1
|
Wu H, Cen Y, Lu Y, Dan P, Li Y, Dan X, Mo Z. Role of chitin synthases CHS1 and CHS2 in biosynthesis of the cyst wall of Cryptocaryon irritans. Int J Biol Macromol 2024; 280:136143. [PMID: 39357726 DOI: 10.1016/j.ijbiomac.2024.136143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Cryptocaryon irritans, a protozoan parasite that infects marine fish, is characterized by a complex life cycle that includes a cyst-forming reproductive phase. However, the composition of the cyst wall and mechanism of its formation remain unclear. In this study, we identified chitin as a key component of the cyst wall using calcofluor white and wheat germ agglutinin, with Fourier-transform infrared spectroscopy confirming its β-form structure. Two chitin synthase genes, CHS1 and CHS2, were identified as being expressed throughout the life cycle and show close phylogenetic relationships with chitin synthase from ciliates. Incubation with specific anti-CHS1 and -CHS2 antibodies significantly reduced both the thickness and chitin content of the cyst wall, highlighting the critical role of these enzymes in chitin biosynthesis. Treatment with benzoylureas, which inhibit chitin synthesis, caused thinning of the cyst wall and downregulation of CHS gene expression, resulting in an 84 % reduction in the hatching rate after treatment with 0.01 mM CuSO4 compared with control tomonts. Western blot analysis demonstrated that recombinant CHS proteins are immunogenic, and tomonts from CHS-immunized grouper exhibited reduced size. These findings bridge a crucial knowledge gap in understanding of the C. irritans cyst wall and highlight promising targets for infection prevention and control strategies.
Collapse
Affiliation(s)
- Huicheng Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yihao Cen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yipei Lu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Pengbo Dan
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Mei Z, Vincent L, Szczepanski CR, Godeau RP, Kuzhir P, Godeau G. Investigation of 9 True Weevil ( Curculionidae Latreille, 1802) Species for Chitin Extraction. Biomimetics (Basel) 2024; 9:608. [PMID: 39451814 PMCID: PMC11505005 DOI: 10.3390/biomimetics9100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Chitin, the second most abundant biopolymer after cellulose, is an important resource for biosourced materials. The global demand for chitin is rapidly increasing, however, the majority of industrial chitin is sourced from crustacean shells, which may be less accessible in regions without seafood waste. Therefore, it is crucial to explore alternative chitin sources, such as those derived from beetles and other arthropods. This study investigated chitin extraction from nine species of Curculionidae (true weevils), which are recognized as crop pests. The extraction process and yields were described, and the isolated chitin was characterized by SEM, IR spectroscopy, elemental analysis, XRD, and ash and water content measurements. This work highlights the potential of Curculionidae as an alternative chitin source.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Luc Vincent
- Université Côte d’Azur, CNRS UMR 7272 ICN, Parc Valrose, 06108 Nice, France
| | - Caroline R. Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA;
| | - René-Paul Godeau
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Pavel Kuzhir
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
| | - Guilhem Godeau
- Université Côte d’Azur, CNRS UMR 7010 INPHYNI, 17 Rue Julien Lauprêtre, 06200 Nice, France (P.K.)
- Université Côte d’Azur, IMREDD, 06200 Nice, France
| |
Collapse
|
3
|
Vahab SA, K I A, M S, Kumar VS. Exploring chitosan nanoparticles for enhanced therapy in neurological disorders: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03507-8. [PMID: 39377924 DOI: 10.1007/s00210-024-03507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Chitosan nanoparticles have emerged as a promising therapeutic platform for treating neurological disorders due to their biocompatibility, biodegradability, and ease of functionalization. One of the significant challenges in treating neurological conditions is overcoming the blood-brain barrier (BBB), which restricts the effective delivery of therapeutic agents to the brain. Addressing this barrier is crucial for the successful treatment of various neurological diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, migraine, psychotic disorders, and brain tumors. Chitosan nanoparticles offer several advantages: they enhance drug absorption, protect drugs from degradation, and enable targeted delivery. These properties open new possibilities for non-invasive therapies for neurological conditions. Numerous studies have highlighted the neuroprotective potential of chitosan nanoparticles, demonstrating improved outcomes in animal models of neurodegeneration and neuroinflammation. Additionally, surface modifications of these nanoparticles allow for the attachment of specific ligands or molecules, enhancing the precision of drug delivery to neuronal cells. Despite these advancements, several challenges persist in the clinical translation of chitosan nanoparticles. Issues such as large-scale production, regulatory hurdles, and the need for further research into long-term safety must be addressed. This review explores recent advancements in the use of chitosan nanoparticles for managing neurological disorders and outlines potential future directions in this rapidly evolving field of research.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Anjali K I
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sabitha M
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
4
|
Trentin O, Ballesteros-Plata D, Rodríguez-Castellón E, Puppulin L, Selva M, Perosa A, Rodríguez-Padrón D. Upcycling of Chitin to Cross-Coupling Catalysts: Tailored Supports and Opportunities in Mechanochemistry. CHEMSUSCHEM 2024:e202401255. [PMID: 39129709 DOI: 10.1002/cssc.202401255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
In this study chitin derived from shrimp shells was used in the design of heterogeneous Pd-based catalysts for Heck and Suzuki-Miyaura cross-coupling reactions. The synthesis of Pd nanoparticles supported on N-doped carbons was performed through different approaches, including a sustainable mechanochemical approach, by using a twin-screw extruder. All catalytic systems were characterized by a multitechnique approach and the effect of nanoparticles size, N-doping on the support, and their synergistic interactions were elucidated. Specifically, Kelvin Probe Atomic Force Microscopy provided valuable insights on charge transfer and metal-support interactions. The catalytic behaviour of the samples was investigated in cross-coupling reactions under batch conditions and under semi-continuous flow solvent-free conditions, respectively obtaining a quantitative yield and a noteworthy productivity of 8.7 mol/(gPdh).
Collapse
Affiliation(s)
- Oscar Trentin
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30175, Venezia Mestre, Italy
| | - Daniel Ballesteros-Plata
- Department of Inorganic Chemistry, Facultad de Ciencias, Instituto Interuniversitario de Biorrefinerías I3B, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Enrique Rodríguez-Castellón
- Department of Inorganic Chemistry, Facultad de Ciencias, Instituto Interuniversitario de Biorrefinerías I3B, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Leonardo Puppulin
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30175, Venezia Mestre, Italy
| | - Maurizio Selva
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30175, Venezia Mestre, Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30175, Venezia Mestre, Italy
| | - Daily Rodríguez-Padrón
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30175, Venezia Mestre, Italy
| |
Collapse
|
5
|
Senthilkumar M, Ramachandran SK, Servarayan KL, Periyasamy A, Sivasamy VV, Sundaram E. Isolation of chitosan and hydroxyapatite from waste edible white garden snail shells and their sensing applications towards industrial Congo red dye detection: Greener approach. Int J Biol Macromol 2024; 275:133483. [PMID: 38960256 DOI: 10.1016/j.ijbiomac.2024.133483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Biomaterials like chitosan, hydroxyapatite have been used in biomedical and pharmaceutical field, due to its valuable biochemical and physiological properties. In current work firstly our group has isolated a polysaccharide chitosan along with hydroxyapatite biomaterial from the same source by varying the process condition via greener approach. We have adapted greener approach for the isolation of chitosan within a short period of time and this is the very first report for the isolation of both chitosan and hydroxyapatite simultaneously from the same waste edible garden snail shells. Both these materials were thoroughly characterized by using UV, FT-IR, SEM techniques. Among synthetic colourants, congo red dye is recognized as carcinogens, which are usually used in the textile manufacturing. Interestingly, one of our biomaterial hydroxyapatite has shown good selectivity towards Congo red dye. The sensitivity range was obtained from 10 to 100 μM within the LOD of 101.52 nM. The developed sensor has been tested for various industrial effluents and shown good agreement with our results. Meanwhile these chitosan and hydroxyapatite have also been used as capping agent for the preparation of stable gold nanoparticles.
