1
|
Freddi S, Rajabal V, Tetu SG, Gillings MR, Penesyan A. Microbial biofilms on macroalgae harbour diverse integron gene cassettes. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001446. [PMID: 38488860 PMCID: PMC10963911 DOI: 10.1099/mic.0.001446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Integrons are genetic platforms that capture, rearrange and express mobile modules called gene cassettes. The best characterized gene cassettes encode antibiotic resistance, but the function of most integron gene cassettes remains unknown. Functional predictions suggest that many gene cassettes could encode proteins that facilitate interactions with other cells and with the extracellular environment. Because cell interactions are essential for biofilm stability, we sequenced gene cassettes from biofilms growing on the surface of the marine macroalgae Ulva australis and Sargassum linearifolium. Algal samples were obtained from coastal rock platforms around Sydney, Australia, using seawater as a control. We demonstrated that integrons in microbial biofilms did not sample genes randomly from the surrounding seawater, but harboured specific functions that potentially provided an adaptive advantage to both the bacterial cells in biofilm communities and their macroalgal host. Further, integron gene cassettes had a well-defined spatial distribution, suggesting that each bacterial biofilm acquired these genetic elements via sampling from a large but localized pool of gene cassettes. These findings suggest two forms of filtering: a selective acquisition of different integron-containing bacterial species into the distinct biofilms on Ulva and Sargassum surfaces, and a selective retention of unique populations of gene cassettes at each sampling location.
Collapse
Affiliation(s)
- Stefano Freddi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| |
Collapse
|
2
|
Nappi J, Goncalves P, Khan T, Majzoub ME, Grobler AS, Marzinelli EM, Thomas T, Egan S. Differential priority effects impact taxonomy and functionality of host-associated microbiomes. Mol Ecol 2023; 32:6278-6293. [PMID: 34995388 DOI: 10.1111/mec.16336] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 01/24/2023]
Abstract
Most multicellular eukaryotes host complex communities of microorganisms, but the factors that govern their assembly are poorly understood. The settlement of specific microorganisms may have a lasting impact on community composition, a phenomenon known as the priority effect. Priority effects of individual bacterial strains on a host's microbiome are, however, rarely studied and their impact on microbiome functionality remains unknown. We experimentally tested the effect of two bacterial strains (Pseudoalteromonas tunicata D2 and Pseudovibrio sp. D323) on the assembly and succession of the microbial communities associated with the green macroalga Ulva australis. Using 16S rRNA gene sequencing and qPCR, we found that both strains exert a priority effect, with strain D2 causing initially strong but temporary taxonomic changes and strain D323 causing weaker but consistent changes. Consistent changes were predominately facilitatory and included taxa that may benefit the algal host. Metagenome analyses revealed that the strains elicited both shared (e.g., depletion of type III secretion system genes) and unique (e.g., enrichment of antibiotic resistance genes) effects on the predicted microbiome functionality. These findings indicate strong idiosyncratic effects of colonizing bacteria on the structure and function of host-associated microbial communities. Understanding the idiosyncrasies in priority effects is key for the development of novel probiotics to improve host condition.
Collapse
Affiliation(s)
- Jadranka Nappi
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Priscila Goncalves
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Tahsin Khan
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Marwan E Majzoub
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Anna Sophia Grobler
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Ezequiel M Marzinelli
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Torsten Thomas
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Suhelen Egan
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Henriksen NNSE, Lindqvist LL, Wibowo M, Sonnenschein EC, Bentzon-Tilia M, Gram L. Role is in the eye of the beholder-the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol Rev 2022; 46:fuac007. [PMID: 35099011 PMCID: PMC9075582 DOI: 10.1093/femsre/fuac007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.
