1
|
Bui QTN, Kim T, Kim HS, Lee S, Lee S, Ki JS. Sub-lethal effects of metals and pesticides on the freshwater dinoflagellate Palatinus apiculatus and environmental implications. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11128. [PMID: 39267330 DOI: 10.1002/wer.11128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Microalgae are unicellular, photosynthetic organisms in aquatic environments and are sensitive to water quality and contaminants. While green algae and diatoms are widely used for toxicity assessments, there is a relatively limited amount of toxicity data available for freshwater dinoflagellates. Here, we evaluated the sub-lethal effects of the metals Cu, Cr, Ni, and Zn and the herbicides atrazine and S-metolachlor on the freshwater dinoflagellate Palatinus apiculatus. Based on the 72-h median effective concentration (EC50), P. apiculatus showed sensitive responses to metals in the order of Cu (0.052 mg L-1), Cr (0.085 mg L-1), Zn (0.098 mg L-1), and Ni (0.13 mg L-1). Among the tested herbicides, P. apiculatus was more sensitive to atrazine (0.0048 mg L-1) than S-metolachlor (0.062 mg L-1). In addition, we observed morphological alterations and significant increases in reactive oxygen species (ROS) production in cells exposed to 0.05 mg L-1 of Cu and 0.005 mg L-1 of atrazine. These indicated that metals and pesticides induced oxidative stress in cellular metabolic processes and consequently caused severe physiological damage to the cells. Our results provide baseline data on the toxic effects of typical environmental contaminants on freshwater dinoflagellate, suggesting that P. apiculatus could be used as a bioindicator in freshwater toxicity assessments. PRACTITIONER POINTS: The sub-lethal effects of metals and pesticides on the freshwater dinoflagellate Palatinus apiculatus were evaluated. Palatinus sensitively responded to metals and pesticides; of test chemicals, atrazine (0.0048 mg L-1 of EC50) was the most sensitive. Metals and pesticides induced oxidative stress and consequently caused severe physiological damage to the Palatinus cells. The freshwater dinoflagellate Palatinus can be used as a bioindicator in freshwater toxicity assessments.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Seokmin Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, South Korea
| | - Seungjun Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea
| |
Collapse
|
2
|
Gawankar S, Masten SJ, Lahr RH. Review of the occurrence, treatment technologies, and detection methods for saxitoxins in freshwaters. JOURNAL OF WATER AND HEALTH 2024; 22:1472-1490. [PMID: 39212282 DOI: 10.2166/wh.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The increasing occurrence of saxitoxins in freshwaters is becoming a concern for water treatment facilities owing to its structural properties which make it resistant to oxidation at pH < 8. Hence, it is crucial to be able to monitor these toxins in surface and drinking water to protect public health. This review aims to outline the current state of knowledge related to the occurrence of saxitoxins in freshwaters and its removal strategies and provide a critical assessment of the detection methods to provide a basis for further development. Temperature and nutrient content are some of the factors that influence the production of saxitoxins in surface waters. A high dose of sodium hypochlorite with sufficient contact time or activated carbon has been shown to efficiently remove extracellular saxitoxins to meet the drinking water guidelines. While HILIC-MS has proven to be a powerful technology for more sensitive and reliable detection of saxitoxin and variants after solid phase extraction, ELISA is cost-effective and easy to use and is used by Ohio EPA for surveillance with a limit of detection of 0.015 μg/L. However, there is a need for the development of cost-effective and sensitive techniques that can quantify the variants of saxitoxin.
