microbiological features. River water and sediment were similarly treated to establish if the obtained data were site- or sponge-specific. CECs mainly occurred in abiotic matrices, with trimethoprim and ciprofloxacin prevailing in water and sediment, respectively. Only ciprofloxacin and diclofenac were detected in sponges, with higher concentrations generally determined in S. lacustris than E. muelleri. Overall, POP concentrations were in the order polycyclic aromatic hydrocarbons > chlorobenzenes > polychlorobiphenyls > polychloronaphthalenes, with higher values in sponges with respect to abiotic matrices. Generally, POPs occurred at higher concentrations in S. lacustris than E. muelleri. Enzyme activity measurements displayed diverse trends across samples and sites, with E. muelleri displaying higher glycolytic activity than S. lacustris. Prokaryotic abundance in sponges generally exceeded that found in abiotic matrices. Proteobacteria, Planctomycetota, Actinobacteriota, Verrucomicrobiota, and Cyanobacteria predominated in sponge samples, with slight differences between sponge species and sampling sites, whereas Desulfobacterota and Acidobacterota were retrieved mostly in sediment samples. The sponge-associated bacterial communities appeared to be differently affected by pollutant concentration at the site level. Overall, this study highlights the ecological role of freshwater sponges, shedding light on their microbial associations, pollutant bioaccumulation, and potential as bioindicators of aquatic ecosystem health. The findings emphasize the importance of considering both microbial diversity and contaminant accumulation for a holistic understanding of the roles played by freshwater sponges in human-impacted environments.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy; Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Marco Termine
- Dept. Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Marco Bertolino
- Department of the Earth, Environment and Life Science (DiSTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Stefania Giannarelli
- Dept. Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Alessandro Ciro Rappazzo
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; Cà Foscari University of Venice, Dorsoduro 3246, 30123, Venezia, Italy
| | - Josef Elster
- Institute of Botany, Czech Academy of Science, Třeboň, Czech Republic; Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alessio Lena
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; University of Messina, Department ChiBioFarAm, V.le Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Rosamaria Soldano
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; University of Messina, Department ChiBioFarAm, V.le Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Paul Eric Aspholm
- Norwegian Institute of Bioeconomy Research (NIBIO) Svanhovd 23, 9925, Norway
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy.
| |
Collapse
|
2
|
Aman S, Swain S, Dutta E, Abbas S, Li N, Shakeel SN, Binder BM, Schaller GE. Modulation of plant growth and development through altered ethylene binding affinity of the ethylene receptor ETR1. BMC PLANT BIOLOGY 2025; 25:436. [PMID: 40186127 PMCID: PMC11971883 DOI: 10.1186/s12870-025-06469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Arabidopsis senses ethylene through a five-member family of ethylene receptors, of which the ethylene receptor ETR1 plays the major role. We examined how changes in ethylene binding affinity of ETR1 can regulate physiological and molecular responses to ethylene, taking advantage of an Asp25Asn mutation that still produces a functional ETR1 receptor (ETR1D25N) but one with 100-fold reduced ethylene binding affinity compared to wild-type ETR1 (ETR1wt). Analysis was performed in a genetic background that lacks the five native members of the receptor family so that the specific role of ETR1 in plant growth and development could be assessed. From this analysis, we determined that changes in ethylene binding affinity of ETR1 are reflected in plant growth and responses to ethylene. Differences in plant growth and ethylene responses for the ETR1wt and ETR1D25N lines were uncovered in seedlings grown under light or dark conditions, and when assayed for short- or long-term responses to ethylene. Dose response analysis revealed that differences in the ethylene responses for ETR1wt and ETR1D25N lines are proportional to the binding affinity of the corresponding receptor variants. Results from the characterization of the ETR1wt line and an etr1 etr2 ein4 triple mutant demonstrate that plants have greater sensitivity to ethylene than previously recognized.
