1
|
Santi Martignago CC, de Souza Barbosa C, Garcia Motta H, Soares-Silva B, Maso Lopes Peres EP, Souza e Silva LC, Bonifácio M, dos Santos Jorge Sousa K, Sardeli Alqualo A, Parisi J, Jordan O, Muniz Renno AC, Aguiar ACC, Patrulea V. Exploring Antibacterial Properties of Marine Sponge-Derived Natural Compounds: A Systematic Review. Mar Drugs 2025; 23:43. [PMID: 39852545 PMCID: PMC11766522 DOI: 10.3390/md23010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The rise in multidrug-resistant (MDR) bacteria has prompted extensive research into antibacterial compounds, as these resistant strains compromise current treatments. This resistance leads to prolonged hospitalization, increased mortality rates, and higher healthcare costs. To address this challenge, the pharmaceutical industry is increasingly exploring natural products, particularly those of marine origin, as promising candidates for antimicrobial drugs. Marine sponges, in particular, are of interest because of their production of secondary metabolites (SM), which serve as chemical defenses against predators and pathogens. These metabolites exhibit a wide range of therapeutic properties, including antibacterial activity. This systematic review examines recent advancements in identifying new sponge-derived compounds with antimicrobial activity, specifically targeting Pseudomonas aeruginosa, a prevalent Gram-negative pathogen with the highest incidence rates in clinical settings. The selection criteria focused on antimicrobial compounds with reported Minimum Inhibitory Concentration (MIC) values. The identified SM include alkaloids, sesterterpenoids, nitrogenous diterpene, and bromotyrosine-derived derivatives. The structural features of the active compounds selected in this review may provide a foundational framework for developing new, highly bioactive antimicrobial agents.
Collapse
Affiliation(s)
- Cintia Cristina Santi Martignago
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
| | - Camila de Souza Barbosa
- Department of Microbiology Immunobiology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (C.d.S.B.); (A.C.C.A.)
| | - Homero Garcia Motta
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
| | - Beatriz Soares-Silva
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
| | - Erica Paloma Maso Lopes Peres
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
| | - Lais Caroline Souza e Silva
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
| | - Mirian Bonifácio
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
| | - Karolyne dos Santos Jorge Sousa
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
| | - Amanda Sardeli Alqualo
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
| | - Júlia Parisi
- Department of Physiotherapy, Metropolitan University of Santos (UNIMES), Santos 11045-001, SP, Brazil;
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
| | - Ana Claudia Muniz Renno
- Department of Bioscience, Federal University of São Paulo, Santos 11015-020, SP, Brazil; (C.C.S.M.); (H.G.M.); (B.S.-S.); (E.P.M.L.P.); (L.C.S.e.S.); (M.B.); (K.d.S.J.S.); (A.S.A.); (A.C.M.R.)
| | - Anna Caroline Campos Aguiar
- Department of Microbiology Immunobiology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (C.d.S.B.); (A.C.C.A.)
| | - Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Singh KS, Singh A. Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|
5
|
Mutalipassi M, Riccio G, Mazzella V, Galasso C, Somma E, Chiarore A, de Pascale D, Zupo V. Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives. Mar Drugs 2021; 19:227. [PMID: 33923826 PMCID: PMC8074062 DOI: 10.3390/md19040227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/07/2023] Open
Abstract
Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Mirko Mutalipassi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Valerio Mazzella
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Emanuele Somma
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 34127 Trieste, Italy;
- Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Antonia Chiarore
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy;
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Valerio Zupo
- Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077 Naples, Italy;
| |
Collapse
|
6
|
Wang Q, Sun Y, Yang L, Luo X, de Voogd NJ, Tang X, Li P, Li G. Bishomoscalarane Sesterterpenoids from the Sponge Dysidea granulosa Collected in the South China Sea. JOURNAL OF NATURAL PRODUCTS 2020; 83:516-523. [PMID: 31990554 DOI: 10.1021/acs.jnatprod.9b01202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Granulosane A (1), a new C27 bishomoscalarane sesterterpenoid with a rare 6/6/6/8 tetracyclic skeleton, together with eight additional new C27 bishomoscalarane sesterterpenes (2, 8-14) and five new C26 20,24-bishomo-25-norscalarane sesterterpenes (3-7), were isolated from the marine sponge Dysidea granulosa collected in the South China Sea. Their structures were elucidated by extensive spectroscopic analysis and quantum chemical calculation methods. Compound 4 showed antiproliferative activities against two cancer cell lines.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Yanting Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Lin Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Xiangchao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Nicole J de Voogd
- National Museum of Natural History , PO Box 9517, 2300 RA Leiden , The Netherlands
| | - Xuli Tang
- College of Chemistry and Chemical Engineering , Ocean University of China , Qingdao 266100 , People's Republic of China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| |
Collapse
|
7
|
Kurhekar JV. Antimicrobial lead compounds from marine plants. PHYTOCHEMICALS AS LEAD COMPOUNDS FOR NEW DRUG DISCOVERY 2020. [PMCID: PMC7153345 DOI: 10.1016/b978-0-12-817890-4.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Marine environment is a home to a very wide diversity of flora and fauna, which includes an array of genetically diverse coastline and under seawater plant species, animal species, microbial species, their habitats, ecosystems, and supporting ecological processes. The Earth is home to an estimated 10 million species, of which a large chunk belongs to marine environment. Marine plants are a store house of a variety of antimicrobial compounds like classes of marine flavonoids—flavones and flavonols, terpenoids, alkaloids, peptides, carbohydrates, fatty acids, polyketides, polysaccharides, phenolic compounds, and steroids. Lot of research today is directed toward marine species, which have proved to be a potent source of structurally widely diverse and yet highly bioactive secondary metabolites. Varied species of phylum Porifera, algae including diatoms, Chlorophyta, Euglenophyta, Dinoflagellata, Chrysophyta, cyanobacteria, Rhodophyta, and Phaeophyta, bacteria, fungi, and weeds have been exploited by mankind for their inherent indigenous biological antimicrobial compounds, produced under the extreme stressful underwater conditions of temperature, atmospheric pressure, light, and nutrition. The present study aims at presenting a brief review of bioactive marine compounds possessing antimicrobial potency.
Collapse
|
8
|
Gui YH, Liu L, Wu W, Zhang Y, Jia ZL, Shi YP, Kong HT, Liu KC, Jiao WH, Lin HW. Discovery of nitrogenous sesquiterpene quinone derivatives from sponge Dysidea septosa with anti-inflammatory activity in vivo zebrafish model. Bioorg Chem 2019; 94:103435. [PMID: 31812262 DOI: 10.1016/j.bioorg.2019.103435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022]
Abstract
Two unique nitrogenous sesquiterpene quinone meroterpenoids, dysidinoid B (1) and dysicigyhone A (2), together with eight known analogues (3-10) were isolated and characterized from the marine sponge Dysidea septosa. Their structures with absolute configurations were established by a combination of extensive spectroscopic, electron circular dichroism (ECD) and single-crystal X-ray diffraction data analysis. Structurally, dysicigyhone A (2) possessed a unique benzo[d]oxazolidine-2-one unit. Additionally, dysidinoid B (1) exhibited significant anti-inflammatory effect by inhibiting TNF-α and IL-6 generation with IC50 values of 9.15 μM and 17.62 μM, respectively. Further in vivo anti-inflammatory assay verified that the dysidinoid B (1) alleviated the CuSO4-induced robust acute inflammatory response in zebrafish model.