Collapse
Affiliation(s)
- Shardula Gawankar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Rebecca H Lahr
- The City of Ann Arbor, Department of Water Treatment, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Bui QTN, Pradhan B, Kim HS, Ki JS. Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects. Toxins (Basel) 2024; 16:210. [PMID: 38787062 PMCID: PMC11125744 DOI: 10.3390/toxins16050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The marine dinoflagellate Alexandrium is known to form harmful algal blooms (HABs) and produces saxitoxin (STX) and its derivatives (STXs) that cause paralytic shellfish poisoning (PSP) in humans. Cell growth and cellular metabolism are affected by environmental conditions, including nutrients, temperature, light, and the salinity of aquatic systems. Abiotic factors not only engage in photosynthesis, but also modulate the production of toxic secondary metabolites, such as STXs, in dinoflagellates. STXs production is influenced by a variety of abiotic factors; however, the relationship between the regulation of these abiotic variables and STXs accumulation seems not to be consistent, and sometimes it is controversial. Few studies have suggested that abiotic factors may influence toxicity and STXs-biosynthesis gene (sxt) regulation in toxic Alexandrium, particularly in A. catenella, A. minutum, and A. pacificum. Hence, in this review, we focused on STXs production in toxic Alexandrium with respect to the major abiotic factors, such as temperature, salinity, nutrients, and light intensity. This review informs future research on more sxt genes involved in STXs production in relation to the abiotic factors in toxic dinoflagellates.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
| | - Biswajita Pradhan
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea;
- Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea;
| |
Collapse
|
4
|
Navarro JM, Cárdenas L, Ortiz A, Figueroa Á, Morley SA, Vargas-Chacoff L, Leclerc JC, Détrée C. Testing the physiological capacity of the mussel Mytilus chilensis to establish into the Southern Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170941. [PMID: 38360303 DOI: 10.1016/j.scitotenv.2024.170941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
The Southern Ocean and the Antarctic Circumpolar Current create environmental conditions that serve as an efficient barrier to prevent the colonization of non-native species (NNS) in the marine ecosystems of Antarctica. However, warming of the Southern Ocean and the increasing number of transport opportunities are reducing the physiological and physical barriers, increasing the chances of NNS arriving. The aim of this study was to determine the limits of survival of the juvenile mussels, M. chilensis, under current Antarctic conditions and those projected under climate change. These assessments were used to define the mussels potential for establishment in the Antarctic region. Experimental mussels were exposed to four treatments: -1.5 °C (Antarctic winter), 2 °C (Antarctic summer), 4 °C (Antarctic projected) and 8 °C (control) for 80 days and a combination of physiological and transcriptomics approaches were used to investigate mussel response. The molecular responses of mussels were congruent with the physiological results, revealing tolerance to Antarctic winter temperatures. However, a higher number of regulated differentially expressed gene (DEGs) were reported in mussels exposed to Antarctic winter temperatures (-1.5 °C). This tolerance was associated with the activation of the biological processes associated with apoptosis (up regulated) and both cell division and cilium assembly (down regulated). The reduced feeding rate and the negative scope for growth, for a large part of the exposure period at -1.5 °C, suggests that Antarctic winter temperatures represents an environmental barrier to M. chilensis from the Magellanic region settling in the Antarctic. Although M. chilensis are not robust to current Antarctica thermal conditions, future warming scenarios are likely to weaken these physiological barriers. These results strongly suggest that the West Antarctic Peninsula could become part of Mytilus distributional range, especially with dispersal aided by increasing maritime transport activity across the Southern Ocean.
Collapse
Affiliation(s)
- Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile.