Collapse
Affiliation(s)
- Muthupandi Senthilkumar
- Department of Chemistry, Vivekananda College, Tiruvedakam West, Madurai 625 234, Tamilnadu, India
| | | | - Karthika Lakshmi Servarayan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Ananthappan Periyasamy
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Vasantha Vairathevar Sivasamy
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Ellairaja Sundaram
- Department of Chemistry, Vivekananda College, Tiruvedakam West, Madurai 625 234, Tamilnadu, India.
| |
Collapse
|
6
|
Giraldo JD, García Y, Vera M, Garrido-Miranda KA, Andrade-Acuña D, Marrugo KP, Rivas BL, Schoebitz M. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym 2024; 332:121924. [PMID: 38431399 DOI: 10.1016/j.carbpol.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, Temuco 4811230, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
| | - Daniela Andrade-Acuña
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n. Balneario Pelluco, Puerto Montt, Chile
| | - Kelly P Marrugo
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bernabé L Rivas
- Universidad San Sebastián, Sede Concepción 4080871, Concepción, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| |
Collapse
|
7
|
Zhao WJ, Li Y, Jiao ZL, Su PP, Yang LB, Sun CQ, Xiu JF, Shang XL, Guo G. Function analysis and characterisation of a novel chitinase, MdCht9, in Musca domestica. INSECT MOLECULAR BIOLOGY 2024; 33:157-172. [PMID: 38160324 DOI: 10.1111/imb.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yan Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zhen-Long Jiao
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Pei-Pei Su
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Long-Bing Yang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Chao-Qin Sun
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiang-Fan Xiu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiao-Li Shang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
| | - Guo Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Zhang Z, Ma Z, Song L, Farag MA. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J Adv Res 2024; 57:59-76. [PMID: 37931655 PMCID: PMC10918363 DOI: 10.1016/j.jare.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The processing of the three major crustaceans (shrimp, lobster, and crab) is associated with inevitable by-products, high waste disposal costs, environmental and human health issues, loss of multiple biomaterials (chitin, protein hydrolysates, lipids, astaxanthin and minerals). Nowadays, these bioresources are underutilized owing to the lack of effective and standardized technologies to convert these materials into valued industrial forms. AIM OF REVIEW This review aims to provide a holistic overview of the various bioactive ingredients and applications within major crustaceans by-products. This review aims to compare various extraction methods in crustaceans by-products, which will aid identify a more workable platform to minimize waste disposal and maximize its value for best valorization practices. KEY SCIENTIFIC CONCEPTS OF REVIEW The fully integrated applications (agriculture, food, cosmetics, pharmaceuticals, paper industries, etc.) of multiple biomaterials from crustaceans by-products are presented. The pros and cons of the various extraction methods, including chemical (acid and alkali), bioprocesses (enzymatic or fermentation), physical (microwave, ultrasound, hot water and carbonic acid process), solvent (ionic liquids, deep eutectic solvents, EDTA) and electrochemistry are detailed. The rapid development of corresponding biotechnological attempts present a simple, fast, effective, clean, and controllable bioprocess for the comprehensive utilization of crustacean waste that has yet to be applied at an industrial level. One feasible way for best valorization practices is to combine innovative extraction techniques with industrially applicable technologies to efficiently recover these valuable components.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt.
| |
Collapse
|
9
|
Galvez-Llompart M, Zanni R, Vela-Corcía D, Polonio Á, Perez-Gimenez F, Martínez-Cruz J, Romero D, Fernández-Ortuño D, Pérez-García A, Galvez J. Rational Design of a Potential New Nematicide Targeting Chitin Deacetylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2482-2491. [PMID: 38264997 PMCID: PMC10853968 DOI: 10.1021/acs.jafc.3c05258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
In a previously published study, the authors devised a molecular topology QSAR (quantitative structure-activity relationship) approach to detect novel fungicides acting as inhibitors of chitin deacetylase (CDA). Several of the chosen compounds exhibited noteworthy activity. Due to the close relationship between chitin-related proteins present in fungi and other chitin-containing plant-parasitic species, the authors decided to test these molecules against nematodes, based on their negative impact on agriculture. From an overall of 20 fungal CDA inhibitors, six showed to be active against Caenorhabditis elegans. These experimental results made it possible to develop two new molecular topology-based QSAR algorithms for the rational design of potential nematicides with CDA inhibitor activity for crop protection. Linear discriminant analysis was employed to create the two algorithms, one for identifying the chemo-mathematical pattern of commercial nematicides and the other for identifying nematicides with activity on CDA. After creating and validating the QSAR models, the authors screened several natural and synthetic compound databases, searching for alternatives to current nematicides. Finally one compound, the N2-(dimethylsulfamoyl)-N-{2-[(2-methyl-2-propanyl)sulfanyl]ethyl}-N2-phenylglycinamide or nematode chitin deacetylase inhibitor, was selected as the best candidate and was further investigated both in silico, through molecular docking and molecular dynamic simulations, and in vitro, through specific experimental assays. The molecule shows favorable binding behavior on the catalytic pocket of C. elegans CDA and the experimental assays confirm potential nematicide activity.
Collapse
Affiliation(s)
- Maria Galvez-Llompart
- Department
of Preventive Medicine and Public Health, Food Science, Toxicology
and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia 46100, Spain
- Molecular
Topology and Drug Design Unit. Department of Physical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Riccardo Zanni
- Molecular
Topology and Drug Design Unit. Department of Physical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - David Vela-Corcía
- Department
of Microbiology, Faculty of Science, Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga 29071, Spain
| | - Álvaro Polonio
- Department
of Microbiology, Faculty of Science, Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga 29071, Spain
| | - Facundo Perez-Gimenez
- Molecular
Topology and Drug Design Unit. Department of Physical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Jesús Martínez-Cruz
- Department
of Microbiology, Faculty of Science, Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga 29071, Spain
| | - Diego Romero
- Department
of Microbiology, Faculty of Science, Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga 29071, Spain
| | - Dolores Fernández-Ortuño
- Department
of Microbiology, Faculty of Science, Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga 29071, Spain
| | - Alejandro Pérez-García
- Department
of Microbiology, Faculty of Science, Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga 29071, Spain
| | - Jorge Galvez
- Molecular
Topology and Drug Design Unit. Department of Physical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| |
Collapse
|
10
|
Jagdale S, Agarwal B, Dixit A, Gaware S. Chitosan as excellent bio-macromolecule with myriad of anti-activities in biomedical applications - A review. Int J Biol Macromol 2024; 257:128697. [PMID: 38096939 DOI: 10.1016/j.ijbiomac.2023.128697] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
The aim of the study is to explore the myriad of anti-activities of chitosan - deacylated derivative of chitin in biomedical applications. Chitosan consists of reactive residual amino groups, which can be modified chemically to obtain wide range of derivatives. These derivatives exhibit the controlled physicochemical characteristics, which in turn improve its functional properties. Such derivatives find numerous applications in the field of biomedical science, agriculture, tissue engineering, bone regeneration and environmental science. This study presents a comprehensive overview of the multifarious anti-activities of chitosan and its derivatives in the field of biomedical science including anti-microbial, antioxidant, anti-tumor, anti-HIV, anti-fungal, anti- inflammatory, anti-Alzheimer's, anti-hypertensive and anti-diabetic activity. It briefly details these anti-activities with respect to its mode of action, pharmacological effects and potential applications. It also presents the overview of current research exploring novel derivatives of chitosan and its anti- activities in the recent past. Finally, the review projects the prospective potential of chitosan and its derivatives and expects to encourage the readers to develop new drug delivery systems based on such chitosan derivatives and explore its applications in biomedical science for benefit of mankind.
Collapse
Affiliation(s)
- Sachin Jagdale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India.
| | - Babita Agarwal
- Department of Pharmaceutical Chemistry, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| | - Abhishek Dixit
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| | - Saurabh Gaware
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| |
Collapse
|
11
|
Yamabhai M, Khamphio M, Min TT, Soem CN, Cuong NC, Aprilia WR, Luesukprasert K, Teeranitayatarn K, Maneedaeng A, Tuveng TR, Lorentzen SB, Antonsen S, Jitprasertwong P, Eijsink VGH. Valorization of shrimp processing waste-derived chitosan into anti-inflammatory chitosan-oligosaccharides (CHOS). Carbohydr Polym 2024; 324:121546. [PMID: 37985116 DOI: 10.1016/j.carbpol.2023.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Bioconversion of chitosan into soluble anti-inflammatory chitosan oligosaccharides (CHOS) using a Bacillus chitosanase, BsCsn46A, was investigated, including food-grade approaches. After 48 h of enzymatic reaction, most of the final products were dimers and trimers. None of the CHOS products showed toxicity to human fibroblasts. Analysis of CHOS bioactivity against LPS-induced inflammation of human macrophages indicated that CHOS generated from different bioconversion processes have anti-inflammatory activity, the magnitude of which depends on the type of substrate and production process. Both lactic acid and HCl can be used to dissolve chitosan; however, the product generated from lactic acid solution was highly hygroscopic after lyophilization, hence not suitable for long-term storage. Downstream processes, i.e., centrifugation and filtration, affect its anti-inflammatory activity. Analysis of standard CHOS with known structure showed that an acetyl group at the reducing end and the degree of polymerization (DP) are critical for biological activity. Importantly, when applied at levels above the optimal concentrations, certain standard CHOS and CHOS mixtures could induce inflammation. These results support the potential of CHOS as anti-inflammatory agents but reveal batch-to-batch variation and possible side effects, indicating that careful quality assurance of CHOS preparations is essential.