Collapse
Affiliation(s)
- Yu-Han Gui
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; School of Traditional Chinese Materia Medical, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun Zhang
- Institute of Biology, Qilu University of Technology, Jinan 250103, China
| | - Zhi-Li Jia
- Institute of Biology, Qilu University of Technology, Jinan 250103, China
| | - Yong-Ping Shi
- Institute of Biology, Qilu University of Technology, Jinan 250103, China
| | - Hao-Tian Kong
- Institute of Biology, Qilu University of Technology, Jinan 250103, China
| | - Ke-Chun Liu
- Institute of Biology, Qilu University of Technology, Jinan 250103, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
9
|
Bidleman TF, Andersson A, Brugel S, Ericson L, Haglund P, Kupryianchyk D, Lau DCP, Liljelind P, Lundin L, Tysklind A, Tysklind M. Bromoanisoles and methoxylated bromodiphenyl ethers in macroalgae from Nordic coastal regions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:881-892. [PMID: 31032511 DOI: 10.1039/c9em00042a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Marine macroalgae are used worldwide for human consumption, animal feed, cosmetics and agriculture. In addition to beneficial nutrients, macroalgae contain halogenated natural products (HNPs), some of which have toxic properties similar to those of well-known anthropogenic contaminants. Sixteen species of red, green and brown macroalgae were collected in 2017-2018 from coastal waters of the northern Baltic Sea, Sweden Atlantic and Norway Atlantic, and analyzed for bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). Target compounds were quantified by gas chromatography-low resolution mass spectrometry (GC-LRMS), with qualitative confirmation in selected species by GC-high resolution mass spectrometry (GC-HRMS). Quantified compounds were 2,4-diBA, 2,4,6-triBA, 2'-MeO-BDE68, 6-MeO-BDE47, and two tribromo-MeO-BDEs and one tetrabromo-MeO-BDE with unknown bromine substituent positions. Semiquantitative results for pentabromo-MeO-BDEs were also obtained for a few species by GC-HRMS. Three extraction methods were compared; soaking in methanol, soaking in methanol-dichloromethane, and blending with mixed solvents. Extraction yields of BAs did not differ significantly (p > 0.05) with the three methods and the two soaking methods gave equivalent yields of MeO-BDEs. Extraction efficiencies of MeO-BDEs were significantly lower using the blend method (p < 0.05). For reasons of simplicity and efficiency, the soaking methods are preferred. Concentrations varied by orders of magnitude among species: ∑2BAs 57 to 57 700 and ∑5MeO-BDEs < 10 to 476 pg g-1 wet weight (ww). Macroalgae standing out with ∑2BAs >1000 pg g-1 ww were Ascophyllum nodosum, Ceramium tenuicorne, Ceramium virgatum, Fucus radicans, Fucus serratus, Fucus vesiculosus, Saccharina latissima, Laminaria digitata, and Acrosiphonia/Spongomorpha sp. Species A. nodosum, C. tenuicorne, Chara virgata, F. radicans and F. vesiculosus (Sweden Atlantic only) had ∑5MeO-BDEs >100 pg g-1 ww. Profiles of individual compounds showed distinct differences among species and locations.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ki D, Awouafack MD, Wong CP, Nguyen HM, Thai QM, Ton Nu LH, Morita H. Brominated Diphenyl Ethers Including a New Tribromoiododiphenyl Ether from the Vietnamese Marine SpongeArenosclerasp. and Their Antibacterial Activities. Chem Biodivers 2019; 16:e1800593. [DOI: 10.1002/cbdv.201800593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/12/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Dae‐Won Ki
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
| | - Maurice Ducret Awouafack
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of ScienceUniversity of Dschang, P.O. Box 67 Dschang Cameroon
| | - Chin Piow Wong
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
| | - Hien Minh Nguyen
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
| | - Quang Minh Thai
- Institute of OceanographyVietnam Academy of Science and Technology, Nha Trang Vietnam
| | | | - Hiroyuki Morita
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
| |
Collapse
|
11
|
Zea-Obando C, Tunin-Ley A, Turquet J, Culioli G, Briand JF, Bazire A, Réhel K, Faÿ F, Linossier I. Anti-Bacterial Adhesion Activity of Tropical Microalgae Extracts. Molecules 2018; 23:molecules23092180. [PMID: 30158494 PMCID: PMC6225251 DOI: 10.3390/molecules23092180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
The evolution of regulations concerning biocidal products aimed towards an increased protection of the environment (e.g., EU Regulation No 528/2012) requires the development of new non-toxic anti-fouling (AF) systems. As the marine environment is an important source of inspiration, such AF systems inhibiting the adhesion of organisms without any toxicity could be based on molecules of natural origin. In this context, the antibiofilm potential of tropical microalgal extracts was investigated. The tropics are particularly interesting in terms of solar energy and temperatures which provide a wide marine diversity and a high production of microalgae. Twenty microalgal strains isolated from the Indian Ocean were studied. Their extracts were characterized in terms of global chemical composition by high resolution magic angle spinning (HR-MAS) and nuclear magnetic resonance (NMR) spectroscopy, toxicity against marine bacteria (viability and growth) and anti-adhesion effect. The different observations made by confocal laser scanning microscopy (CLSM) showed a significant activity of three extracts from Dinoflagellate strains against the settlement of selected marine bacteria without any toxicity at a concentration of 50 μg/mL. The Symbiodinium sp. (P-78) extract inhibited the adhesion of Bacillus sp. 4J6 (Atlantic Ocean), Shewanella sp. MVV1 (Indian Ocean) and Pseudoalteromonas lipolytica TC8 (Mediterranean Ocean) at 60, 76 and 52%, respectively. These results underlined the potential of using microalgal extracts to repel fouling organisms.