| | - Leyla Cárdenas
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Ortiz
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile
| | - Álvaro Figueroa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Simon A Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile; Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral d Chile, Valdivia, Chile
| | - Jean-Charles Leclerc
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Camille Détrée
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen-Normandie, CREC marine station, 54 rue du Docteur Charcot, 14530 Luc-sur-mer, France
| |
Collapse
|
5
|
Bui QTN, Kim HS, Ki JS. Polyphyletic origin of saxitoxin biosynthesis genes in the marine dinoflagellate Alexandrium revealed by comparative transcriptomics. HARMFUL ALGAE 2024; 134:102620. [PMID: 38705616 DOI: 10.1016/j.hal.2024.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024]
Abstract
The marine dinoflagellate Alexandrium is known to form harmful algal blooms, and at least 14 species within the genus can produce saxitoxins (STXs). STX biosynthesis genes (sxt) are individually revealed in toxic dinoflagellates; however, the evolutionary history remains controversial. Herein, we determined the transcriptome sequences of toxic Alexandrium (A. catenella and A. pacificum) and non-toxic Alexandrium (A. fraterculus and A. fragae) and characterized their sxt by focusing on evolutionary events and STX production. Comparative transcriptome analysis revealed higher homology of the sxt in toxic Alexandrium than in non-toxic species. Notably, non-toxic Alexandrium spp. were found to have lost two sxt core genes, namely sxtA4 and sxtG. Expression levels of 28 transcripts related to eight sxt core genes showed that sxtA, sxtG, and sxtI were relatively high (>1.5) in the toxic group compared to the non-toxic group. In contrast, the non-toxic group showed high expression levels in sxtU (1.9) and sxtD (1.7). Phylogenetic tree comparisons revealed distinct evolutionary patterns between 28S rDNA and sxtA, sxtB, sxtI, sxtD, and sxtU. However, similar topology was observed between 28S rDNA, sxtS, and sxtH/T. In the sxtB and sxtI phylogeny trees, toxic Alexandrium and cyanobacteria were clustered together, separating from non-toxic species. These suggest that Alexandrium may acquire sxt genes independently via horizontal gene transfer from toxic cyanobacteria and other multiple sources, demonstrating monocistronic transcripts of sxt in dinoflagellates.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
6
|
Kim HS, Kim T, Park J, Park TG, Ki JS. Development of saxitoxin biosynthesis gene sxtB-targeted qPCR assay for the quantification of toxic dinoflagellates Alexandrium catenella (group I) and A. pacificum (group IV) occurring in the Korean coast. HARMFUL ALGAE 2024; 134:102603. [PMID: 38705609 DOI: 10.1016/j.hal.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 05/07/2024]
Abstract
Toxic dinoflagellate Alexandrium can produce saxitoxins (STXs) and cause paralytic shellfish poisoning (PSP), and thus they are monitored for environmental safety management. Microscopic discrimination of dinoflagellates is difficult to distinguish between toxic and non-toxic species due to their similar morphology. Meanwhile, an alternative quantitative PCR (qPCR) assay is sensitive, rapid, and cost-effective for harmful species monitoring. Herein, we developed a novel qPCR assay to detect the STXs biosynthesis gene sxtB of Alexandrium catenella and A. pacificum, the leading cause of PSP outbreaks in Asian coasts and worldwide. The newly designed sxtB TaqMan probes target the species without any positive signal in other relative dinoflagellates. Deming regression analysis revealed that the sxtB copy number of A. catenella and A. pacificum was 3.6 and 4.1 copies per cell, respectively. During the blooming periods (April 13th-14th, 2020), only A. catenella cells were detected through the qPCR assay, ranging from 5.0 × 10 to 2.5 × 104 eq cells L-1. In addition, sxtB qPCR quantified more accurately compared to large subunit (LSU) rRNA targeting qPCR assay that overestimate cell density. Besides, the sensitivity of sxtB was higher compared to the microscope when the species were rarely present (5.0 × 102 cells L-1). These suggest that the sxtB qPCR assay can be applied to toxic Alexandrium monitoring in the Korean coast, even in the early stage of bloomings.
Collapse
Affiliation(s)
- Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Korea
| | - Jaeyeon Park
- Environment & Resource Convergence Center, Advanced Institute of Convergence Technologies, Suwon 16229, Korea
| | - Tae Gyu Park
- National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Korea.