Collapse
Grants
- IOS-1856513; IOS-2425472 National Science Foundation, United States
- IOS-1856513; IOS-2425472 National Science Foundation, United States
- MCB-1817304; MCB-1716279 National Science Foundation, United States
- IOS-1856513; IOS-2425472 National Science Foundation, United States
- MCB-1517032 National Science Foundation, United States
- MCB-1517032 National Science Foundation, United States
- IOS-1856513; IOS-2425472 National Science Foundation, United States
- 16103615, 16100318, 16101819, 16101920, 16306919 RGC of Hong Kong
- 16103615, 16100318, 16101819, 16101920, 16306919 RGC of Hong Kong
Collapse
Affiliation(s)
- Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Swadhin Swain
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Esha Dutta
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
- Division of Life Science, The Hong Kong University of Science and Technology,, Hong Kong, SAR, 518057, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology,, Hong Kong, SAR, 518057, China
| | - Samina N Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan
| | - Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Smith NT, Boukherissa A, Antaya K, Howe GW, Mergaert P, Rodríguez de la Vega RC, Shykoff JA, Alunni B, diCenzo GC. Taxonomic distribution of SbmA/BacA and BacA-like antimicrobial peptide transporters suggests independent recruitment and convergent evolution in host-microbe interactions. Microb Genom 2025; 11:001380. [PMID: 40238647 PMCID: PMC12003926 DOI: 10.1099/mgen.0.001380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 04/18/2025] Open
Abstract
Antimicrobial peptides (AMPs) are often produced by eukaryotes to control bacterial populations in both pathogenic and mutualistic symbioses. Several pathogens and nitrogen-fixing legume symbionts depend on transporters called SbmA (or BacA) or BclA (BacA-like) to survive exposure to AMPs. However, how broadly these transporters are distributed amongst bacteria, and their evolutionary history, is poorly understood. We used computational approaches, including phylogenetic and sequence similarity analyses, to examine the distribution of SbmA/BacA and BclA proteins across 1,255 species spanning the domain Bacteria, leading to the identification of 71 and 177 SbmA/BacA and BclA proteins, respectively. In vitro sensitivity assays using legume AMPs and several BclA proteins confirmed that AMP transport is a common feature of BclA homologues. Our analyses indicated that SbmA/BacA homologues are encoded only by species in the phylum Pseudomonadota and are primarily found in just two orders: Hyphomicrobiales and Enterobacterales. BclA homologues are somewhat more broadly distributed and were found in clusters across four phyla. These included several orders of the phyla Pseudomonadota and Cyanobacteriota, the order Mycobacteriales (phylum Actinomycetota) and the class Negativicutes (phylum Bacillota). Many of the clades enriched for species encoding SbmA/BacA or BclA homologues are rich in species that interact with eukaryotic hosts in mutualistic or pathogenic interactions. These observations suggest that SbmA/BacA and BclA proteins have been repeatedly co-opted to facilitate associations with eukaryotic hosts by allowing bacteria to cope with host-encoded AMPs.
Collapse
Affiliation(s)
- Nicholas T. Smith
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
- Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Amira Boukherissa
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Écologie Systématique et Évolution, Université Paris-Saclay, CNRS, AgroParisTech, 91198, Gif-sur-Yvette, France
| | - Kiera Antaya
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Graeme W. Howe
- Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | | | - Jacqui A. Shykoff
- Écologie Systématique et Évolution, Université Paris-Saclay, CNRS, AgroParisTech, 91198, Gif-sur-Yvette, France
| | - Benoît Alunni
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - George C. diCenzo
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
4
|
Davis LJ, Krunić A, Alexander KL, Khin M, Wood JS, Earp C, Rangel-Grimaldo M, Eustáquio AS, Burdette JE, Williamson RT, Oberlies NH, Orjala J. Menominin A and B: Cytotoxic Cyclodepsipeptides from the Freshwater Sponge-Associated Cyanobacterium Nostoc sp. UIC 10607. JOURNAL OF NATURAL PRODUCTS 2025; 88:732-746. [PMID: 39977243 PMCID: PMC11952978 DOI: 10.1021/acs.jnatprod.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Menominin A (1) and B (2), two cyclodepsipeptides containing a 3,8-dihydroxy-2-methyltetradecanoic acid residue, were isolated from the freshwater sponge-associated cyanobacterium, Nostoc sp. UIC 10607, using bioactivity-guided and spectroscopic approaches. The planar structures of 1 and 2 were established using HRESIMS and one- and two-dimensional NMR experiments. Comparative genomic analysis revealed unique differences in the putative menominin biosynthetic gene cluster compared to that of the closely related cyanobacterial cyclic lipodepsipeptide, hapalosin, assisting in structure elucidation and highlighting the structural diversity of this class of compounds. Configuration assignments were determined using a combination of J-based configuration analysis, chiral HPLC, modified Mosher's ester analysis, and DFT calculations. Menominin A and B demonstrate antiproliferative bioactivity against the high-grade serous ovarian cancer cell line OVCAR3 (IC50 = 3.1 (1) and 2.4 μM (2)). Menominin A and B are the first reported secondary metabolites from a freshwater sponge-associated cyanobacterium, underscoring the potential of freshwater sponges as a microbial culture source in natural product discovery.