Collapse
Affiliation(s)
- Claudia Zea-Obando
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| | - Alina Tunin-Ley
- Laboratory c/o CYROL, NEXA, 97490 Sainte Clotilde, Reunion, France.
| | - Jean Turquet
- Laboratory c/o CYROL, NEXA, 97490 Sainte Clotilde, Reunion, France.
| | - Gérald Culioli
- MAPIEM, Biofouling et Substances Naturelles Marines, Université du Sud Toulon-Var, EA 4323, 83041 Toulon, France.
| | - Jean-François Briand
- MAPIEM, Biofouling et Substances Naturelles Marines, Université du Sud Toulon-Var, EA 4323, 83041 Toulon, France.
| | - Alexis Bazire
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| | - Karine Réhel
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| | - Fabienne Faÿ
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| | - Isabelle Linossier
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| |
Collapse
|
12
|
Sun S, Canning C, Wang K, Zhu W, Yang F, Zhang Y, Zhou K. Antibacterial Activity of 2-(3’,5'-Dibromo-2'-methoxyphenoxy)-3,5-dibromophenol Isolated from Phyllospongia papyracea. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A principal active antimicrobial compound, 2-(3’,5'-dibromo-2'-methoxyphenoxy)-3,5-dibromophenol, was isolated from the methanol extract of Phyllospongia papyracea via bioassay-guided fractionation and isolation. The crude extract and the purified compound were assayed to determine the minimal inhibitory concentration and minimal bactericidal concentration (MBC) using the broth microdilution method. The purified compound was found to be highly active against Bacillus subtilis and Staphylococcus aureus at MIC=1 μg/mL, Campylobacter jejuni at MIC=2 μg/mL, Pseudomonas aeruginosa at MIC=4 μg/mL, and Streptococcus pneumoniae and Listeria monocytogenes at MIC = 8 μg/mL. The activity of this compound was found to be comparable with antibiotics commonly used to control these species of bacteria. The results establish 2-(3’,5'-dibromo-2'-methoxyphenoxy)-3,5-dibromophenol as a potential lead molecule for the development of antibacterial agents.
Collapse
Affiliation(s)
- Shi Sun
- Department of Nutrition and Food Science, Wayne State University, 5045 Cass Ave, Detroit, MI, 48202, USA
| | - Corene Canning
- Department of Nutrition and Food Science, Wayne State University, 5045 Cass Ave, Detroit, MI, 48202, USA
| | - Kuiwu Wang
- Department of Nutrition and Food Science, Wayne State University, 5045 Cass Ave, Detroit, MI, 48202, USA
| | - Wenjun Zhu
- Department of Nutrition and Food Science, Wayne State University, 5045 Cass Ave, Detroit, MI, 48202, USA
| | - Fei Yang
- Department of Nutrition and Food Science, Wayne State University, 5045 Cass Ave, Detroit, MI, 48202, USA
| | - Yifan Zhang
- Department of Nutrition and Food Science, Wayne State University, 5045 Cass Ave, Detroit, MI, 48202, USA
| | - Kequan Zhou
- Department of Nutrition and Food Science, Wayne State University, 5045 Cass Ave, Detroit, MI, 48202, USA
| |
Collapse
|
13
|
Sun S, Canning C, Wang K, Zhu W, Yang F, Zhang Y, Zhou K. Antibacterial Activity of 2-(3',5'-Dibromo-2'-methoxyphenoxy)-3,5- dibromophenol Isolated from Phyllospongia papyracea. Nat Prod Commun 2017; 12:567-569. [PMID: 30520598 PMCID: PMC6291838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
A principal active antimicrobial compound, 2-(3',5'-dibromo-2'-methoxyphenoxy)-3,5-dibromophenol, was isolated from the methanol extract of Phyllospongiapapyracea via bioassay-guided fractionation and isolation. The crude extract and the purified compound were assayed to determine the minimal - inhibitory concentration and minimal bactericidal concentration (MBC) using the broth. microdilution method. The purified compound was found to be highly active against Bacillus subtilis and Staphylococcus aureus at MIC=1 μg/mL, Campylobacter jejuni at MIC=2 gg/mL, Pseudomonas aeruginosa at MIC=4 μg/mL; and Streptococcus pneumoniae and Listeria monocytogenes at MIC = 8 μg/mL. The activity of this compound was found to be comparable with antibiotics commonly used to control these species of bacteria. The results establish 2-(3',5'-dibromo-2'-methoxyphenoxy)-3,5-dibromopheno as a potential lead molecule for the development of antibacterial agents.