Collapse
Affiliation(s)
- Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Munthipha Khamphio
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Thae Thae Min
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chai Noy Soem
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nguyen Cao Cuong
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
| | - Waheni Rizki Aprilia
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | - Atthaphon Maneedaeng
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tina R Tuveng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Silje B Lorentzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Simen Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Paiboon Jitprasertwong
- SUT Oral Health Center, Suranaree University of Technology Hospital (SUTH), Nakhon Ratchasima 30000, Thailand; School of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
12
|
Worku LA, Tadesse MG, Bachheti A, Pandey DP, Chandel AK, Ewuntu AW, Bachheti RK. Experimental investigations on PVA/chitosan and PVA/chitin films for active food packaging using Oxytenanthera abyssinica lignin nanoparticles and its UV-shielding, antimicrobial, and antiradical effects. Int J Biol Macromol 2024; 254:127644. [PMID: 37879578 DOI: 10.1016/j.ijbiomac.2023.127644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
This study investigated the effect of adding lignin nanoparticles (LNPs) derived from Oxytenanthera abyssinica via alkali-acid nanoprecipitation method to polyvinyl alcohol/chitosan (PVA/CI) and polyvinyl alcohol/chitin (PVA/CH) films for the active food packaging applications. Adding LNPs at concentrations of 1 % and 3 % improved the films' thermal stability and mechanical properties. The lowest water solubility and moisture content were observed in PVA/CI/LNPs films. LNPs exhibited effective 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, with the highest values observed in PVA/CH/LNPS and PVA/CI/LNPS films with values of 87.47 and 88.74 % respectively. The addition of LNPs also improved the UV-blocking abilities of the films. PVA/CH/LNP3 and PVA/CI/LNP3 have the smallest percentage transmission values of 3.34 % and 0.86 % in the UV range. The overall migration of dietary stimulants was lower in PVA/CI/LNPS and PVA/CH/LNPS films compared to PVA film. Antibacterial tests demonstrated the inhibitory capacity of the synthesized biofilms against both gram-positive and negative bacterial species, with the highest inhibitory value of 26 mm. The study suggests that PVA/CH/LNPS and PVA/CI/LNPS films have potential applications as active food packaging materials and can be explored in other potential applications such as drug delivery, tissue engineering, wound healing, and slow-release urea fertilizer development.
Collapse
Affiliation(s)
- Limenew Abate Worku
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box 16417, Ethiopia; Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box-16417, Addis Ababa, Ethiopia
| | - Mesfin Getachew Tadesse
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box 16417, Ethiopia; Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box-16417, Addis Ababa, Ethiopia
| | - Archana Bachheti
- Department of Environment Science, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India.
| | - D P Pandey
- Department of Chemistry Govt Degree College Dehradun Shahar, Suddhowala, Dehradun 248007, India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), Estrada Municipal do Campinho, University of São Paulo (USP), Lorena 12602-810, São Paulo, Brazil.
| | - Asnake Waltenigus Ewuntu
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box 16417, Ethiopia.
| | - Rakesh Kumar Bachheti
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box 16417, Ethiopia; Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun 248002, India.
| |
Collapse
|
13
|
Itani K, Marcussen C, Rocha SDC, Kathiresan P, Mydland LT, Press CM, Xie Z, Tauson AH, Øverland M. Effect of Cyberlindnera jadinii yeast on growth performance, nutrient digestibility, and gut health of broiler chickens from 1 to 34 d of age. Poult Sci 2023; 102:103127. [PMID: 37837676 PMCID: PMC10585334 DOI: 10.1016/j.psj.2023.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023] Open
Abstract
The effect of dietary graded levels of Cyberlindnera jadinii yeast (C. jadinii) on growth performance, nutrient digestibility, and gut health of broilers was evaluated from 1 to 34 d of age. A total of 360 male broiler chicks were randomly allocated to 1 of 4 dietary treatments (6 replicate pens each) consisting of a wheat-soybean meal-based pelleted diet (Control or CJ0), and 3 diets in which 10% (CJ10), 20% (CJ20), and 30% (CJ30) of the crude protein were supplied by C. jadinii, by gradually replacing protein-rich ingredients. Body weight and feed intake were measured at d 1, 11, 22, and 32. Pellet temperature, durability, and hardness increased linearly (P < 0.05) with C. jadinii inclusion, with highest (P < 0.05) values for CJ30. Up until d 22, feed conversion ratio (FCR) was similar between treatments (P = 0.169). Overall, increasing C. jadinii inclusion linearly increased (P = 0.047) feed intake but had no effect on weight gain or mortality. FCR increased (P < 0.05) linearly with increasing C. jadinii inclusion but only birds fed CJ30 had a significantly poorer FCR compared to the Control. Ileal digestibility was not affected by C. jadinii inclusion, however, there was a significant linear decrease in crude protein and phosphorus, and a tendency for a decrease in fat digestibility. Apparent metabolizable energy (AME) decreased (P < 0.001) quadratically with increasing C. jadinii and was significantly lower in CJ30 compared to the Control. Ileal concentrations of volatile fatty acids (VFAs) were not affected by C. jadinii inclusion, but butyric acid and total VFAs were linearly and quadratically increased and were significantly higher in cecal digesta of birds fed CJ20 and CJ30. Increasing C. jadinii inclusion was associated with an increase (P < 0.05) in the relative abundance of lactobacillus in the ileum and cecum. In conclusion, C. jadinii yeast can supply up to 20% of the total dietary protein without negatively affecting performance, digestibility, or gut health of broilers. The potential confounding role of feed processing and C. jadinii cell wall components on broiler performance is discussed.
Collapse
Affiliation(s)
- Khaled Itani
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Caroline Marcussen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegärdsvej 3, 1870 Frederiksberg C, Denmark; Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlagevej 16, 1870 Frederiksberg C, Denmark
| | - Sérgio D C Rocha
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Purushothaman Kathiresan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Zhuqing Xie
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26,1958 Frederiksberg C, Denmark
| | - Anne-Helene Tauson
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegärdsvej 3, 1870 Frederiksberg C, Denmark
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway.
| |
Collapse
|
14
|
Gong TY, Hsu SH, Chang SW, Chou CC. Effects of the Degree of Phenol Substitution on Molecular Structures and Properties of Chitosan-Phenol-Based Self-Healing Hydrogels. ACS Biomater Sci Eng 2023; 9:6146-6155. [PMID: 37857334 DOI: 10.1021/acsbiomaterials.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Click chemistry is commonly used to prepare hydrogels, and chitosan-phenol prepared by using a Schiff base has been widely employed in the field of biomaterials. Chitosan-phenol is a derivative of chitosan; the phenol groups can disrupt both the inter- and intramolecular hydrogen bonds in chitosan, thereby reducing its crystallinity and improving its water solubility. In addition, chitosan-phenol exhibits various beneficial physiological functions. However, it is still unclear whether the degree of phenol substitution in the chitosan main chain affects the molecular interactions and structural properties of the self-healing hydrogels. To explore this issue, we investigated the molecular structure and network of self-healing hydrogels composed of chitosan-phenol with varying degrees of phenol substitution and dibenzaldehyde poly(ethylene oxide) (DB-PEO) using molecular dynamics simulations. We observed that when the degree of phenol substitution in the self-healing hydrogel was less than 15%, an increase in the degree of phenol substitution led to an increase in the interactions between chitosan-phenol and DB-PEO, and it enhanced the dynamic covalent bond cross-linking generated through the Schiff base reaction. However, when the degree of phenol substitution exceeded 15%, excessive phenol groups caused excessive intramolecular interactions within chitosan-phenol molecules, which reduced the binding between chitosan-phenol and DB-PEO. Our results revealed the influence of the degree of phenol substitution on the molecular structure of the self-healing hydrogels and showed an optimal degree of phenol substitution. These findings provide important insights for the future design of self-healing hydrogels based on chitosan and should help in enhancing the applicability of hydrogels in the field of biomedicine.
Collapse
Affiliation(s)
- Tian-Yu Gong
- Institute of Polymer Science and Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Chia-Ching Chou
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| |
Collapse
|
15
|
Hu Z, Li H, Liu S, Xue R, Sun J, Ji H. Assessment of black soldier fly ( Hermetia illucens) larvae meal as a potential substitute for soybean meal on growth performance and flesh quality of grass carp Ctenopharyngodon idellus. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:425-449. [PMID: 37649678 PMCID: PMC10463206 DOI: 10.1016/j.aninu.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 09/01/2023]
Abstract
A 90-day feeding trial was conducted to assess the effects of black soldier fly larvae meal (BSFLM) as a replacement for soybean meal (SM) on growth performance and flesh quality of grass carp. A total of 420 grass carp (299.93 ± 0.85 g) were randomly divided into 7 groups (triplicate) and fed 7 diets with SM substitution of 0% (SM, control), 15% (BSFLM15), 30% (BSFLM30), 45% (BSFLM45), 60% (BSFLM60), 75% (BSFLM75) and 100% (BSFLM100) by BSFLM. The growth performance of grass carp in the BSFLM75 and BSFLM100 groups were significantly lower compared to other groups (P < 0.05). The mid-gut villus height was the lowest in the BSFLM100 group (P < 0.05). Muscle nutritional value was improved due to increased DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), total HUFA (highly unsaturated fatty acids) and glycine levels, and reached the optimum in the BSFLM100 group (P < 0.05). According to the results of principal component analysis and weight analysis of muscle texture and body color, all the BSFLM diets except BSFLM15 could improve muscle texture and body color and reached the optimum level in the BSFLM100 group. Muscle drip loss and hypoxanthine content were the lowest and muscle antioxidant capacity was the highest in the BSFLM75 group, and water- and salt-soluble protein contents reached the optimum level in the BSFLM60 group (P < 0.05). Dietary BSFLM significantly reduced muscle fiber area and diameter, and increased muscle fiber density and the proportion of small fiber (diameter <20 μm) (P < 0.05). Additionally, sarcomere lengths in the BSFLM75 and BSFLM100 groups were significantly higher than that in the SM group (P < 0.05). The mRNA relative expression levels of MyoD, Myf5, MyHC and FGF6b were remarkably up-regulated at an appropriate dietary BSFLM level (P < 0.05). In conclusion, BSFLM could replace up to 60% SM without an adverse effect on growth performance and improve the flesh quality of grass carp. The optimum levels of dietary BSFLM were 71.0 and 69.1 g/kg diet based on the final body weight and feed conversion ratio. The flesh quality was optimal when dietary SM was completely replaced with BSFLM (227 g/kg diet).