Collapse
Affiliation(s)
- Lydia J. Davis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Aleksej Krunić
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Kelsey L. Alexander
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Jared S. Wood
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Cody Earp
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, North Carolina 27412, United States
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, North Carolina 27412, United States
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - R. Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, North Carolina 27412, United States
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Vaishnav A, Lal J, Mehta NK, Mohanty S, Yadav KK, Priyadarshini MB, Debbarma P, Singh NS, Pati BK, Singh SK. Unlocking the potential of fishery waste: exploring diverse applications of fish protein hydrolysates in food and nonfood sectors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36244-3. [PMID: 40119992 DOI: 10.1007/s11356-025-36244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Fish and their byproducts play a pivotal role as protein sources. With the global population increasing, urbanization on the rise and increased affluence, efficient utilization of available protein resources is becoming increasingly critical. Additionally, the need for sustainable protein sources is gaining recognition. By 2050, the world's protein demand is expected to double, driven not only by population growth but also by heightened awareness of protein's role in maintaining health. The fishery industry has experienced continuous growth over the last decade. However, this growth comes with a significant challenge: inadequate waste management. The fisheries industry discards 35% to 70% of their production as waste, including fillet remains, skin, fins, bones, heads, viscera and scales. Despite the importance of these byproducts as protein sources, their effective utilization remains a hurdle. Various strategies have been proposed to address this issue. Among them, the production of protein hydrolysates stands out as an efficient method for value addition. Protein hydrolysis breaks down proteins into smaller peptides with diverse functional and bioactive properties. Therefore, fish protein hydrolysates have applications in both the food and nonfood sectors. Utilizing fishery byproducts and waste represents a sustainable approach toward waste valorization and resource optimization in the fishery industry. This approach offers promising opportunities for innovation and economic growth across multiple sectors. This comprehensive review explores fish protein hydrolysates derived from fishery byproducts and wastes, focusing on their applications in both the food and nonfood sectors.
Collapse
Affiliation(s)
- Anand Vaishnav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Jham Lal
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India.
| | - Saswat Mohanty
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Krishan Kumar Yadav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Mocherla Bhargavi Priyadarshini
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Payel Debbarma
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Nongthongbam Sureshchandra Singh
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Bikash Kumar Pati
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Soibam Khogen Singh
- Krishi Vigyan Kendra, ICAR - North Eastern Hill Region, Ukhrul, Manipur, India
| |
Collapse
|
6
|
Zheng X, Yin J, Zhao L, Qian Y, Xu J. Mediation analysis of gut microbiota and plasma metabolites in asthma pathogenesis using Mendelian randomization. J Asthma 2025:1-13. [PMID: 40071715 DOI: 10.1080/02770903.2025.2478504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE Asthma is a prevalent chronic respiratory condition with multifactorial pathogenesis. Emerging evidence suggests that gut microbiota and their metabolites influence asthma risk. This study explores the mediation effects of plasma metabolites between gut microbiota and asthma using Mendelian randomization (MR) analysis. METHODS Publicly available genome-wide association study (GWAS) data were analyzed, comprising 5,959 individuals for gut microbiota, 8,299 for plasma metabolites, and 543,586 (86,923 cases and 456,663 controls) for asthma outcomes. MR analyses were conducted to evaluate causal relationships between gut microbiota, plasma metabolites, and asthma. Mediation effects were assessed using the product of coefficients approach, and statistical significance was determined with Bonferroni correction. RESULTS The MR analysis identified 24 gut microbiomes and 88 plasma metabolites with suggestive associations with asthma. Notably, mediation analysis revealed that the phylum Cyanobacteria reduced asthma risk via the alpha-tocopherol to glycerol ratio (mediated proportion: 37.48%), while the species UBA2922 sp900313925 and the order Parachlamydiales increased risk through arachidonate to linoleate (14.62%) and hypotaurine to taurine (29.36%) ratios, respectively. CONCLUSION This study underscores the significant role of the gut microbiota-lung axis in asthma pathogenesis. By identifying specific gut microbiota and metabolite pathways, the findings pave the way for innovative biomarkers and therapeutic strategies targeting gut microbiota and its metabolites to manage and prevent asthma.
Collapse
Affiliation(s)
- XuWen Zheng
- Department of Emergency, Wujin Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - JinNan Yin
- Department of Emergency, Wujin Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Liang Zhao
- Department of Emergency, Wujin Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - YongJun Qian
- Department of Emergency, Wujin Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Jin Xu
- Department of Emergency, Wujin Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
7
|
Hatefi A, Siavoshi F, Khalili-Samani S. Yeast's vacuole a privileged niche that protects intracellular bacteria against antibiotics. Arch Microbiol 2025; 207:82. [PMID: 40063265 DOI: 10.1007/s00203-025-04281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Detection of Helicobacter pylori, Staphylococcus, Nocardia and Cyanobacteria inside the yeast Candida tropicalis raised the question whether treating yeast with antibiotics mix (ABM) eliminates intracellular bacteria. Live/Dead staining showed occurrence of viable bacteria inside the vacuole of C. tropicalis. Amplification of bacterial 16S rRNA genes from yeast DNA with the size of 521, 750, 606 and 450 bp were similar to those from control H. pylori, Staphylococcus, Nocardia and Cyanobacteria, respectively. To eliminate intracellular bacteria yeast cultures in yeast-glucose (YG) broth were treated with 32-1024 μg/mL of ABM (amoxicillin, ciprofloxacin, rifampin and metronidazole) for up to 24 h. Viability of treated yeast cells and their intracellular bacteria was assessed by colony count, Live/Dead staining and detection of bacterial 16S rRNA genes. Colony count of C. tropicalis exposed to 32-256 μg/mL of ABM (4.39-9.63) or 512-1024 μg/mL (9.67-9.77) were similar to their respected controls (p > 0.05). Amplification of similar bacterial genes from treated yeasts and controls confirmed persistent occurrence of intracellular bacteria. Micrographs of yeasts treated with 32-256 μg/mL of ABM showed intact yeasts and intracellular bacteria, however those treated with 512 and 1024 μg/mL showed occurrence of < 10% and > 10% yellow damaged yeasts, respectively that accumulated yellow rifampin. Fluorescence microscopy showed that both intact and damaged yeasts carried live bacteria inside their vacuole. Culture of treated yeasts on YG agar produced colonies with totally intact yeasts and intracellular bacteria. Yeast extruded antibiotics and reduced their effective concentration for killing intracellular bacteria. Establishment of bacteria inside the fungal vacuole cannot be disrupted with antibiotics.