Collapse
|
14
|
Haraguchi K, Ito Y, Takagi M, Fujii Y, Harada KH, Koizumi A. Levels, profiles and dietary sources of hydroxylated PCBs and hydroxylated and methoxylated PBDEs in Japanese women serum samples. ENVIRONMENT INTERNATIONAL 2016; 97:155-162. [PMID: 27615405 DOI: 10.1016/j.envint.2016.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Human exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may result in retention of specific congeners of hydroxylated PCBs (OH-PCBs) and hydroxylated/methoxylated PBDEs (OH-/MeO-PBDEs) in serum. However, dietary sources and biotransformation of OH-/MeO-PBDEs in humans are poorly understood. Therefore, this study was conducted to investigate the levels, profiles, and exposure sources of OH-/MeO-PBDEs along with OH-PCBs present in human serum. Twenty serum samples pooled from women of four age groups (30s/40s/50s/60s) living in four districts of Japan were analyzed for OH-/MeO-PBDEs, and their profiles were then compared with those of seafood (seaweed and fish). The major component of OH-PCBs in the phenolic fraction of serum was 4-OH-CB187 (mean: 85pgg-1 wet weight (ww)). Total OH-PCBs accounted for about 1/20 of the total PCBs (mean; 1800pgg-1 ww). In contrast, the predominant component of OH-PBDEs in serum was 6-OH-BDE47 (mean: 183pgg-1 ww), which was about 20-fold higher than BDE-47 (mean; 8.7pgg-1 ww). In the neutral fraction, 2'-MeO-BDE68 was primarily found at a similar concentration (mean 5.6pgg-1 ww) to BDE-47. Both 4-OH-PCB187 and 2'-MeO-BDE68 were significantly correlated with woman's age (p<0.01), but not with 6-OH-BDE47 or BDE-47. The profiles of OH-PBDEs in serum were consistent with those in edible seaweeds (Sargassum fusiforme) sold for human consumption, whereas MeO-PBDEs had a similar profile as those in edible fish (Serranidae sp.) from Japanese coastal waters. These findings indicate that the profiles of OH-PBDEs and MeO-PBDEs in Japanese serum are different from those in other countries, and their sources may be specific edible seaweeds and fish, respectively. This is the first report of profiles and dietary sources of OH/MeO-PBDEs in human serum from Japan.
Collapse
Affiliation(s)
- Koichi Haraguchi
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| | - Yoshiko Ito
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Masae Takagi
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yukiko Fujii
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan; Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Kumari S, Deori M, Elancheran R, Kotoky J, Devi R. In vitro and In vivo Antioxidant, Anti-hyperlipidemic Properties and Chemical Characterization of Centella asiatica (L.) Extract. Front Pharmacol 2016; 7:400. [PMID: 27840607 PMCID: PMC5083837 DOI: 10.3389/fphar.2016.00400] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/11/2016] [Indexed: 12/28/2022] Open
Abstract
The study aimed to identify the phenolic compounds present in Centella asiatica (L.) (C. asiatica) extract and evaluate the respective antioxidant potential as well as its cholesterol-lowering effects in the experimental animal model. Herein, the antioxidant potential of extracts was assessed by its free radical scavenging activity such as 2, 2-diphenyl -1- picrylhydrazyl as well as reducing capability. The anti-hyperlipidemic effects of C. asiatica extract (CAE) were evaluated in high cholesterol-fed (HCF) rats for 4 weeks, where different concentrations of extracts (0.25, 0.5, and 1 g/kg/day) were orally administrated daily. Lipid and antioxidant profiles, including total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and superoxide dismutase (SOD), together with the indices of hepatic functions were also examined. C. asiatica revealed excellent free radical scavenging activity as revealed by 2-2- diphenyl-1-picryl-hydrazyl (DPPH) assay, with the IC50 values (9.62 ± 0.88 μg/mL). Furthermore, C. asiatica extracts and fenofibrate remarkably lowered the level of TC, TG, LDL-C, and showed elevated levels of HDL-C, SOD. The histopathological observations further demonstrated clear differentiation and structural changes in liver of HCF and CAE treated group. Furthermore, gulonic acid, ferulic acid, kaempferol, chlorogenic acid, and asiatic acid were identified to be the major components which might be responsible for the antioxidant activity of the C. asiatica extract as evidenced from an ultra-high performance liquid chromatography-mass spectrometer. Taken together, these results signifies the excellent antioxidant and anti-hyperlipidemic properties of C. asiatica leaf extracts, which might be useful for the treatment of oxidative-stress related diseases such as hyperlipidemia.