| |
Collapse
|
7
|
Shin HH, Li Z, Réveillon D, Savar V, Hess P, Mertens KN, Youn JY, Shin K, Lee J, Shin AY, Byun E, Yoo YD, Son MH, Lee M, Seo MH. Toxic dinoflagellate Centrodinium punctatum (Cleve) F.J.R. Taylor: An examination on the responses in growth and toxin contents to drastic changes of temperature and salinity. HARMFUL ALGAE 2024; 131:102559. [PMID: 38212088 DOI: 10.1016/j.hal.2023.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
To understand environmental effects affecting paralytic shellfish toxin production of Centrodinium punctatum, this study examined the growth responses, and toxin contents and profiles of a C. punctatum culture exposed to drastic changes of temperature (5-30 °C) and salinity (15-40). C. punctatum grew over a temperature range of 15-25 °C, with an optimum of 20 °C., and over a salinity range of 25-40, with optimum salinities of 30-35. This suggests that C. punctatum prefers relatively warm waters and an oceanic habitat for its growth and can adapt to significant changes of salinity levels. When C. punctatum was cultivated at different temperature and salinity levels, the PST profile included four major analogs (STX, neoSTX, GTX1 and GTX4, constituted >80 % of the profile), while low amounts of doSTX and traces of dc-STX and dc-GTX2 were also observed. Interestingly, though overall toxin contents did not change significantly with temperature, increases in the proportion of STX, and decreases in proportions in GTX1 and GTX4 were observed with higher temperatures. Salinity did not affect either toxin contents or profile from 25 to 35. However, the total toxin content dropped to approximately half at salinity 40, suggesting this salinity may induce metabolic changes in C. punctatum.
Collapse
Affiliation(s)
- Hyeon Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea.
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | | | | | | | - Kenneth Neil Mertens
- Ifremer, LITTORAL unit, Place de la Croix, BP40537, 29900 Concarneau CEDEX, France
| | - Joo Yeon Youn
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kyoungsoon Shin
- Ballast Water Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Jihoon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - A-Young Shin
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Eunjung Byun
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Yeong Du Yoo
- Department of Oceanography, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Moon Ho Son
- National Institute of Fisheries Science, Busan, 619-705, Republic of Korea
| | - Minji Lee
- National Institute of Fisheries Science, Yeosu, 59780, Republic of Korea
| | - Min Ho Seo
- Marine Ecology Research Center, Yeosu 59697, Republic of Korea
| |
Collapse
|
8
|
Rahav E, Herut B. Impact of combined seawater warming and triazine-type herbicide pollution on the physiology and potential toxicity of the dinoflagellate Alexandrium minutum. MARINE POLLUTION BULLETIN 2023; 196:115612. [PMID: 37837785 DOI: 10.1016/j.marpolbul.2023.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023]
Abstract
Coastal phytoplankton communities are often exposed to multiple anthropogenic stressors simultaneously. Here, we experimentally examined how temperature increase (20-26 °C) and triazine-type herbicides pollution (500 ng terbutryn L-1), both recognized as emerging stressors, affect the abundance, physiology and selected saxitoxin gene expression in the toxic dinoflagellate Alexandrium minutum. The results show that A. minutum is more susceptible to terbutryn pollution with increasing temperatures, resulting in a significant decline in its abundance (∼80 %) and photosynthetic activity (∼40 %), while saxitoxin gene expression increased (1.5-2.5-fold). This suggests that in warming polluted coastal areas where A. minutum is often found, saxitoxin poisoning may occur even in the absence of a massive bloom. Our results recommend the development of science-based monitoring practices for algal dissolved toxins in coastal waters and estuaries, supporting environmental policies under warming and contaminated coastal regions.
Collapse
Affiliation(s)
- Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel 310800.
| | - Barak Herut
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel 310800
| |
Collapse
|
9
|
Abassi S, Kim HS, Bui QTN, Ki JS. Effects of nitrate on the saxitoxins biosynthesis revealed by sxt genes in the toxic dinoflagellate Alexandrium pacificum (group IV). HARMFUL ALGAE 2023; 127:102473. [PMID: 37544673 DOI: 10.1016/j.hal.2023.102473] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 08/08/2023]
Abstract
The dinoflagellate Alexandrium pacificum (group IV) is of particular interest because of its involvement in harmful algal blooms and production of saxitoxin (STX), which causes paralytic shellfish poisoning. The toxicity from STX and its analogues (STXs) is suspected to be affected by nitrogen (N) availability. However, the toxicity-associated behavior and STX-biosynthesis gene responses of the toxic A. pacificum under N fluctuations have not been sufficiently investigated. In the present study, we identified the sxtI gene involved in sxt biosynthesis pathway and evaluated the effects of nitrate (NO3-) on STXs production and the expression of four sxt core genes (sxtA4, sxtG, sxtB, and sxtI). Quantification of total STXs levels in the cultures under different NO3- regimes showed that NO3- concentration influenced STXs production. In addition, the proportion and concentration of STXs varied depending on the NO3- concentration. Core sxt transcript abundance was also influenced by available NO3- in a time-dependent manner. Expressional levels and patterns of sxtI were correlated with those of sxtA and sxtB. The relationship between the toxins and sxt responses in A. pacificum under various NO3- regimes suggests the direct involvement of N in the STXs biosynthesis pathway. Understanding this link would provide a tool to understand the toxin dynamics of dinoflagellates following N shifts in marine environments.