Collapse
Affiliation(s)
- Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Saman Khalili-Samani
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Tavčar Verdev P, Dolinar M. A Pipeline for the Isolation and Cultivation of Microalgae and Cyanobacteria from Hypersaline Environments. Microorganisms 2025; 13:603. [PMID: 40142496 PMCID: PMC11945091 DOI: 10.3390/microorganisms13030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Microorganisms in high-salinity environments play a critical role in biogeochemical cycles, primary production, and the biotechnological exploitation of extremozymes and bioactive compounds. The main challenges in current research include isolating and cultivating these microorganisms under laboratory conditions and understanding their complex adaptive mechanisms to high salinity. Currently, universally recognized protocols for isolating microalgae and cyanobacteria from salt pans, salterns, and similar natural habitats are lacking. Establishing axenic laboratory cultures is essential for identifying new species thriving in high-salinity environments and for exploring the synthesis of high-value metabolites by these microorganisms ex situ. Our ongoing research primarily focuses on photosynthetic microorganisms with significant biotechnological potential, particularly for skincare applications. By integrating data from the existing literature with our empirical findings, we propose a standardized pipeline for the isolation and laboratory cultivation of microalgae and cyanobacteria originating from aqueous environments characterized by elevated salt concentrations, such as solar salterns. This approach will be particularly useful for researchers working with microorganisms adapted to hypersaline waters.
Collapse
Affiliation(s)
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Kanjer L, Filek K, Mucko M, Lupić MZ, Frleta-Valić M, Gračan R, Bosak S. Growing older, growing more diverse: Sea turtles and epibiotic cyanobacteria. JOURNAL OF PHYCOLOGY 2024; 60:1390-1405. [PMID: 39435667 DOI: 10.1111/jpy.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
Cyanobacteria are known for forming associations with various animals, including sea turtles, yet our understanding of cyanobacteria associated with sea turtles remains limited. This study aims to address this knowledge gap by investigating the diversity of cyanobacteria in biofilm samples from loggerhead sea turtle carapaces, utilizing a 16S rRNA gene amplicon sequencing approach. The predominant cyanobacterial order identified was Nodosilineales, with the genus Rhodoploca having the highest relative abundance. Our results suggest that cyanobacterial communities become more diverse as sea turtles age, as we observed a positive correlation between community diversity and the length of a sea turtle's carapace. Since larger and older turtles predominantly utilize neritic habitats, the shift to a more diverse cyanobacterial community aligned with a change in loggerhead habitat. Our research provides detailed insights into the cyanobacterial communities associated with loggerhead sea turtles, establishing a foundation for future studies delving into this fascinating ecological relationship and its potential implications for sea turtle conservation.
Collapse
Affiliation(s)
- Lucija Kanjer
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Klara Filek
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Maja Mucko
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mateja Zekan Lupić
- Blue World Institute of Marine Research and Conservation, Veli Lošinj, Croatia
| | - Maša Frleta-Valić
- Blue World Institute of Marine Research and Conservation, Veli Lošinj, Croatia
- Blue World Vis, Komiža, Croatia
| | - Romana Gračan
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Semmouri I, Janssen CR, Asselman J. Health risks associated with the consumption of sea turtles: A review of chelonitoxism incidents and the presumed responsible phycotoxins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176330. [PMID: 39293768 DOI: 10.1016/j.scitotenv.2024.176330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Consuming the meat of some marine turtles can lead to a specific type of seafood poisoning known as chelonitoxism. A recent poisoning event (March 2024) on the Tanzanian island Pemba, resulting in the death of 9 people and hospitalization of 78 others, underscores the need to obtain an up to date overview and understanding of chelonitoxism. Here, we document a global overview of poisoning incidents resulting from the consumption of sea turtle flesh worldwide. All events combined involved over 2400 victims and 420 fatalities. Incidents were predominantly reported in remote regions (often islands) across the Indo-Pacific region. Reported health effects of consuming poisonous sea turtles include epigastric pain, diarrhea, vomiting, a burning mouth and throat sensation, and dehydration. In addition, ulcerative oeso-gastro-duodenal lesions, which occasionally have resulted in hospitalization and death, have been reported. Lyngbyatoxins have been suggested as (one of) the causative agents, originating from the cyanobacterium Moorena producens, growing epiphytically on the seagrass and seaweed consumed by green turtles. However, due to the limited evidence of their involvement, the actual etiology of chelonitoxism remains unresolved and other compounds may be responsible. The data outlined in this review offer valuable insights to both regulatory bodies and the general public regarding the potential risks linked to consuming sea turtles.