Collapse
Affiliation(s)
- Sima Kumari
- Biochemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and TechnologyGuwahati, India
| | - Meetali Deori
- Biochemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and TechnologyGuwahati, India
| | - R. Elancheran
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and TechnologyGuwahati, India
| | - Jibon Kotoky
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and TechnologyGuwahati, India
| | - Rajlakshmi Devi
- Biochemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and TechnologyGuwahati, India
| |
Collapse
|
16
|
Liu H, Lohith K, Rosario M, Pulliam TH, O’Connor RD, Bell LJ, Bewley CA. Polybrominated Diphenyl Ethers: Structure Determination and Trends in Antibacterial Activity. JOURNAL OF NATURAL PRODUCTS 2016; 79:1872-6. [PMID: 27399938 PMCID: PMC6201272 DOI: 10.1021/acs.jnatprod.6b00229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antibacterial-guided fractionation of the Dictyoceratid sponges Lamellodysidea sp. and two samples of Dysidea granulosa yielded 14 polybrominated, diphenyl ethers including one new methoxy-containing compound (8). Their structures were elucidated by interpretation of spectroscopic data of the natural product and their methoxy derivatives. Most of the compounds showed strong antimicrobial activity with low- to sub-microgram mL(-1) minimum inhibitory concentrations against drug-susceptible and drug-resistant strains of Staphylococcus aureus and Enterococcus faecium, and two compounds inhibited Escherichia coli in a structure-dependent manner.
Collapse
Affiliation(s)
- Hongbing Liu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0820, United States
| | - Katheryn Lohith
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0820, United States
| | - Margaret Rosario
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0820, United States
| | - Thomas H. Pulliam
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0820, United States
| | - Robert D. O’Connor
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0820, United States
| | - Lori J. Bell
- Coral Reef Research Foundation, Koror, PW 96940, Palau
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0820, United States
| |
Collapse
|
17
|
Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorg Med Chem Lett 2015; 25:2181-3. [PMID: 25863431 DOI: 10.1016/j.bmcl.2015.03.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/14/2023]
Abstract
Three polybrominated diphenyl ethers, 2-(2',4'-dibromophenoxy)-3,5-dibromophenol (1) and 2-(2',4'-dibromophenoxy)-3,4,5-tribromophenol (2) were isolated from the marine sponge Dysidea granulosa; and 2-(2',4'-dibromophenoxy)-4,6-dibromophenol (3) from Dysidea spp. They exhibited potent and broad spectrum in vitro antibacterial activity, especially against methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Escherichia coli O157:H7, and Salmonella. Minimal inhibitory concentration (MIC) was evaluated against 12 clinical and standard strains of Gram positive and negative bacteria. The observed MIC range was 0.1-4.0mg/L against all the Gram positive bacteria and 0.1-16.0mg/L against Gram negative bacteria. 2-(2',4″-Dibromophenoxy)-3,5-dibromophenol showed stronger broad spectrum antibacterial activity than other two compounds. 2-(2',4″-Dibromophenoxy)-3,5-dibromophenol and 2-(2',4'-dibromophenoxy)-4,6-dibromophenol are thermo-stable. The results suggest that 2-(2',4'-dibromophenoxy)-3,5-dibromophenol could be used as a potential lead molecule for anti-MRSA, anti-E. coli O157:H7, and anti-Salmonella for drug development.
Collapse
|
18
|
Jiao WH, Xu TT, Gu BB, Shi GH, Zhu Y, Yang F, Han BN, Wang SP, Li YS, Zhang W, Li J, Lin HW. Bioactive sesquiterpene quinols and quinones from the marine sponge Dysidea avara. RSC Adv 2015. [DOI: 10.1039/c5ra18876h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reports the isolation, structure determination, and cytotoxic and NF-κB inhibitory activities of eight sesquiterpene quinols and quinones from Dysidea avara.