Collapse
Affiliation(s)
- Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Laura L Lindqvist
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Toplak M, Teufel R. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products. Biochemistry 2021; 61:47-56. [PMID: 34962769 PMCID: PMC8772269 DOI: 10.1021/acs.biochem.1c00763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The structural diversification
of natural products is instrumental
to their versatile bioactivities. In this context, redox tailoring
enzymes are commonly involved in the modification and functionalization
of advanced pathway intermediates en route to the mature natural products.
In recent years, flavoprotein monooxygenases have been shown to mediate
numerous redox tailoring reactions that include not only (aromatic)
hydroxylation, Baeyer–Villiger oxidation, or epoxidation reactions
but also oxygenations that are coupled to extensive remodeling of
the carbon backbone, which are often central to the installment of
the respective pharmacophores. In this Perspective, we will highlight
recent developments and discoveries in the field of flavoenzyme catalysis
in bacterial natural product biosynthesis and illustrate how the flavin
cofactor can be fine-tuned to enable chemo-, regio-, and stereospecific
oxygenations via distinct flavin-C4a-peroxide and flavin-N5-(per)oxide
species. Open questions remain, e.g., regarding the breadth of chemical
reactions enabled particularly by the newly discovered flavin-N5-oxygen
adducts and the role of the protein environment in steering such cascade-like
reactions. Outstanding cases involving different flavin oxygenating
species will be exemplified by the tailoring of bacterial aromatic
polyketides, including enterocin, rubromycins, rishirilides, mithramycin,
anthracyclins, chartreusin, jadomycin, and xantholipin. In addition,
the biosynthesis of tropone natural products, including tropolone
and tropodithietic acid, will be presented, which features a recently
described prototypical flavoprotein dioxygenase that may combine flavin-N5-peroxide
and flavin-N5-oxide chemistry. Finally, structural and mechanistic
features of selected enzymes will be discussed as well as hurdles
for their application in the formation of natural product derivatives
via bioengineering.
Collapse
Affiliation(s)
- Marina Toplak
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
5
|
An Analysis of Biosynthesis Gene Clusters and Bioactivity of Marine Bacterial Symbionts. Curr Microbiol 2021; 78:2522-2533. [PMID: 34041587 DOI: 10.1007/s00284-021-02535-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2021] [Indexed: 01/28/2023]
Abstract
Symbiotic marine bacteria have a pivotal role in drug discovery due to the synthesis of diverse biologically potential compounds. The marine bacterial phyla proteobacteria, actinobacteria and firmicutes are commonly associated with marine macro organisms and frequently reported as dominant bioactive compound producers. They can produce biologically active compounds that possess antimicrobial, antiviral, antitumor, antibiofilm and antifouling properties. Synthesis of these bioactive compounds is controlled by a set of genes of their genomes that is known as biosynthesis gene clusters (BGCs). The development in the field of biotechnology and bioinformatics has uncovered the potential BGCs of the bacterial genome and its functions. Now-a-days researchers have focused their attention on the identification of potential BGCs for the discovery of novel bioactive compounds using advanced technology. This review highlights the marine bacterial symbionts and their BGCs which are responsible for the synthesis of bioactive compounds.
Collapse
|
6
|
The Roseobacter-Group Bacterium Phaeobacter as a Safe Probiotic Solution for Aquaculture. Appl Environ Microbiol 2021; 87:e0258120. [PMID: 33310713 DOI: 10.1128/aem.02581-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phaeobacter inhibens has been assessed as a probiotic bacterium for application in aquaculture. Studies addressing the efficacy and safety indicate that P. inhibens maintains its antagonistic activity against pathogenic vibrios in aquaculture live cultures (live feed and fish egg/larvae) while having no or a positive effect on the host organisms and a minor impact on the host microbiomes. While P. inhibens produces antibacterial and algicidal compounds, no study has so far found a virulent phenotype of P. inhibens cells against higher organisms. Additionally, an in silico search for antibiotic resistance genes using published genomes of representative strains did not raise concerns regarding the risk for antimicrobial resistance. P. inhibens occurs naturally in aquaculture systems, supporting its safe usage in this environment. In conclusion, at the current state of knowledge, P. inhibens is a "safe-to-use" organism.