Collapse
Affiliation(s)
| | | | - Sha Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Basawa R, Kabra S, Khile DA, Faruk Abbu RU, Parekkadan SJ, Thomas NA, Kim SK, Raval R. Repurposing chitin-rich seafood waste for warm-water fish farming. Heliyon 2023; 9:e18197. [PMID: 37519647 PMCID: PMC10372652 DOI: 10.1016/j.heliyon.2023.e18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
The pisciculture industry has grown multi-fold over the past few decades. However, a surge in development and nutrient demand has led to the establishment of numerous challenges. Being a potential solution, chitosan has gained attention as a bio nanocomposite for its well-acclaimed properties including biodegradability, non-toxicity, immunomodulatory effects, antimicrobial activity, and biocompatibility. This biopolymer and its derivatives can be transformed into various structures, like micro and nanoparticles, for various purposes. Consequently, with regards to these properties chitin and its derivatives extend their application into drug delivery, food supplementation, vaccination, and preservation. This review focuses on the clinical advancements made in fish biotechnology via chitosan and its derivatives and highlights its prospective expansion into the pisciculture industry-in particular, warm-water species.
Collapse
Affiliation(s)
- Renuka Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Serin Joby Parekkadan
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Se Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Erica 55 Hanyangdae-ro, Sangnol-gu, Ansan-si 11558, Gyeonggi-do, Republic of Korea
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
17
|
Stull VJ, Weir TL. Chitin and omega-3 fatty acids in edible insects have underexplored benefits for the gut microbiome and human health. NATURE FOOD 2023; 4:283-287. [PMID: 37117549 DOI: 10.1038/s43016-023-00728-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/02/2023] [Indexed: 04/30/2023]
Abstract
A healthy gut microbiome is critical for nutrient metabolism, pathogen inhibition and immune regulation, and is highly influenced by diet. Edible insects are good sources of protein and micronutrients, but unlike other animal-derived foods, they also contain both dietary fibre and omega-3 fatty acids that can modulate gut microbiota. Here we explore the potential impacts of insect consumption on the microbiome. Laboratory, animal and human studies indicate that insect fibre in the form of chitin and its derivatives can modify gut microbiota with beneficial outcomes. Some insects also contain favourable omega-3/omega-6 ratios. We identify gaps in the literature-especially a dearth of human studies-that must be addressed to better understand health impacts of entomophagy. Insects, already eaten across the globe, can be farmed using fewer resources than conventional livestock. Widening the research scope offers an opportunity to advance use of edible insects to address interconnected environmental and health challenges.
Collapse
Affiliation(s)
- Valerie J Stull
- Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Lu J, Wang D, Li X, Guo W, Tian C, Luan F, Zhuang X. Preparation of a Red-Emitting, Chitosan-Stabilized Copper Nanocluster Composite and Its Application as a Hydrogen Peroxide Detection Probe in the Analysis of Water Samples. BIOSENSORS 2023; 13:361. [PMID: 36979573 PMCID: PMC10046763 DOI: 10.3390/bios13030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) is an important reactive oxygen species that mediates a variety of physiological functions in biological processes, and it is an essential mediator in food, pharmaceutical, and environmental analysis. However, H2O2 can be dangerous and toxic at certain concentrations. It is crucial to detect the concentration of H2O2 in the environment for human health and environmental protection. Herein, we prepared the red-emitting copper nanoclusters (Cu NCs) by a one-step method, with lipoic acid (LA) and sodium borohydride as protective ligands and reducing agents, respectively, moreover, adding chitosan (CS) to wrap LA-Cu NCs. The as-prepared LA-Cu NCs@CS have stronger fluorescence than LA-Cu NCs. We found that the presence of H2O2 causes the fluorescence of LA-Cu NCs@CS to be strongly quenched. Based on this, a fluorescent probe based on LA-Cu NCs@CS was constructed for the detection of H2O2 with a limit of detection of 47 nM. The results from this research not only illustrate that the as--developed fluorescent probe exhibits good selectivity and high sensitivity to H2O2 in environmental water samples but also propose a novel strategy to prepare red-emitting copper nanoclusters (Cu NCs) by a one-step method.
Collapse
Affiliation(s)
- Jiaojiao Lu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Dawei Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wei Guo
- Shandong Dyne Marine Biopharmaceutical Co., Ltd., Weihai 264300, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
19
|
Li H, Xue R, Sun J, Ji H. Improving flesh quality of grass carp ( Ctenopharyngodon idellus) by completely replacing dietary soybean meal with yellow mealworm ( Tenebrio molitor). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 12:375-387. [PMID: 36733784 PMCID: PMC9883186 DOI: 10.1016/j.aninu.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
In order to find viable alternative protein sources for aquaculture, we evaluated the effect of partial or complete replacement of dietary soybean meal with yellow mealworm (TM) on the flesh quality of grass carp. In this study, 180 grass carp (511.85 ± 0.25 g) were fed 3 experimental diets in which 0% (CN), 30% (YM30) and 100% (YM100) dietary soybean meal was replaced by TM for 90 d. The results showed that growth performance, biological parameters and serum antioxidant capacity of grass carp were not affected by dietary TM (P > 0.05). Both muscle and whole body crude protein were obviously promoted with the increase of dietary TM (P < 0.05), and the concentration of heavy metal in muscle was not influenced (P > 0.05), indicating that food safety was not influenced by TM. Dietary TM improved muscle textural characteristics by elevating adhesiveness, springiness and chewiness in YM100 (P < 0.05). In addition, the muscle tenderness was significantly increased by declining the shear force (P < 0.05). The muscle fiber density in YM30 &YM100 and length of dark bands and sarcomeres in YM100 were obviously increased (P < 0.05). The expression of myf5, myog and myhc exhibited a significant upward trend with the increase of dietary TM (P < 0.05), which promoted fiber density, length of sarcomere and texture of grass carp muscle. According to the results of metabolomics, the arachidonate (ARA) and eicosapentaenoic acid (EPA) were notably elevated in YM30 and YM100, which indicated that the improvement of flesh quality of grass carp may contribute to the dietary TM influence on muscle lipid metabolism, especially the polyunsaturated fatty acids. In conclusion, TM can completely replace dietary soybean meal and improve the nutritional value of grass carp.
Collapse
Affiliation(s)
- Handong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
20
|
Siddaiah G, Kumar R, Kumari R, Chandan N, Debbarma J, Damle D, Das A, Giri S. Dietary fishmeal replacement with Hermetia illucens (Black soldier fly, BSF) larvae meal affected production performance, whole body composition, antioxidant status, and health of snakehead (Channa striata) juveniles. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
21
|
Seo Y, Lim H, Park H, Yu J, An J, Yoo HY, Lee T. Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics 2023; 15:772. [PMID: 36986633 PMCID: PMC10058399 DOI: 10.3390/pharmaceutics15030772] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Numerous drugs have emerged to treat various diseases, such as COVID-19, cancer, and protect human health. Approximately 40% of them are lipophilic and are used for treating diseases through various delivery routes, including skin absorption, oral administration, and injection. However, as lipophilic drugs have a low solubility in the human body, drug delivery systems (DDSs) are being actively developed to increase drug bioavailability. Liposomes, micro-sponges, and polymer-based nanoparticles have been proposed as DDS carriers for lipophilic drugs. However, their instability, cytotoxicity, and lack of targeting ability limit their commercialization. Lipid nanoparticles (LNPs) have fewer side effects, excellent biocompatibility, and high physical stability. LNPs are considered efficient vehicles of lipophilic drugs owing to their lipid-based internal structure. In addition, recent LNP studies suggest that the bioavailability of LNP can be increased through surface modifications, such as PEGylation, chitosan, and surfactant protein coating. Thus, their combinations have an abundant utilization potential in the fields of DDSs for carrying lipophilic drugs. In this review, the functions and efficiencies of various types of LNPs and surface modifications developed to optimize lipophilic drug delivery are discussed.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| |
Collapse
|
22
|
Piekarska K, Sikora M, Owczarek M, Jóźwik-Pruska J, Wiśniewska-Wrona M. Chitin and Chitosan as Polymers of the Future-Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers (Basel) 2023; 15:polym15040793. [PMID: 36850077 PMCID: PMC9959150 DOI: 10.3390/polym15040793] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Natural polymers are very widespread in the world, which is why it is so important to know about the possibilities of their use. Chitin is the second most abundant reproducible natural polymer in nature; however, it is insoluble in water and basic solvents. Chitin is an unused waste of the food industry, for which there are possibilities of secondary management. The research led to obtaining a soluble, environmentally friendly form of chitin, which has found potential applications in the many fields, e.g., medicine, cosmetics, food and textile industries, agriculture, etc. The deacetylated form of chitin, which is chitosan, has a number of beneficial properties and wide possibilities of modification. Modification possibilities mean that we can obtain chitosan with the desired functional properties, facilitating, for example, the processing of this polymer and expanding the possibilities of its application, also as biomimetic materials. The review contains a rich description of the possibilities of modifying chitin and chitosan and the main directions of their application, and life cycle assessment (LCA)-from the source of the polymer through production materials to various applications with the reduction of waste.