Collapse
|
19
|
Turkoglu G, Berber H, Kani I. Synthesis, crystal structure, optical and electrochemical properties of novel diphenylether-based formazan derivatives. NEW J CHEM 2015. [DOI: 10.1039/c4nj02353f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of formazan derivatives was synthesized and the existence of hydrogen bond in formazan skeleton was explored with experimental and computational studies.
Collapse
Affiliation(s)
- Gulsen Turkoglu
- Chemistry Department
- Faculty of Science
- Anadolu University
- 26470 Eskişehir
- Turkey
| | - Halil Berber
- Chemistry Department
- Faculty of Science
- Anadolu University
- 26470 Eskişehir
- Turkey
| | - Ibrahim Kani
- Chemistry Department
- Faculty of Science
- Anadolu University
- 26470 Eskişehir
- Turkey
| |
Collapse
|
20
|
Extraction and Identification of Antibacterial Secondary Metabolites from Marine Streptomyces sp. VITBRK2. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:130-7. [PMID: 25317399 PMCID: PMC4170486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 11/09/2022]
Abstract
Actinomycetes were isolated from marine sediment samples collected from the east coast of Chennai, Tamil Nadu, India. Well diffusion and agar plug methods were used for the evaluation of antibiotic production by these isolates against drug resistant Methicillin- resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococci (VRE). The potential isolate VITBRK2 was mass cultured for morphological and physiological characterization. The culturing conditions of the isolate were optimized and the recommendations of International Streptomyces Project were followed for the assimilation of carbon and nitrogen sources. The isolate was identified by comparing the properties with representative species in the key of Nonomura and Bergey's Manual of Determinative Bacteriology. Ethyl acetate extract prepared from the cell free culture broth of the isolate was analyzed using HPLC- diode array technique to characterize the metabolites and identify the antibiotics. VITBRK2 was found to be Gram-positive rod grey color aerial mycelium production. It was also non motile in nature with spiral spore chain morphology. VITBRK2 was identified as Streptomyces and designated as Streptomyces sp. VITBRK2. HPLC-DAD analysis showed the presence of indolo compounds (3- methyl-indole and 2-methyl- indole) along with amicoumacin antibiotic. The observed activity of Streptomyces sp. VITBRK2 against MRSA and VRE strains may be due to the presence of indolo compounds in the isolate. The results of this study suggested that secondary metabolites produced by Streptomyces sp. VITBRK2 could be used as a lead to control drug resistant bacterial pathogens.
Collapse
|
21
|
Kavita K, Singh VK, Jha B. 24-Branched Δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiol Res 2013; 169:301-6. [PMID: 23910454 DOI: 10.1016/j.micres.2013.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 12/31/2022]
Abstract
Methanol extract of thirty-eight seaweeds samples were first screened against Gram-positive (Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 6051) and -negative (Escherichia coli ATCC 8739 and Pseudomonas aerugenosa ATCC 9027) bacteria. Laurencia papillosa (Ceramiales, Rhodomelaceae, Rhodophyta) gave maximum antimicrobial activity against these bacteria. It was finally tested against four clinical Gram-negative isolates (E. coli, P. aerugenosa, Klebsiella pneumoniae and Shigella flexineri) and exhibited antibacterial activity. The extract was fractionated by column chromatography and the active fraction was identified as a cholesterol derivative, 24-propylidene cholest-5-en-3β-ol using gas chromatography mass spectrometry (GC-MS). The electrospray ionization mass spectrometry (ESI-MS) and FT-IR spectroscopic analysis also supported the structure of the compound. The minimum inhibitory concentration ranged from 1.2 to 1.7 μg/mL (IC50) against clinical isolates. This is the first report of antibacterial activity of this cholesterol derivative. This compound could be exploited as potential lead molecule against broad spectrum drug development. The results also affirm the potential of seaweeds as an important natural source of antimicrobial compounds for pharmaceutical industries.