Collapse
|
7
|
Duan Y, Petzold M, Saleem‐Batcha R, Teufel R. Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential. Chembiochem 2020; 21:2384-2407. [PMID: 32239689 PMCID: PMC7497051 DOI: 10.1002/cbic.201900786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Indexed: 12/05/2022]
Abstract
Tropone natural products are non-benzene aromatic compounds of significant ecological and pharmaceutical interest. Herein, we highlight current knowledge on bacterial tropones and their derivatives such as tropolones, tropodithietic acid, and roseobacticides. Their unusual biosynthesis depends on a universal CoA-bound precursor featuring a seven-membered carbon ring as backbone, which is generated by a side reaction of the phenylacetic acid catabolic pathway. Enzymes encoded by separate gene clusters then further modify this key intermediate by oxidation, CoA-release, or incorporation of sulfur among other reactions. Tropones play important roles in the terrestrial and marine environment where they act as antibiotics, algaecides, or quorum sensing signals, while their bacterial producers are often involved in symbiotic interactions with plants and marine invertebrates (e. g., algae, corals, sponges, or mollusks). Because of their potent bioactivities and of slowly developing bacterial resistance, tropones and their derivatives hold great promise for biomedical or biotechnological applications, for instance as antibiotics in (shell)fish aquaculture.
Collapse
Affiliation(s)
- Ying Duan
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | - Melanie Petzold
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | | | - Robin Teufel
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| |
Collapse
|
8
|
Majzoub ME, Beyersmann PG, Simon M, Thomas T, Brinkhoff T, Egan S. Phaeobacter inhibens controls bacterial community assembly on a marine diatom. FEMS Microbiol Ecol 2020; 95:5481521. [PMID: 31034047 DOI: 10.1093/femsec/fiz060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial communities can have an important influence on the function of their eukaryotic hosts. However, how microbiomes are formed and the influence that specific bacteria have in shaping these communities is not well understood. Here, we used the marine diatom Thalassiosira rotula and the algal associated bacterium Phaeobacter inhibens as a model system to explore these questions. We exposed axenic (bacterial-free) T. rotula cultures to bacterial communities from natural seawater in the presence or absence of P. inhibens strain 2.10 or a variant strain (designated NCV12a1) that lacks antibacterial activity. We found that after 2 days the bacterial communities that assembled on the host were distinct from the free-living communities and comprised predominately of members of the Proteobacteria, Bacteroidetes and Cyanobacteria. In the presence of P. inhibens a higher abundance of Alphaproteobacteria, Flavobacteriia and Verrucomicrobia was detected. We also found only minor differences between the communities that established in the presence of either the wild type or the variant P. inhibens strain, suggesting that the antibacterial activity of P. inhibens is not the primary cause of its influence on bacterial community assembly. This study highlights the dynamic nature of algal microbiome development and the strong influence individual bacterial strains can have on this process.