Collapse
|
23
|
Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. Chitin Biosynthesis in Aspergillus Species. J Fungi (Basel) 2023; 9:jof9010089. [PMID: 36675910 PMCID: PMC9865612 DOI: 10.3390/jof9010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
Collapse
Affiliation(s)
- Veronica S. Brauer
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - André M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Marinaldo P. Cavalcanti-Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Rio de Janeiro 27965-045, Brazil
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
- Correspondence: (L.N.A.R.); (F.A.)
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
- Correspondence: (L.N.A.R.); (F.A.)
| |
Collapse
|
24
|
Refael G, Riess HT, Levi CS, Magzal F, Tamir S, Koren O, Lesmes U. Responses of the human gut microbiota to physiologically digested insect powders or isolated chitin thereof. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
Alternative Utilization of Vegetable Crop: Pumpkin Polysaccharide Extract and Their Efficacy on Skin Hydration. COSMETICS 2022. [DOI: 10.3390/cosmetics9060113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Traditional pumpkin (Cucurbita moschata) and Japanese pumpkin (C. maxima) consist of natural polysaccharides. From a scientific basis, natural polysaccharides could be applied to improve hydration in the cosmetic field. The purified polysaccharide was extracted and deproteinized with the CaCl2 method. Japanese pumpkin showed the higher value of physicochemical properties including yield (12.96 ± 0.60%), total polysaccharide content (0.89 ± 0.04 mg/mL), swelling capacity (4.00 ± 0.00%), swelling index (1.04 ± 0.00%), solubility (126.67 ± 5.77%), viscosity (1.25 ± 0.00 cps), water capacity (0.93 ± 0.15 g/g) and oil absorption capacity (5.93 ± 0.06 g/g) than traditional pumpkin. Additionally, Japanese pumpkin (IC50 9.30 ± 0.58 µg/mL) provided higher antioxidant activity by DPPH assay than traditional pumpkin (IC50 9.98 ± 0.25 µg/mL). The evaluation of efficacy on skin hydration in fifteen Thai volunteers indicated that Japanese pumpkin showed non-skin irritation. An extract concentration of 0.05–0.1% showed a significantly increased effect in moisturizing ability according to concentration (p < 0.05). This result supported that it was safe and effective to use as a moisturizer for cosmetic products.
Collapse
|
26
|
Gîjiu CL, Isopescu R, Dinculescu D, Memecică M, Apetroaei MR, Anton M, Schröder V, Rău I. Crabs Marine Waste-A Valuable Source of Chitosan: Tuning Chitosan Properties by Chitin Extraction Optimization. Polymers (Basel) 2022; 14:4492. [PMID: 36365487 PMCID: PMC9658922 DOI: 10.3390/polym14214492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2023] Open
Abstract
Chitin extraction from crab shells was studied experimentally and optimized aiming to obtain chitosan with predefined deacetylation degree and molecular mass. To find out the optimum operating conditions that ensure the obtaining of a chitosan with highest deacetylation degree and specific molecular mass four parameters were varied: the concentration of NaOH and the temperature for deproteinization step, respectively HCl concentration and the number of acidic treatments for the demineralization stage. The experiment was carried on following Taguchi orthogonal array L9, and the best combination of factors was found using the desirability function approach. The optimization results showed that 5% NaOH concentration and low temperatures lead to a chitosan with high deacetylation degree. High molecular mass chitosan is obtained when a single step acidic treatment is used, while a chitosan with low molar mass is obtained for multiple acid contacts and higher HCl concentration.
Collapse
Affiliation(s)
- Cristiana Luminița Gîjiu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Raluca Isopescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Daniel Dinculescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Maria Memecică
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | | | - Mirela Anton
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Verginica Schröder
- Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanța, Romania
| | - Ileana Rău
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
27
|
Development of a Quantitative UPLC-ESI/MS Method for the Simultaneous Determination of the Chitin and Protein Content in Insects. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In a context where the commercial and nutritional interest in insect chitin is always increasing, an accurate and precise method to quantify this biopolymer, especially in food/feed, is required. In addition, quantification of insect crude protein through nitrogen determination is normally overestimated due to the presence of chitin. In this work, for the first time, an RP-UPLC-ESI/MS method for the simultaneous quantification in insects of chitin, as glucosamine (GlcN), and protein, as total amino acids, is presented. The method is based on acid hydrolysis and derivatization of amino acids and GlcN with the AccQ Tag reagent. Method was optimized and validated in terms of linearity, LOD and LOQ, intraday and inter-day repeatability, and accuracy. A hydrolysed commercial chitin was selected as reference standard for calibration. The instrumental LOD and LOQ correspond respectively to a concentration of 0.00068 mM and 0.00204 mM. The intraday precision satisfied the Horwitz ratio. Data from inter-day precision showed the necessity to perform the analysis within 1 week utilizing standard calibration solutions freshly prepared. A matrix effect was observed, which suggested the necessity to use an internal calibration curve or to work in a particular concentration range of GlcN. The chitin and protein content in black soldier fly (Hermetia illucens) and lesser mealworm (Alphitobius diaperinus) were found in agreement with results obtained by independent methods. The optimized method was also tested on two different commercial food supplements, suggesting its applicability on a wide range of matrices. This newly developed method proved to be simple, more accurate, and faster if compared to methods which separately analyse chitin and protein content.
Collapse
|
28
|
Wang Z, Zhang F, Jin Q, Wang Y, Wang W, Deng D. Transcriptome analysis of different life-history stages and screening of male-biased genes in Daphnia sinensis. BMC Genomics 2022; 23:589. [PMID: 35964016 PMCID: PMC9375365 DOI: 10.1186/s12864-022-08824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the life history of Daphnia, the reproductive mode of parthenogenesis and sexual reproduction alternate in aquatic ecosystem, which are often affected by environmental and genetic factors. Recently, the sex-biased genes are of great significance for clarifying the origin and evolution of reproductive transformation and the molecular regulation mechanism of sex determination in Daphnia. Although some genes on reproductive transition of Daphnia had been researched, molecular mechanism on the maintenance of sexually dimorphic phenotypes of Daphnia are still not well known, including differentially expressed genes in different life-history stages. Results In this study, four life-history stages of Daphnia sinensis, juvenile female (JF), parthenogenetic female (PF), sexual female (SF) and male (M), were performed for transcriptome, and male-biased genes were screened. A total of 110437 transcripts were obtained and assembled into 22996 unigenes. In the four life-history stages (JF, PF, SF and M), the number of unique unigenes is respectively 2863, 445, 437 and 586, and the number of common unigenes is 9708. The differentially expressed genes (DEGs) between male and other three female stages (M vs JF, M vs PF and M vs SF) were 4570, 4358 and 2855, respectively. GO gene enrichment analysis showed that the up-regulated genes in male were mainly enriched in hydrolase activity and peptidase activity. Thirty-six genes in male were significantly higher expression than in the three female stages, including one Doublesex (Dsx) gene, one laminin gene, five trypsin genes and one serine protease genes, and one chitin synthase gene and two chitinase genes. Conclusions Our results showed that thirty-six candidate genes may be as the male-biased genes involving in the maintenance of sexually dimorphic phenotypes. This work will provide a reference for further exploring the functional genes related to sex differentiation in Daphnia species. Moreover, according to previous investigations, we thought that the expression level of functional genes may be related to the life-history stages of organisms, and may be also affected by different Daphnia species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08824-x.