Collapse
Affiliation(s)
- Ilias Semmouri
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Colin R Janssen
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
11
|
Mihovilovich FB, Frangopulos M, Barreiro A, Mafra LL, Jaramillo B, Rodríguez JP, Méndez F, Marambio J, Iriarte JL, Mansilla A. The second skin of macroalgae: Unveiling the biodiversity of epiphytic microalgae across environmental gradients of the Magellan Subantarctic ecoregion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177229. [PMID: 39481570 DOI: 10.1016/j.scitotenv.2024.177229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The Magellan Subantarctic ecoregion (MSE) in the Southern Hemisphere (47°-56°S; 71°-73°W) is a unique natural laboratory subject to persistent and accelerated glacial ice melt, generating a complex system of environmental gradients (e.g., salinity and temperature) that influence the ecological patterns of marine biodiversity. However, the factors influencing marine epiphytic microalgal assemblages are still poorly understood. In this context, we characterized the richness and structure of epiphytic assemblages in different benthic macroalgal hosts (Acrosiphonia arcta, Ectocarpus siliculosus, and Leptosiphonia brodiei) in sites with glaciers and estuarine characteristics (Yendegaia Bay and Fouquet Estuary) and sites without glaciers and oceanic characteristics (Batchelor River and Offing Island) of the MSE, revealing how sites, host, and environmental variables influence variation of epiphytic assemblages. In 36 samples, 67 genera of epiphytes were recorded. The dominant divisions were Bacillariophyta (50 genera), Dinophyta (7 genera) and Cyanophyta (6 genera). We observed significantly high diversity in epiphytic assemblages, with contrasting patterns of variation depending on site and/or host macroalgae. Host specificity was not evident for most epiphytes. The most factor influencing the variation of the epiphythic assemblage was the marked environmental gradient (changes in temperature, salinity, nutrients, among others) between sites with and without glacial influence. Additionally, our research identified potentially toxic and/or harmful epiphytic microalgae belonging to the divisions Dinophyta (dinoflagellates) and Cyanophyta (cyanobacteria). The data on ecological patterns of epiphyte assemblages provides valuable insights into the current state of a poorly understood microscopic biodiversity, shaped by diverse environmental factors at different sites. Under current and future climate change scenarios in the MSE, environmental gradients may become more pronounced, with important positive and/or negative consequences on epiphyte assemblages. In light of these findings, we present a baseline for future research to further develop our understanding and facilitate the monitoring and conservation of epiphytic microalgae in the MSE.
Collapse
Affiliation(s)
- Francisco Bahamonde Mihovilovich
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile; Programa de Magister en Ciencias mención Manejo y Conservación de Recursos Naturales en Ambientes Subantárticos, Universidad de Magallanes, Punta Arenas, Chile; Programa de Doctorado en Ciencias Antárticas y Subantárticas, Universidad de Magallanes, Punta Arenas, Chile; Cape Horn International Center (CHIC), Universidad de Magallanes, Puerto Williams, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad de Chile, Santiago, Chile.