Collapse
Affiliation(s)
- Sofia Abassi
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Han-Sol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
10
|
Bilal S, Khan T, Asaf S, Khan NA, Saad Jan S, Imran M, Al-Rawahi A, Khan AL, Lee IJ, Al-Harrasi A. Silicon-Induced Morphological, Biochemical and Molecular Regulation in Phoenix dactylifera L. under Low-Temperature Stress. Int J Mol Sci 2023; 24:ijms24076036. [PMID: 37047009 PMCID: PMC10094002 DOI: 10.3390/ijms24076036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
11
|
Kim HS, Park H, Wang H, Kim T, Ki JS. Saxitoxins-producing potential of the marine dinoflagellate Alexandrium affine and its environmental implications revealed by toxins and transcriptome profiling. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105874. [PMID: 36689843 DOI: 10.1016/j.marenvres.2023.105874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The marine dinoflagellate Alexandrium occurs widely in coastal waters, and some of them can produce saxitoxins (STXs) that cause paralytic shellfish poisoning (PSP). Alexandrium affine is a harmful algal bloom (HAB)-forming species off the coast of Asia; however, its ability to produce STXs has been controversial. In the present study, we detected STXs in A. affine Alex02 isolated from the southern coast of Korea. The total STXs equivalent (STXs eq) and profiles of Alex02 varied depending on the tested environmental conditions, including the temperature and nitrate concentrations. STXs toxicity levels of A. affine Alex02 (<0.8 STXs eq fmol cell-1) were significantly lower than those of toxic A. catenella Alex03 and A. pacificum Alex05. On a genetic basis, we identified all the STX biosynthesis sxt genes, except sxtX in A. affine, via large-scale transcriptome analysis. Interestingly, the two proteins, sxtA4 and sxtG, were similar in sequence and domain structure to those of other toxic dinoflagellates and cyanobacteria; however, their transcript levels were extremely low. Our results suggest that A. affine has the potential to produce STXs, while its toxicity is much lower or negligible, which is unlikely to cause PSP incidents in marine environments.
Collapse
Affiliation(s)
- Han-Sol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Taehee Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
12
|
Cho Y, Tsuchiya S, Omura T, Koike K, Konoki K, Oshima Y, Yotsu-Yamashita M. Metabolic inhibitor induces dynamic changes in saxitoxin biosynthesis and metabolism in the dinoflagellate Alexandrium pacificum (Group IV) under in vivo labeling condition. HARMFUL ALGAE 2023; 122:102372. [PMID: 36754461 DOI: 10.1016/j.hal.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
In paralytic shellfish toxin-producing dinoflagellates, intracellular levels of saxitoxin and its analogues (STXs) are controlled by a balance between degradation and biosynthesis in response to marine environmental fluctuations and stresses. The purpose of this study was to demonstrate the utility of statistical analysis of in vivo labeling data for the dynamic analysis of variations in toxin production under stress. A toxic strain of the dinoflagellate Alexandrium pacificum (Group IV) was cultured in colchicine-containing 15N-labeled sodium nitrate-medium and metabolite levels were analyzed over time by liquid chromatography-mass spectrometry. Quantitative values of all isotopomers of precursor amino acids, biosynthetic intermediates, and major STXs were subjected to statistical analysis. The decrease of the nitrogen incorporation rates for all compounds suggested that colchicine decreased nitrate assimilation upstream of glutamate biosynthesis. In colchicine-treated cultures, the per-cell content of total STX analogues did not change significantly over time; however, the production rate of each pathway varied greatly. De novo STX biosynthesis was decreased by colchicine until Day 3, while the salvage pathway was not. Subsequently, biosynthesis by both pathways was enhanced. This analysis of dynamic metabolism provides new insights into the complex mechanisms regulating STX metabolism in dinoflagellates.