Collapse
Affiliation(s)
- Ziyan Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Feiyun Zhang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Qide Jin
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Yeping Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China
| | - Wenping Wang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China.
| | - Daogui Deng
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei, Anhui, China.
| |
Collapse
|
29
|
Korbecka-Glinka G, Piekarska K, Wiśniewska-Wrona M. The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi. Polymers (Basel) 2022; 14:2854. [PMID: 35890629 PMCID: PMC9322042 DOI: 10.3390/polym14142854] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fungal pathogens cause significant yield losses of many important crops worldwide. They are commonly controlled with fungicides which may have negative impact on human health and the environment. A more sustainable plant protection can be based on carbohydrate biopolymers because they are biodegradable and may act as antifungal compounds, effective elicitors or carriers of active ingredients. We reviewed recent applications of three common polysaccharides (chitosan, alginate and cellulose) to crop protection against pathogenic fungi. We distinguished treatments dedicated for seed sowing material, field applications and coating of harvested fruits and vegetables. All reviewed biopolymers were used in the three types of treatments, therefore they proved to be versatile resources for development of plant protection products. Antifungal activity of the obtained polymer formulations and coatings is often enhanced by addition of biocontrol microorganisms, preservatives, plant extracts and essential oils. Carbohydrate polymers can also be used for controlled-release of pesticides. Rapid development of nanotechnology resulted in creating new promising methods of crop protection using nanoparticles, nano-/micro-carriers and electrospun nanofibers. To summarize this review we outline advantages and disadvantages of using carbohydrate biopolymers in plant protection.
Collapse
Affiliation(s)
- Grażyna Korbecka-Glinka
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Klaudia Piekarska
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| | - Maria Wiśniewska-Wrona
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| |
Collapse
|
30
|
Oteri M, Chiofalo B, Maricchiolo G, Toscano G, Nalbone L, Lo Presti V, Di Rosa AR. Black Soldier Fly Larvae Meal in the Diet of Gilthead Sea Bream: Effect on Chemical and Microbiological Quality of Filets. Front Nutr 2022; 9:896552. [PMID: 35685870 PMCID: PMC9172839 DOI: 10.3389/fnut.2022.896552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The chemical and microbiological characteristics of filets of Spaurus aurata L. specimens fed with diets containing a Hermetia illucens meal (HIM) at the 25, 35, and 50%, as a partial replacement for fish meal (FM) were evaluated. The diets, formulated to satisfy the nutritional needs of fish, were isoenergetic (22 MJ/kg gross energy), isonitrogenous (43 g/100 g, a.f.), and isolipidic (19 g/100 g, a.f.). Seventy-two specimens were randomly killed after 186 days of growing trials. Then, the filets were analyzed for chemical profile, fatty acids, amino acids, minerals, and microbial flora. Data were subjected to statistical analysis. No significant differences were observed in chemical composition. The sum of polyunsaturated fatty acids (PUFAs) showed a similar content in the filets; eicosapentaenoic acid was similar in the filets of HIM0, HIM35%, and HIM50%, whereas docosahexaenoic acid was higher in filets of the HIM0 group. n3/n6 PUFA ratio and the sum of EPA + DHA showed a high value (p < 0.001) in filets of the group fed with FM. No significant difference was observed in thrombogenic index and hypocholesterolaemic/hypercholesterolaemic ratio in the groups; the atherogenic index showed a higher value (p = 0.001) in the HIM50% group. Indispensable amino acids showed some significant (p < 0.0001) differences in the groups; arginine and phenylalanine content was higher in the filets of fish fed with FM; isoleucine and valine content was higher in the filets of HIM50%; leucine, lysine and methionine content was lower in the filets of HIM35%; histidine content was lower in the filets of HIM25%; tryptophan content was lower in filets of the HIM50% group. EAA/NEAA ratio showed highest value in the filets of the group that received FM. The presence of HIM in the three diets kept chromium, manganese, iron, copper, zinc, and nickel levels lower than those recommended by various authorities. Ca/P ratio showed a higher level (p < 0.0001) in the group fed with FM than those fed with diets containing HIM. The insect meal in the diets did not influence the microbiological profile of fish. Use of HIM as an unconventional feed ingredient in Sparus aurata diet looks promising, although the quality of filets may be affected.
Collapse
Affiliation(s)
- Marianna Oteri
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Biagina Chiofalo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giulia Maricchiolo
- Institute of Biological Resources and Marine Biotechnologies, National Research Council, Messina, Italy
| | - Giovanni Toscano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luca Nalbone
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Vittorio Lo Presti
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
31
|
Abstract
Globally, the utilization of alternative protein sources in livestock feed has been extensively deliberated and established to be the best novel approach. Extensive research indicated that insects provide good opportunities as a sustainable, high quality, and low-cost component of animal feed. The use of insects in animal diet sounds to be the prospective opportunity leading to sustainability of animal feeds and meet the intensifying worldwide plea for livestock products. The value of these protein sources has, however, increased due to limited production, competition between humans and animals. The use of insects for feeding farmed animals represents a promising alternative because of the nutritional properties of insects and the possible environmental benefits, given the sustainability of this type of farming. Yet little has been documented about the nutrient composition of various insect meals, the impact of insect meal in the animal feed industry, safety, and attitude and willingness of farmers to accept insect-based animal feed and food. Therefore, this chapter seeks to document the potential utilization of insect meal as livestock feed.
Collapse
|
32
|
Protective, Biostimulating, and Eliciting Effects of Chitosan and Its Derivatives on Crop Plants. Molecules 2022; 27:molecules27092801. [PMID: 35566152 PMCID: PMC9101998 DOI: 10.3390/molecules27092801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan is a biodegradable and biocompatible polysaccharide obtained by partial deacetylation of chitin. This polymer has been gaining increasing popularity due to its natural origin, favorable physicochemical properties, and multidirectional bioactivity. In agriculture, the greatest hopes are raised by the possibility of using chitosan as a biostimulant, a plant protection product, an elicitor, or an agent to increase the storage stability of plant raw materials. The most important properties of chitosan include induction of plant defense mechanisms and regulation of metabolic processes. Additionally, it has antifungal, antibacterial, antiviral, and antioxidant activity. The effectiveness of chitosan interactions is determined by its origin, deacetylation degree and acetylation pattern, molecular weight, type of chemical modifications, pH, concentration, and solubility. There is a need to conduct research on alternative sources of chitosan, extraction methods, optimization of physicochemical properties, and commercial implementation of scientific progress outcomes in this field. Moreover, studies are necessary to assess the bioactivity and toxicity of chitosan nanoparticles and chitosan conjugates with other substances and to evaluate the consequences of the large-scale use thereof. This review presents the unique properties of chitosan and its derivatives that have the greatest importance for plant production and yield quality as well as the benefits and limitations of their application.
Collapse
|
33
|
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 2022; 12:6613. [PMID: 35459772 PMCID: PMC9033872 DOI: 10.1038/s41598-022-10423-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
34
|
Antibacterial and Antifungal Properties of Modified Chitosan Nonwovens. Polymers (Basel) 2022; 14:polym14091690. [PMID: 35566859 PMCID: PMC9103858 DOI: 10.3390/polym14091690] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Chitosan acquires bacteriostatic properties via protonation of its amino groups. However, much of the literature assumes that chitosan itself inhibits the growth of bacteria. This article presents a comparative study of chitosan nonwovens modified with various acids, including acetic, propionic, butyric, and valeric organic acids, as well as hydrochloric acid. The aim was to determine which acid salts influence the antibacterial and antifungal activity of chitosan-based materials. Two methods were used to modify (formation of ammonium salts) the chitosan nonwovens: First, acid vapors (gassing process) were used to find which salt of chitosan had the best antibacterial properties. Based on the results, the most effective acid was prepared in a solution in ethanol. The influence of the acid concentration in ethanol, the time of treatment of chitosan materials with acid solution, and the rinsing process of modified nonwovens on the antimicrobial activity of the modified materials was investigated. The modified materials were subjected to microbiological tests. Each of the modified materials was placed in bacterial inoculum. The cultures were tested on agar to observe their microbial activity. Toxicity to human red blood cells was also investigated. A reduction in the number of bacterial cells was observed for the S. aureus strain with chitosan salt modified with 10% acetic acid in ethanol. The antibacterial activity of the chitosan salts increased with the percentage of acid salts formed on the surface of the solid material (decreasing numbers of bacterial colonies or no growth). No reduction in growth was observed for the E. coli strain. The chitosan samples were either inactive or completely eliminated the bacterial cells. Antimicrobial activity was observed for chitosan salts with hydrochloric acid and acetic acid. Finally, 1H-NMR spectroscopy and FTIR spectroscopy were used to confirm the incorporation of the acid groups to the amino groups of chitosan.
Collapse
|
35
|
pH-Responsive Eco-Friendly Chitosan–Chlorella Hydrogel Beads for Water Retention and Controlled Release of Humic Acid. WATER 2022. [DOI: 10.3390/w14081190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For improving the mechanical strength of controlled release fertilizer (CRF) hydrogels, a novel material of Chlorella was employed as a bio-based filler to prepare chitosan–chlorella hydrogel beads with physical crosslink method. Here, the synthesis mechanism was investigated, and the chitosan–chlorella hydrogel beads exhibited enhanced mechanical stability under centrifugation and sonication than pure chitosan hydrogel beads. Chlorella brought more abundant functional groups to original chitosan hydrogel, hence, chitosan–chlorella hydrogel beads represented greater sensitivity and controllable response to external factors including pH, salt solution, temperature. In distilled water, the hydrogel beads with 40 wt% Chlorella reached the largest water absorption ratio of 42.92 g/g. Moreover, the mechanism and kinetics process of swelling behavior of the chitosan–chlorella hydrogel beads were evaluated, and the loading and releasing of humic acid by the hydrogel beads as a carrier material were pH-dependent and adjustable, which exhibit the potential of chitosan–chlorella hydrogel beads in the field of controlled release carrier biomaterials.