| | - Máximo Frangopulos
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile; Cape Horn International Center (CHIC), Universidad de Magallanes, Puerto Williams, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad de Chile, Santiago, Chile; Centro de Investigación Gaia-Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile
| | - Aldo Barreiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Luiz L Mafra
- Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Brazil
| | - Bárbara Jaramillo
- Escuela de Ingeniería Civil Oceánica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan Pablo Rodríguez
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile; Programa de Doctorado en Ciencias Antárticas y Subantárticas, Universidad de Magallanes, Punta Arenas, Chile; Cape Horn International Center (CHIC), Universidad de Magallanes, Puerto Williams, Chile
| | - Fabio Méndez
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile; Programa de Doctorado en Ciencias Antárticas y Subantárticas, Universidad de Magallanes, Punta Arenas, Chile; Cape Horn International Center (CHIC), Universidad de Magallanes, Puerto Williams, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad de Chile, Santiago, Chile
| | - Johanna Marambio
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile; Cape Horn International Center (CHIC), Universidad de Magallanes, Puerto Williams, Chile
| | - José Luis Iriarte
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Punta Arenas, Chile; Instituto de Acuicultura y Medio Ambiente, Universidad Austral de Chile, Puerto Montt, Chile
| | - Andrés Mansilla
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile; Cape Horn International Center (CHIC), Universidad de Magallanes, Puerto Williams, Chile
| |
Collapse
|
12
|
Papazachariou V, Fernández-Juárez V, Parfrey LW, Riemann L. Nitrogen Fixation and Microbial Communities Associated with Decomposing Seagrass Leaves in Temperate Coastal Waters. MICROBIAL ECOLOGY 2024; 87:106. [PMID: 39141097 PMCID: PMC11324715 DOI: 10.1007/s00248-024-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Seagrass meadows play pivotal roles in coastal biochemical cycles, with nitrogen fixation being a well-established process associated with living seagrass. Here, we tested the hypothesis that nitrogen fixation is also associated with seagrass debris in Danish coastal waters. We conducted a 52-day in situ experiment to investigate nitrogen fixation (proxied by acetylene reduction) and dynamics of the microbial community (16S rRNA gene amplicon sequencing) and the nitrogen fixing community (nifH DNA/RNA amplicon sequencing) associated with decomposing Zostera marina leaves. The leaves harboured distinct microbial communities, including distinct nitrogen fixers, relative to the surrounding seawater and sediment throughout the experiment. Nitrogen fixation rates were measurable on most days, but highest on days 3 (dark, 334.8 nmol N g-1 dw h-1) and 15 (light, 194.6 nmol N g-1 dw h-1). Nitrogen fixation rates were not correlated with the concentration of inorganic nutrients in the surrounding seawater or with carbon:nitrogen ratios in the leaves. The composition of nitrogen fixers shifted from cyanobacterial Sphaerospermopsis to heterotrophic genera like Desulfopila over the decomposition period. On the days with highest fixation, nifH RNA gene transcripts were mainly accounted for by cyanobacteria, in particular by Sphaerospermopsis and an unknown taxon (order Nostocales), alongside Proteobacteria. Our study shows that seagrass debris in temperate coastal waters harbours substantial nitrogen fixation carried out by cyanobacteria and heterotrophic bacteria that are distinct relative to the surrounding seawater and sediments. This suggests that seagrass debris constitutes a selective environment where degradation is affected by the import of nitrogen via nitrogen fixation.
Collapse
Affiliation(s)
- Vasiliki Papazachariou
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Center for Volatile Interactions, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Victor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, Department of Botany, and Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
- Center for Volatile Interactions, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Alvarez-Sánchez ME, Arreola R, Quintero-Fabián S, Pérez-Sánchez G. Modified peptides and organic metabolites of cyanobacterial origin with antiplasmodial properties. Int J Parasitol Drugs Drug Resist 2024; 24:100530. [PMID: 38447332 PMCID: PMC10924210 DOI: 10.1016/j.ijpddr.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
As etiological agents of malaria disease, Plasmodium spp. parasites are responsible for one of the most severe global health problems occurring in tropical regions of the world. This work involved compiling marine cyanobacteria metabolites reported in the scientific literature that exhibit antiplasmodial activity. Out of the 111 compounds mined and 106 tested, two showed antiplasmodial activity at very low concentrations, with IC50 at 0.1 and 1.5 nM (peptides: dolastatin 10 and lyngbyabellin A, 1.9% of total tested). Examples of chemical derivatives generated from natural cyanobacterial compounds to enhance antiplasmodial activity and Plasmodium selectivity can be found in successful findings from nostocarboline, eudistomin, and carmaphycin derivatives, while bastimolide derivatives have not yet been found. Overall, 57% of the reviewed compounds are peptides with modified residues producing interesting active moieties, such as α- and β-epoxyketone in camaphycins. The remaining compounds belong to diverse chemical groups such as alkaloids, macrolides, polycyclic compounds, and halogenated compounds. The Dolastatin 10 and lyngbyabellin A, compounds with antiplasmodial high activity, are cytoskeletal disruptors with different protein targets.
Collapse
Affiliation(s)
- Maria Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, 03100, Mexico City, Mexico.
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| | - Saray Quintero-Fabián
- Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico.
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Arévalo S, Pérez Rico D, Abarca D, Dijkhuizen LW, Sarasa-Buisan C, Lindblad P, Flores E, Nierzwicki-Bauer S, Schluepmann H. Genome Engineering by RNA-Guided Transposition for Anabaena sp. PCC 7120. ACS Synth Biol 2024; 13:901-912. [PMID: 38445989 PMCID: PMC10949235 DOI: 10.1021/acssynbio.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.