Collapse
Affiliation(s)
- Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| | - Shigeki Tsuchiya
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Takuo Omura
- Laboratory of Aquatic Science Consultant Co., LTD. 2-30-17, Higashikamata, Ota-ku, Tokyo 144-0031, Japan
| | - Kazuhiko Koike
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yasukatsu Oshima
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
13
|
Zhang J, Kong L, Zhao Y, Lin Q, Huang S, Jin Y, Ma Z, Guan W. Antagonistic and synergistic effects of warming and microplastics on microalgae: Case study of the red tide species Prorocentrum donghaiense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119515. [PMID: 35609842 DOI: 10.1016/j.envpol.2022.119515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Bibliometric network analysis has revealed that the widespread distribution of microplastics (MPs) has detrimental effects on marine organisms; however, the combined effects of MPs and climate change (e.g., warming) is not well understood. In this study, Prorocentrum donghaiense, a typical red tide species in the East China Sea, was exposed to different MP concentrations (0, 1, 5, and 10 mg L-1) and temperatures (16, 22, and 28 °C) for 7 days to investigate the combined effects of MPs and simulated ocean warming by measuring different physiological parameters, such as cell growth, pigment contents (chlorophyll a and carotenoid), relative electron transfer rate (rETR), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and adenosine triphosphate (ATP). The results demonstrated that MPs significantly decreased cell growth, pigment contents, and rETRmax, but increased the MDA, ROS, and SOD levels for all MP treatments at low temperature (16 °C). However, high temperatures (22 and 28 °C) increased the pigment contents and rETRmax, but decreased the SOD and MDA levels. Positive and negative effects of high temperatures (22 or 28 °C) were observed at low (1 and 5 mg L-1) and high MP (10 mg L-1) concentrations, respectively, indicating the antagonistic and synergistic effects of combined warming and MP pollution. These results imply that the effects of MPs on microalgae will likely not be substantial in future warming scenarios if MP concentrations are controlled at a certain level. These findings expand the current knowledge of microalgae in response to increasing MP pollution in future warming scenarios.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yan Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingming Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaojie Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yafang Jin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
14
|
Pradhan B, Kim H, Abassi S, Ki JS. Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review. Toxins (Basel) 2022; 14:397. [PMID: 35737058 PMCID: PMC9229940 DOI: 10.3390/toxins14060397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future.
Collapse
Affiliation(s)
| | | | | | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (B.P.); (H.K.); (S.A.)
| |
Collapse
|
15
|
Pradhan B, Ki JS. Phytoplankton Toxins and Their Potential Therapeutic Applications: A Journey toward the Quest for Potent Pharmaceuticals. Mar Drugs 2022; 20:md20040271. [PMID: 35447944 PMCID: PMC9030253 DOI: 10.3390/md20040271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Phytoplankton are prominent organisms that contain numerous bioactive substances and secondary metabolites, including toxins, which can be valuable to pharmaceutical, nutraceutical, and biotechnological industries. Studies on toxins produced by phytoplankton such as cyanobacteria, diatoms, and dinoflagellates have become more prevalent in recent years and have sparked much interest in this field of research. Because of their richness and complexity, they have great potential as medicinal remedies and biological exploratory probes. Unfortunately, such toxins are still at the preclinical and clinical stages of development. Phytoplankton toxins are harmful to other organisms and are hazardous to animals and human health. However, they may be effective as therapeutic pharmacological agents for numerous disorders, including dyslipidemia, obesity, cancer, diabetes, and hypertension. In this review, we have focused on the properties of different toxins produced by phytoplankton, as well as their beneficial effects and potential biomedical applications. The anticancer properties exhibited by phytoplankton toxins are mainly attributed to their apoptotic effects. As a result, phytoplankton toxins are a promising strategy for avoiding postponement or cancer treatment. Moreover, they also displayed promising applications in other ailments and diseases such as Alzheimer’s disease, diabetes, AIDS, fungal, bacterial, schizophrenia, inflammation, allergy, osteoporosis, asthma, and pain. Preclinical and clinical applications of phytoplankton toxins, as well as future directions of their enhanced nano-formulations for improved clinical efficacy, have also been reviewed.