Collapse
|
36
|
Maliki S, Sharma G, Kumar A, Moral-Zamorano M, Moradi O, Baselga J, Stadler FJ, García-Peñas A. Chitosan as a Tool for Sustainable Development: A Mini Review. Polymers (Basel) 2022; 14:polym14071475. [PMID: 35406347 PMCID: PMC9003291 DOI: 10.3390/polym14071475] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
New developments require innovative ecofriendly materials defined by their biocompatibility, biodegradability, and versatility. For that reason, the scientific society is focused on biopolymers such as chitosan, which is the second most abundant in the world after cellulose. These new materials should show good properties in terms of sustainability, circularity, and energy consumption during industrial applications. The idea is to replace traditional raw materials with new ecofriendly materials which contribute to keeping a high production rate but also reducing its environmental impact and the costs. The chitosan shows interesting and unique properties, thus it can be used for different purposes which contributes to the design and development of sustainable novel materials. This helps in promoting sustainability through the use of chitosan and diverse materials based on it. For example, it is a good sustainable alternative for food packaging or it can be used for sustainable agriculture. The chitosan can also reduce the pollution of other industrial processes such as paper production. This mini review collects some of the most important advances for the sustainable use of chitosan for promoting circular economy. Hence, the present review focuses on different aspects of chitosan from its synthesis to multiple applications.
Collapse
Affiliation(s)
- Soundouss Maliki
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
- School of Science and Technology, Glocal University, Saharanpur 247001, India
- Correspondence: (G.S.); (A.G.-P.)
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - María Moral-Zamorano
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran 61349, Iran;
| | - Juan Baselga
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
- Correspondence: (G.S.); (A.G.-P.)
| |
Collapse
|
37
|
Mohd Faizal AN, Putra NR, Ahmad Zaini MA. Scylla Sp. Shell: a potential green adsorbent for wastewater treatment. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2039201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Azrul Nurfaiz Mohd Faizal
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu – Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nicky Rahmana Putra
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu – Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
38
|
Biopolymers from Industrial Waste. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Shi Y, Chen SC, Xiong WT, Wang YZ. Simultaneous toughening and strengthening of chitin-based composites via tensile-induced orientation and hydrogen bond reconstruction. Carbohydr Polym 2022; 275:118713. [PMID: 34742438 DOI: 10.1016/j.carbpol.2021.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/02/2022]
Abstract
Chitin, an abundant, biodegradable, and biocompatible polysaccharide, is one of the most ideal eco-friendly alternatives to petroleum-based plastics. However, the applications of chitin-based materials are hindered by their low processability and brittleness induced by strong hydrogen bonds. Herein, a tensile-induced orientation and hydrogen bond reconstruction strategy was developed to fabricate a chitin nanowhiskers/poly(vinyl alcohol) composite film with high strength and toughness. After stretching and hydrogen bond reconstruction, the tensile strength and elongation at break of the composite film increased from 38.6 to 115.2 MPa and 9.37% to 40.7%, respectively. Furthermore, strengthening and toughening mechanisms were also studied, which were attributed to the effects of the intra-layer orientation and interlayer sliding, respectively.
Collapse
Affiliation(s)
- Yu Shi
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, Nationa l Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Si-Chong Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, Nationa l Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Wan-Ting Xiong
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, Nationa l Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, Nationa l Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
40
|
Kumawat TK, Kumawat V, Sharma S, Sharma V, Pandit A, Kandwani N, Biyani M. Sustainable Green Methods for the Extraction of Biopolymers. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Godeau XY, Andrianandrasana FJ, Volkova O, Szczepanski CR, Zenerino A, Montreuil O, Godeau RP, Kuzhir P, Godeau G. Investigation on dung beetle's (Heliocopris Hope, 1838) chitosan valorisation for hydrogel 3D printing. Int J Biol Macromol 2021; 199:172-180. [PMID: 34971640 DOI: 10.1016/j.ijbiomac.2021.12.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
Biopolymers and their derivatives are materials with increasing interest for industry and especially for sustainable engineering development. Among such kind of materials, carbohydrate polymer like highly deacetylated chitin (chitosan) is widely used for a wide range of applications, including material and biomedical developments. The majority of industrially produced chitosan is based on chitin extracted from crustacean exoskeleton. However, with increase of interest on this material, chitosan's production will rapidly become insufficient and other species should be investigated as new sources of chitosan. In the present work, we focus on the preparation of chitosan from giant dung beetles (Genus Heliocopris, Hope, 1838). This genus was chosen to show the possibility to take animals that develop and leave near dejection and valuate them for material applications. This work includes all the chitosan extraction procedures, chitosan characterisation IR, SEM, NMR, ash content, and deacetylation degree. Finally, the prepared carbohydrate polymer is used to form hydrogel. The prepared gel has been characterised and used for 3D printing, to show the compatibility of extracted chitosan with biomaterial application.
Collapse
Affiliation(s)
| | - Freddy Jocelyne Andrianandrasana
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Olga Volkova
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Caroline R Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Olivier Montreuil
- UMR 7179 MNHN/CNRS, MECADEV, Muséum National d'Histoire Naturelle, Entomologie, CP 50, 45 rue Buffon, 75231 Paris cedex 05, France
| | - René-Paul Godeau
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Pavel Kuzhir
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Guilhem Godeau
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France.
| |
Collapse
|
42
|
Mohan K, Muralisankar T, Jayakumar R, Rajeevgandhi C. A study on structural comparisons of α-chitin extracted from marine crustacean shell waste. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int J Biol Macromol 2021; 192:771-819. [PMID: 34634337 DOI: 10.1016/j.ijbiomac.2021.09.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
44
|
Chaklader MR, Howieson J, Foysal MJ, Fotedar R. Transformation of fish waste protein to Hermetia illucens protein improves the efficacy of poultry by-products in the culture of juvenile barramundi, Lates calcarifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149045. [PMID: 34328887 DOI: 10.1016/j.scitotenv.2021.149045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Promoting a circular economy via the transformation of food waste into alternative and high-value protein sources for aquaculture diets is a novel approach to developing alternative raw materials to fishmeal (FM). This approach can reduce the ecological impact on the aquatic environment and simultaneously can provide an option for sustainable food waste management. In this context, we report a 56-day trial of feeding barramundi, Lates calcarifer on four iso‑nitrogenous and iso-lipidic diets where the control (0PBM-0HI) was a FM-based diet and the other test diets replaced FM protein with mixtures of a poultry by-product meal (PBM) and a full-fat Hermetia illucens (HI) larvae meal reared on fish waste: the test diets were 85% PBM + 15% HI (85PBM-15HI), 80% PBM + 20% HI (80PBM-20HI) and 75% PBM + 25% HI (75PBM-25HI). Fish fed PBM-HI-based diets showed an equal growth rate and amino acid profile when compared to the control group. Among all serum metabolites, alanine aminotransferase and glutamate dehydrogenase decreased in fish fed PBM-HI-based diets, whilst total protein levels improved in the same diets. Serum lysozyme and bactericidal activity were unchanged which supported the observation of similar infection rates against V. harveyi. Except for the kidney and intestine, catalase activity in the serum and liver increased in fish-fed PBM-HI-based diets. In assessing the gastrointestinal mucosal morphology, the goblet cells producing neutral mucins were higher in PBM-HI-fed fish than the control. PBM-HI diets also enhanced bacterial richness and diversity and increased abundance for Lactobacillus, Clostridium, and Ruminococcus. In summary, combining full-fat HI with PBM allowed complete replacement of FM with no negative effects on growth whilst improving gut health. Such diets would be beneficial for the aquaculture industry, both ecologically and economically, as well as providing value-adding to animal waste as alternative protein sources for aquafeed production.
Collapse
Affiliation(s)
- Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia.
| | - Janet Howieson
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia
| |
Collapse
|
45
|
Wakita S, Sugahara Y, Nakamura M, Kobayashi S, Matsuda K, Takasaki C, Kimura M, Kida Y, Uehara M, Tabata E, Hiraoka K, Seki S, Matoska V, Bauer PO, Oyama F. Mouse Acidic Chitinase Effectively Degrades Random-Type Chitosan to Chitooligosaccharides of Variable Lengths under Stomach and Lung Tissue pH Conditions. Molecules 2021; 26:molecules26216706. [PMID: 34771117 PMCID: PMC8587675 DOI: 10.3390/molecules26216706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides’ formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.