Collapse
Affiliation(s)
- Sergio Arévalo
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Microbial
Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751
20 Uppsala, Sweden
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
- Department
of Biological Sciences, Rensselaer Polytechnic
Institute, 110 Eighth
Street, Troy, New York 12180-3590, United
States
| | - Daniel Pérez Rico
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dolores Abarca
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Laura W. Dijkhuizen
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cristina Sarasa-Buisan
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
| | - Peter Lindblad
- Microbial
Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751
20 Uppsala, Sweden
| | - Enrique Flores
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
| | - Sandra Nierzwicki-Bauer
- Department
of Biological Sciences, Rensselaer Polytechnic
Institute, 110 Eighth
Street, Troy, New York 12180-3590, United
States
| | - Henriette Schluepmann
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
15
|
Sadvakasova AK, Bauenova MO, Kossalbayev BD, Zayadan BK, Huang Z, Wang J, Balouch H, Alharby HF, Chang JS, Allakhverdiev SI. Synthetic algocyanobacterial consortium as an alternative to chemical fertilizers. ENVIRONMENTAL RESEARCH 2023; 233:116418. [PMID: 37321341 DOI: 10.1016/j.envres.2023.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The use of unregulated pesticides and chemical fertilizers can have detrimental effects on biodiversity and human health. This problem is exacerbated by the growing demand for agricultural products. To address these global challenges and promote food and biological security, a new form of agriculture is needed that aligns with the principles of sustainable development and the circular economy. This entails developing the biotechnology market and maximizing the use of renewable and eco-friendly resources, including organic fertilizers and biofertilizers. Phototrophic microorganisms capable of oxygenic photosynthesis and assimilation of molecular nitrogen play a crucial role in soil microbiota, interacting with diverse microflora. This suggests the potential for creating artificial consortia based on them. Microbial consortia offer advantages over individual organisms as they can perform complex functions and adapt to variable conditions, making them a frontier in synthetic biology. Multifunctional consortia overcome the limitations of monocultures and produce biological products with a wide range of enzymatic activities. Biofertilizers based on such consortia present a viable alternative to chemical fertilizers, addressing the issues associated with their usage. The described capabilities of phototrophic and heterotrophic microbial consortia enable effective and environmentally safe restoration and preservation of soil properties, fertility of disturbed lands, and promotion of plant growth. Hence, the utilization of algo-cyano-bacterial consortia biomass can serve as a sustainable and practical substitute for chemical fertilizers, pesticides, and growth promoters. Furthermore, employing these bio-based organisms is a significant stride towards enhancing agricultural productivity, which is an essential requirement to meet the escalating food demands of the growing global population. Utilizing domestic and livestock wastewater, as well as CO2 flue gases, for cultivating this consortium not only helps reduce agricultural waste but also enables the creation of a novel bioproduct within a closed production cycle.
Collapse
Affiliation(s)
- Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bekzhan D Kossalbayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Satpaev 22, Almaty, 050043, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Huma Balouch
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, 142290, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Turkey.
| |
Collapse
|
16
|
Wang Z, Liu J, Xu H, Liu J, Zhao Z, Gong X. Core Microbiome and Microbial Community Structure in Coralloid Roots of Cycas in Ex Situ Collection of Kunming Botanical Garden in China. Microorganisms 2023; 11:2144. [PMID: 37763988 PMCID: PMC10537389 DOI: 10.3390/microorganisms11092144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Endophytes are essential in plant succession and evolution, and essential for stress resistance. Coralloid root is a unique root structure found in cycads that has played a role in resisting adverse environments, yet the core taxa and microbial community of different Cycas species have not been thoroughly investigated. Using amplicon sequencing, we successfully elucidated the microbiomes present in coralloid roots of 10 Cycas species, representing all four sections of Cycas in China. We found that the endophytic bacteria in coralloid roots, i.e., Cyanobacteria, were mainly composed of Desmonostoc_PCC-7422, Nostoc_PCC-73102 and unclassified_f__Nostocaceae. Additionally, the Ascomycota fungi of Exophiala, Paraboeremia, Leptobacillium, Fusarium, Alternaria, and Diaporthe were identified as the core fungi taxa. The Ascomycota fungi of Nectriaceae, Herpotrichiellaceae, Cordycipitaceae, Helotiaceae, Diaporthaceae, Didymellaceae, Clavicipitaceae and Pleosporaceae were identified as the core family taxa in coralloid roots of four sections. High abundance but low diversity of bacterial community was detected in the coralloid roots, but no significant difference among species. The fungal community exhibited much higher complexity compared to bacteria, and diversity was noted among different species or sections. These core taxa, which were a subset of the microbiome that frequently occurred in all, or most, individuals of Cycas species, represent targets for the development of Cycas conservation.