Collapse
|
16
|
Zhou Y, Li S, Zhang J, Zhang J, Wang Z, Pan L, Huang B, Huang K, Chen X, Zhao Q, Jiang T, Liu J. Dietary exposure assessment of paralytic shellfish toxins through shellfish consumption in Shenzhen population, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10222-10234. [PMID: 34514541 DOI: 10.1007/s11356-021-16249-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Paralytic shellfish toxins (PSTs) produced by certain marine dinoflagellates accumulate in filter-feeding marine bivalves. We used LC-MS/MS to detect and quantify 13 PSTs in 188 shellfish samples of 14 species collected from Shenzhen city's Buji seafood wholesale market from March 2019 to February 2020. Twenty-six of 188 shellfish samples (13.8%) were PSTs detectable. Within 14 species, 10 out of 34 noble clam Chlamys nobilis samples contain detectable PSTs with the highest detection rate 29.4%. Seven out of 17 samples from Nan'ao island contained detectable PSTs with the highest detection rate 41.2% among 11 origins. Samples containing PSTs were concentrated in spring and winter, with the highest levels in March>December>January. Among PSTs detected, C1 was dominant. Acute dietary exposure assessment for Shenzhen residents were based on mean adult body weight, 99th percentile daily shellfish consumption of Shenzhen food consumption survey 2008 and maximum PSTs concentration for each shellfish species. The outcome for Chlamys nobilis was 2.4~3.7-fold higher than recommended ARfDs. Mean PSTs concentration, P99, and mean shellfish consumption were used to assess chronic dietary exposure. The results were lower than recommended ARfDs. In conclusion, residents in Shenzhen are at risk for acute PSTs poisoning, while relatively safe from chronic PSTs exposure.
Collapse
Affiliation(s)
- Yan Zhou
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Shenpan Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Jianying Zhang
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong, 518045, People's Republic of China
| | - Jinzhou Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Zhou Wang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Liubo Pan
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Baiqiang Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, People's Republic of China
- Research Center of Harmful Algae & Marine Biology, Jinan University, No. 601 Shipai Street, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Ke Huang
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong, 518045, People's Republic of China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Qionghui Zhao
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong, 518045, People's Republic of China
| | - Tianjiu Jiang
- Research Center of Harmful Algae & Marine Biology, Jinan University, No. 601 Shipai Street, Tianhe District, Guangzhou, 510632, People's Republic of China.
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, People's Republic of China.