Collapse
Affiliation(s)
- Kumari Kavita
- Discipline of Marine Biotechnology and Ecology, CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Vijay Kumar Singh
- Discipline of Marine Biotechnology and Ecology, CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India.
| |
Collapse
|
22
|
Gopi M, Kumaran S, Kumar TTA, Deivasigamani B, Alagappan K, Prasad SG. Antibacterial potential of sponge endosymbiont marine Enterobacter sp at Kavaratti Island, Lakshadweep archipelago. ASIAN PAC J TROP MED 2012; 5:142-6. [PMID: 22221759 DOI: 10.1016/s1995-7645(12)60013-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/25/2011] [Accepted: 10/15/2011] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To isolate antibacterial potential of sponge endosymbiotic bacteria from marine sponges at Lakshadweep archipelago. Also to identify the potent bacteria by 16s rDNA sequencing and determine the antibacterial activity against clinical pathogens by MIC. METHODS Sponge samples was collected from sub-tidal habitats at Kavaratti Island and identified. The endosymbiotic bacteria were isolated and selected potential bacteria which show antibacterial activity in preliminary screening against clinical pathogens Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Salmonella typhi (S. typhi), Klebsiella pneumoniea (K. pneumoniea) and Streptococcus sp. by disc diffusion assay. The crude extracts of potential bacteria LB3 was tested against clinical pathogens by MIC. The LB3 strain was identified by 16s rDNA sequencing, 1 111 bp was submitted in NCBI (HQ589912) and constructed phylogenetic tree. RESULTS Sponge sample was identified as Dysidea granulosa (D. granulosa) and potential bacteria LB3 identified as Enterobacter sp TTAG. Preliminary screening of sponge isolates against clinical pathogens, LB3 strain was selected as potential producer of secondary metabolites and crude extract was implies on MIC of LB3 have confirmed with lowest concentration of 5.0 mg/mL in broth medium influence of crude extract on growth inhibitory activity after 5 h of incubation period and completed the inhibitory activity at 15 h. CONCLUSIONS The present study concluded that phylogenetic analysis of endosymbiotic bacteria Enterobacter sp from sponge D. granulosa of Lakshadweep islands showed significant antibacterial activity against clinical bacterial pathogens.
Collapse
Affiliation(s)
- Mohan Gopi
- Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India; CMLRE Field Research Station, Agatti Island, Lakshadweep, India
| | | | | | | | | | | |
Collapse
|
23
|
Phylogenetic study of sponge associated bacteria from the Lakshadweep archipelago and the antimicrobial activities of their secondary metabolites. World J Microbiol Biotechnol 2011; 28:761-6. [DOI: 10.1007/s11274-011-0860-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 08/02/2011] [Indexed: 11/25/2022]
|
24
|
Liu M, Hansen PE, Lin X. Bromophenols in marine algae and their bioactivities. Mar Drugs 2011; 9:1273-1292. [PMID: 21822416 PMCID: PMC3148503 DOI: 10.3390/md9071273] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022] Open
Abstract
Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China; E-Mail:
| | - Poul Erik Hansen
- Department of Science, Systems and Models, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Xiukun Lin
- Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China; E-Mail:
| |
Collapse
|
25
|
Guitart C, Slattery M, Ankisetty S, Radwan M, Ross SJ, Letcher RJ, Reddy CM. Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge-cyanobacteria associations. MARINE POLLUTION BULLETIN 2011; 62:631-6. [PMID: 21276990 PMCID: PMC4876816 DOI: 10.1016/j.marpolbul.2010.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/23/2010] [Accepted: 12/26/2010] [Indexed: 05/13/2023]
Abstract
Considerable debate surrounds the sources of oxygenated polybrominated diphenyl ethers (O-PBDEs) in wildlife as to whether they are naturally produced or result from anthropogenic industrial activities. Natural radiocarbon ((14)C) abundance has proven to be a powerful tool to address this problem as recently biosynthesized compounds contain contemporary (i.e. modern) amounts of atmospheric radiocarbon; whereas industrial chemicals, mostly produced from fossil fuels, contain no detectable (14)C. However, few compounds isolated from organisms have been analyzed for their radiocarbon content. To provide a baseline, we analyzed the (14)C content of four O-PBDEs. These compounds, 6-OH-BDE47, 2'-OH-BDE68, 2',6-diOH-BDE159, and a recently identified compound, 2'-MeO-6-OH-BDE120, were isolated from the tropical marine sponges Dysidea granulosa and Lendenfeldia dendyi. The modern radiocarbon content of their chemical structures (i.e. diphenyl ethers, C(12)H(22)O) indicates that they are naturally produced. This adds to a growing baseline on, at least, the sources of these unusual compounds.
Collapse
Affiliation(s)
- Carlos Guitart
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | | | | | | | |
Collapse
|