Collapse
Affiliation(s)
- Zhaochun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China;
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jian Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (J.L.)
| | - Haiyan Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Jiating Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China;
| | - Xun Gong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (J.L.)
| |
Collapse
|
17
|
Azhar BJ, Abbas S, Aman S, Yamburenko MV, Chen W, Müller L, Uzun B, Jewell DA, Dong J, Shakeel SN, Groth G, Binder BM, Grigoryan G, Schaller GE. Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2215195120. [PMID: 37253004 PMCID: PMC10266040 DOI: 10.1073/pnas.2215195120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.
Collapse
Affiliation(s)
- Beenish J. Azhar
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | | | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Buket Uzun
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - David A. Jewell
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - Jian Dong
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Samina N. Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Brad M. Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN37996
| | - Gevorg Grigoryan
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| |
Collapse
|
18
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
19
|
Selão TT. Exploring cyanobacterial diversity for sustainable biotechnology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3057-3071. [PMID: 35467729 DOI: 10.1093/jxb/erac053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are an evolutionarily ancient and diverse group of microorganisms. Their genetic diversity has
allowed them to occupy and play vital roles in a wide range of ecological niches, from desert soil crusts to tropical oceans. Owing to bioprospecting efforts and the development of new platform technologies enabling their study and manipulation, our knowledge of cyanobacterial metabolism is rapidly expanding. This review explores our current understanding of the genetic and metabolic features of cyanobacteria, from the more established cyanobacterial model strains to the newly isolated/described species, particularly the fast-growing, highly productive, and genetically amenable strains, as promising chassis for renewable biotechnology. It also discusses emerging technologies for their study and manipulation, enabling researchers to harness the astounding diversity of the cyanobacterial genomic and metabolic treasure trove towards the establishment of a sustainable bioeconomy.
Collapse
Affiliation(s)
- Tiago Toscano Selão
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| |
Collapse
|
20
|
Gautam A, Lear G, Lewis GD. Time after time: Detecting annual patterns in stream bacterial biofilm communities. Environ Microbiol 2022; 24:2502-2515. [PMID: 35466520 PMCID: PMC9324112 DOI: 10.1111/1462-2920.16017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
To quantify the major environmental drivers of stream bacterial population dynamics, we modelled temporal differences in stream bacterial communities to quantify community shifts, including those relating to cyclical seasonal variation and more sporadic bloom events. We applied Illumina MiSeq 16S rRNA bacterial gene sequencing of 892 stream biofilm samples, collected monthly for 36‐months from six streams. The streams were located a maximum of 118 km apart and drained three different catchment types (forest, urban and rural land uses). We identified repeatable seasonal patterns among bacterial taxa, allowing their separation into three ecological groupings, those following linear, bloom/trough and repeated, seasonal trends. Various physicochemical parameters (light, water and air temperature, pH, dissolved oxygen, nutrients) were linked to temporal community changes. Our models indicate that bloom events and seasonal episodes modify biofilm bacterial populations, suggesting that distinct microbial taxa thrive during these events including non‐cyanobacterial community members. These models could aid in determining how temporal environmental changes affect community assembly and guide the selection of appropriate statistical models to capture future community responses to environmental change.
Collapse
Affiliation(s)
- Anju Gautam
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Gillian D Lewis
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
21
|
Multiple bacterial partners in symbiosis with the nudibranch mollusk Rostanga alisae. Sci Rep 2022; 12:169. [PMID: 34997021 PMCID: PMC8742107 DOI: 10.1038/s41598-021-03973-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 01/23/2023] Open
Abstract
The discovery of symbiotic associations extends our understanding of the biological diversity in the aquatic environment and their impact on the host’s ecology. Of particular interest are nudibranchs that unprotected by a shell and feed mainly on sponges. The symbiotic association of the nudibranch Rostanga alisae with bacteria was supported by ample evidence, including an analysis of cloned bacterial 16S rRNA genes and a fluorescent in situ hybridization analysis, and microscopic observations. A total of 74 clones belonging to the phyla α-, β-, γ-Proteobacteria, Actinobacteria, and Cyanobacteria were identified. FISH confirmed that bacteriocytes were packed with Bradyrhizobium, Maritalea, Labrenzia, Bulkholderia, Achromobacter, and Stenotrophomonas mainly in the foot and notum epidermis, and also an abundance of Synechococcus cyanobacteria in the intestinal epithelium. An ultrastructural analysis showed several bacterial morphotypes of bacteria in epidermal cells, intestine epithelium, and in mucus layer covering the mollusk body. The high proportion of typical bacterial fatty acids in R. alisae indicated that symbiotic bacteria make a substantial contribution to its nutrition. Thus, the nudibranch harbors a high diversity of specific endo- and extracellular bacteria, which previously unknown as symbionts of marine invertebrates that provide the mollusk with essential nutrients. They can provide chemical defense against predators.
Collapse
|
22
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|