| |
Collapse
|
17
|
Thi Nhu Bui Q, Kim H, Wang H, Ki JS. Unveiling the genomic structures and evolutionary events of the saxitoxin biosynthetic gene sxtA in the marine toxic dinoflagellate Alexandrium. Mol Phylogenet Evol 2022; 168:107417. [PMID: 35031458 DOI: 10.1016/j.ympev.2022.107417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
Marine dinoflagellates Alexandriumare known to produce saxitoxin (STX) and cause paralytic shellfish poisoning (PSP) which can result in mortality in human. SxtA is considered a core gene for the biosynthesis of STX. However, its gene coding structure and evolutionary history have yet to be fully elucidated. Here, we determined the full-length sequences of sxtA cDNA and genomic coding regions from two toxic dinoflagellates, Alexandrium catenella (LIMS-PS-2645 and LIMS-PS-2647) andA. pacificum (LMBE-C4), characterised their domain structures, and resolved evolutionary events. The sxtA gene was encoded on the genome without introns, and was identical in length (4002 bp) between two A. catenella strains, but their sequences differed from A. pacificum (5031 bp). SxtA consists of four domains, sxtA1, sxtA2, sxtA3, and sxtA4; however, A. pacificum has an extra domain TauD near sxtA1. Each domain had >64.4% GC content, with the highest being 71.6% in sxtA3. Molecular divergence was found to be significantly higher in sxtA4 than in the other domains. Phylogenetic trees of sxtA and separate domains showed that bacteria diverged earliest, followed by non-toxic, toxic cyanobacteria, toxic dinoflagellates. While sxtA domains in Alexandrium were similar to the PKS-like structure with the conserved sxtA1, sxtA2, and sxtA3. PKS_KS may be replaced by sxtA4 in toxic Alexandrium. These suggest that sxtA in Alexandrium may have evolved by acquiring specific domains, whose modification and complexity markedly affect toxin biosynthesis.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
18
|
Wang H, Kim H, Park H, Ki JS. Temperature influences the content and biosynthesis gene expression of saxitoxins (STXs) in the toxigenic dinoflagellate Alexandrium pacificum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149801. [PMID: 34454155 DOI: 10.1016/j.scitotenv.2021.149801] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Temperature may affect the production of saxitoxin (STX) and its derivatives (STXs); however, this is still controversial. Further, STX-biosynthesis gene regulation and the relation of its toxicity with temperature are not clearly understood. In the present study, we evaluated the effects of different temperatures (12 °C, 16 °C, and 20 °C) on the growth, toxin profiles, and expression of two core STX-biosynthesis genes, sxtA and sxtG, in the toxic dinoflagellate Alexandrium pacificum Alex05, isolated from Korean coasts. We found that temperature significantly affected cell growth, with maximum growth recorded at 16 °C, followed by 20 °C and 12 °C. HPLC analysis revealed mostly 12 of STXs from the tested cultures. Interestingly, the contents of STXs increased in the cells cultured at 16 °C and exposed to cold stress, compared to the 20 °C culture and heat stress; however, toxin components were much more diverse under heat stress. These toxin profiles generally matched with the sxtA and sxtG expression levels. Incubation at lower temperatures (12 °C and 16 °C) and exposure to cold stress increased sxtA and sxtG expressions in the cells, whereas heat stress showed little change or downregulated the transcription of both genes. Principal component analysis (PCA) showed low correlation between STXs eq and expressional levels of sxtA and sxtG in heat-stressed cells. These results suggest that temperature might be a crucial factor affecting the level and biosynthesis of STXs in marine toxic dinoflagellates.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
19
|
Bui QTN, Kim H, Park H, Ki JS. Salinity Affects Saxitoxins (STXs) Toxicity in the Dinoflagellate Alexandrium pacificum, with Low Transcription of SXT-Biosynthesis Genes sxtA4 and sxtG. Toxins (Basel) 2021; 13:toxins13100733. [PMID: 34679026 PMCID: PMC8539879 DOI: 10.3390/toxins13100733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Salinity is an important factor for regulating metabolic processes in aquatic organisms; however, its effects on toxicity and STX biosynthesis gene responses in dinoflagellates require further elucidation. Herein, we evaluated the physiological responses, toxin production, and expression levels of two STX synthesis core genes, sxtA4 and sxtG, in the dinoflagellate Alexandrium pacificum Alex05 under different salinities (20, 25, 30, 35, and 40 psu). Optimal growth was observed at 30 psu (0.12 cell division/d), but cell growth significantly decreased at 20 psu and was irregular at 25 and 40 psu. The cell size increased at lower salinities, with the highest size of 31.5 µm at 20 psu. STXs eq was highest (35.8 fmol/cell) in the exponential phase at 30 psu. GTX4 and C2 were predominant at that time but were replaced by GTX1 and NeoSTX in the stationary phase. However, sxtA4 and sxtG mRNAs were induced, and their patterns were similar in all tested conditions. PCA showed that gene transcriptional levels were not correlated with toxin contents and salinity. These results suggest that A. pacificum may produce the highest amount of toxins at optimal salinity, but sxtA4 and sxtG may be only minimally affected by salinity, even under high salinity stress.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|