Collapse
Affiliation(s)
- Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Masayuki Nakamura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Syunsuke Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Kazuhisa Matsuda
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Chinatsu Takasaki
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Yuta Kida
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Koji Hiraoka
- Department of Environmental Chemistry, Kogakuin University, Tokyo 192-0015, Japan; (K.H.); (S.S.)
| | - Shiro Seki
- Department of Environmental Chemistry, Kogakuin University, Tokyo 192-0015, Japan; (K.H.); (S.S.)
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
| | - Peter O. Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
- Bioinova JSC, Videnska 1083, 142 20 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Correspondence:
| |
Collapse
|
46
|
Moine L, Canali MM, Porporatto C, Correa SG. Reviewing the biological activity of chitosan in the mucosa: Focus on intestinal immunity. Int J Biol Macromol 2021; 189:324-334. [PMID: 34419549 DOI: 10.1016/j.ijbiomac.2021.08.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is a polymer derived from the partial deacetylation of chitin with particular characteristics, such as mucoadhesiveness, tolerability, biocompatibility and biodegradability. Biomedical uses of chitosan cover a wide spectrum of applications as dietary fiber, immunoadjuvant and regulator of the intestinal microbiota or delivery agent. Chemical modification of chitosan is feasible because its reactive amino and hydroxyl groups can be modified by a diverse array of ligands, functional groups and molecules. This gives rise to numerous derivatives that allow different formulation types influencing their activity. Considering the multiple events resulting from the interaction with mucosal tissues, chitosan is a singular candidate for strategies targeting immune stimulation (i.e., tolerance induction, vaccination). Its role as a prebiotic and probiotic carrier represents an effective option to manage intestinal dysbiosis. In the intestinal scenario where the exposure of the immune system to a wide variety of antigens is permanent, chitosan increases IgA levels and favors a tolerogenic environment, thus becoming a key ally for host homeostasis.
Collapse
Affiliation(s)
- L Moine
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina
| | - M M Canali
- Université Côte d'Azur, INSERM, CNRS, IPMC, France
| | - C Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900 Villa María, Córdoba, Argentina
| | - S G Correa
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina.
| |
Collapse
|
47
|
Zivarpour P, Hallajzadeh J, Asemi Z, Sadoughi F, Sharifi M. Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell Int 2021; 21:544. [PMID: 34663339 PMCID: PMC8524827 DOI: 10.1186/s12935-021-02243-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Leukemia is a lethal cancer in which white blood cells undergo proliferation and immature white blood cells are seen in the bloodstream. Without diagnosis and management in early stages, this type of cancer can be fatal. Changes in protooncogenic genes and microRNA genes are the most important factors involved in development of leukemia. At present, leukemia risk factors are not accurately identified, but some studies have pointed out factors that predispose to leukemia. Studies show that in the absence of genetic risk factors, leukemia can be prevented by reducing the exposure to risk factors of leukemia, including smoking, exposure to benzene compounds and high-dose radioactive or ionizing radiation. One of the most important treatments for leukemia is chemotherapy which has devastating side effects. Chemotherapy and medications used during treatment do not have a specific effect and destroy healthy cells besides leukemia cells. Despite the suppressing effect of chemotherapy against leukemia, patients undergoing chemotherapy have poor quality of life. So today, researchers are focusing on finding more safe and effective natural compounds and treatments for cancer, especially leukemia. Chitosan is a valuable natural compound that is biocompatible and non-toxic to healthy cells. Anticancer, antibacterial, antifungal and antioxidant effects are examples of chitosan biopolymer properties. The US Food and Drug Administration has approved the use of this compound in medical treatments and the pharmaceutical industry. In this article, we take a look at the latest advances in the use of chitosan in the treatment and improvement of leukemia.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Riofrio A, Alcivar T, Baykara H. Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador: A Robust Investment and Life Cycle Analysis. ACS OMEGA 2021; 6:23038-23051. [PMID: 34549104 PMCID: PMC8444200 DOI: 10.1021/acsomega.1c01672] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/24/2021] [Indexed: 06/01/2023]
Abstract
Ecuador is a country where shrimp production is one of its primary industries. It generates annually about 72,000 tons of wastes in the form of shrimp shells. Therefore, using this waste as a raw material resource to produce chitosan, a biopolymer, is established. An environmental and economic performance study is carried out as a possible investment report, where a conceptual design of the process is defined and a financial viability report is obtained. An environmental impact report establishes the degree of harm to the environment. The economic viability study considered costs related to capital and operation to process 5000 tons of shrimp shells each year. On the other hand, a life cycle assessment was performed to obtain the environmental impact for 1 kg of chitosan produce, where a cradle-to-gate approach was established. Results showed that this new industry has a net present value of 10.38 million USD, a rate of return of 67.31%, and a payback period of 3.13 years. Additionally, it was calculated that the environmental impact with a higher normalized value was the human noncarcinogenic toxicity. It is concluded that the production of chitosan in Guayas-Ecuador is economically viable and cost-competitive in the market, and it represents an industrial activity with no considerable environmental impacts.
Collapse
Affiliation(s)
- Ariel Riofrio
- Chemical
Engineering Department, Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía
Perimetral, Guayaquil, 090112 Ecuador
- Facultad
de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía
Perimetral, Guayaquil, 090112 Ecuador
| | - Tania Alcivar
- Chemical
Engineering Department, Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía
Perimetral, Guayaquil, 090112 Ecuador
| | - Haci Baykara
- Facultad
de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía
Perimetral, Guayaquil, 090112 Ecuador
| |
Collapse
|
49
|
Thakur N, Nath AK, Chauhan A, Gupta R. Purification, characterization, and antifungal activity of Bacillus cereus strain NK91 chitinase from rhizospheric soil samples of Himachal Pradesh, India. Biotechnol Appl Biochem 2021; 69:1830-1842. [PMID: 34486170 DOI: 10.1002/bab.2250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Newly isolated Bacillus cereus strain NK91 was characterized for extracellular chitinase production. Partially purified chitinase showed a molecular weight of 43.7 kDa in SDS-PAGE analysis. The optimum pH and temperature for the partially purified enzyme were 7.0 and 40°C, respectively. The addition of Mn2+ resulted in a 21% increase in enzyme activity as compared to the control. The Vmax and Km of the enzyme were determined as 76.9 μmol/min and 0.07 mg/mL, respectively. This enzyme exhibited stronger antifungal activity towards Fusarium oxysporum (66.7%), Rhizoctonia solani (64.6%), and Colletotrichum gloeosporioides (63%), and transmission electron microscopy and scanning transmission electron microscopy analysis showed considerable changes in cell wall structure with the treatment of purified chitinase as compared to control. Therefore, this enzyme reveals its biocontrol potential against potent phytopathogens in agriculture that can be helpful in swapping harmful as well as expensive fungicides.
Collapse
Affiliation(s)
- Nirja Thakur
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Amarjit K Nath
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Anjali Chauhan
- Department of Soil Science and Water Management, College of Forestry, Dr Y r University of Horticulture and Forestry, Nauni, Solan, 173 230, India
| | - Rakesh Gupta
- Directorate of Research, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, 173 230, India
| |
Collapse
|
50
|
Abbasalizadeh F, Alizadeh E, Bagher Fazljou SM, Torbati M, Akbarzadeh A. Anticancer Effect of Alginate-Chitosan Hydrogel Loaded with Curcumin and Chrysin on Lung and Breast Cancer Cell Lines. Curr Drug Deliv 2021; 19:600-613. [PMID: 34391378 DOI: 10.2174/1567201818666210813142007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We conducted the present study to investigate the anticancer effects of curcumin and chrysin loaded in the alginate-chitosan hydrogel on breast cancer (T47D) and lung cancer (A549). BACKGROUND Cancer, which is defined as abnormal cell growth, is one of the biggest public health problems in the world. Natural compounds, such as polyphenols, are used as chemo-preventive and chemotherapeutic agents in different types of cancer owing to their antioxidant, antineoplastic, and cytotoxic properties. To improve their bioavailability and releasing behavior, hydrogel systems with high drug loading and stability and hydrophilic nature have been designed. METHODS The curcumin-chrysin-loaded alginate-chitosan hydrogels were prepared through the ionic gelation mechanism utilizing CaCl2. The prepared hydrogels were studied by using the Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The MTT and DAPI staining assays were employed for cytotoxicity and apoptosis studies of curcumin-chrysin-loaded alginate-chitosan hydrogels. The effects of the curcumin-chrysin-loaded alginate-chitosan hydrogels on the cell cycle of cell lines T47D and A549 were also evaluated using the propidium iodide staining. RESULTS The FTIR indicated specific bands at 1607 and 1422 cm-1 (the carbonyl of alginate) at 834 cm-1 (sodium alginate), 1447 cm-1, and 1026 cm-1 (COOH and C-O stretching bands alginate and chitosan). The curcumin-chrysin-loaded alginate-chitosan hydrogels could significantly (p<0.05) reduce the viability and induce apoptosis, Morover, cause G2/M arrest of the cell cycle in both A549 and T47D cell lines. CONCLUSION The alginate-chitosan hydrogels could work best as an enhanced anticancer drug delivery system.
Collapse
Affiliation(s)
- Farhad Abbasalizadeh
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|