Collapse
Affiliation(s)
- Marwan E Majzoub
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, High street Randwick, NSW 2052, Australia
| | | | - Meinhard Simon
- Carl-von-Ossientzky- Strasse 9-11 Oldenburg, 26111, Germany
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, High street Randwick, NSW 2052, Australia
| | | | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, High street Randwick, NSW 2052, Australia
| |
Collapse
|
9
|
Phylogenomic Analyses of Members of the Widespread Marine Heterotrophic Genus Pseudovibrio Suggest Distinct Evolutionary Trajectories and a Novel Genus, Polycladidibacter gen. nov. Appl Environ Microbiol 2020; 86:AEM.02395-19. [PMID: 31811036 PMCID: PMC6997731 DOI: 10.1128/aem.02395-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Pseudovibrio genus are widespread, metabolically versatile, and able to thrive as both free-living and host-associated organisms. Although more than 50 genomes are available, a comprehensive comparative genomics study to resolve taxonomic inconsistencies is currently missing. We analyzed all available genomes and used 552 core genes to perform a robust phylogenomic reconstruction. This in-depth analysis revealed the divergence of two monophyletic basal lineages of strains isolated from polyclad flatworm hosts, namely, Pseudovibrio hongkongensis and Pseudovibrio stylochi These strains have reduced genomes and lack sulfur-related metabolisms and major biosynthetic gene clusters, and their environmental distribution appears to be tightly associated with invertebrate hosts. We showed experimentally that the divergent strains are unable to utilize various sulfur compounds that, in contrast, can be utilized by the type strain Pseudovibrio denitrificans Our analyses suggest that the lineage leading to these two strains has been subject to relaxed purifying selection resulting in great gene loss. Overall genome relatedness indices (OGRI) indicate substantial differences between the divergent strains and the rest of the genus. While 16S rRNA gene analyses do not support the establishment of a different genus for the divergent strains, their substantial genomic, phylogenomic, and physiological differences strongly suggest a divergent evolutionary trajectory and the need for their reclassification. Therefore, we propose the novel genus Polycladidibacter gen. nov.IMPORTANCE The genus Pseudovibrio is commonly associated with marine invertebrates, which are essential for ocean health and marine nutrient cycling. Traditionally, the phylogeny of the genus has been based on 16S rRNA gene analysis. The use of the 16S rRNA gene or any other single marker gene for robust phylogenetic placement has recently been questioned. We used a large set of marker genes from all available Pseudovibrio genomes for in-depth phylogenomic analyses. We identified divergent monophyletic basal lineages within the Pseudovibrio genus, including two strains isolated from polyclad flatworms. These strains showed reduced sulfur metabolism and biosynthesis capacities. The phylogenomic analyses revealed distinct evolutionary trajectories and ecological adaptations that differentiate the divergent strains from the other Pseudovibrio members and suggest that they fall into a novel genus. Our data show the importance of widening the use of phylogenomics for better understanding bacterial physiology, phylogeny, and evolution.
Collapse
|
10
|
Nappi J, Soldi E, Egan S. Diversity and Distribution of Bacteria Producing Known Secondary Metabolites. MICROBIAL ECOLOGY 2019; 78:885-894. [PMID: 31016338 DOI: 10.1007/s00248-019-01380-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
There is an increasing interest in the utilisation of marine bioactive compounds as novel biopharmaceuticals and agrichemicals; however, little is known about the environmental distribution for many of these molecules. Here, we aimed to elucidate the environmental distribution and to detect the biosynthetic gene clusters in environmental samples of four bioactive compounds, namely violacein, tropodithietic acid (TDA), tambjamine and the antibacterial protein AlpP. Our database analyses revealed high bacterial diversity for AlpP and violacein producers, while TDA-producing bacteria were mostly associated with marine surfaces and all belonged to the roseobacter group. In contrast, the tambjamine cluster was only found in the genomes of two Pseudoalteromonas species and in one terrestrial species belonging to the Cupriavidus genus. Using a PCR-based screen of different marine samples, we detected TDA and violacein genes associated with the microbiome of Ulva and Protohyale niger and tambjamine genes associated with Nodilittorina unifasciata; however, alpP was not detected. These results highlight the variable distribution of the genes encoding these four bioactive compounds, including their detection from the surface of multiple marine eukaryotic hosts. Determining the natural distribution of these gene clusters will help to understand the ecological importance of these metabolites and the bacteria that produce them.
Collapse
Affiliation(s)
- Jadranka Nappi
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Erika Soldi
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Govindasamy B, Dhayalan A, Chinnaperumal K, Paramasivam D, Dilipkumar A, Kannupaiyan J, Perumal S, Pachiappan P. Comparative extraction of Salmonella bongori derived metabolites and their toxicity on bacterial pathogens, mosquito-larvae, zebrafish-embryo and brine-shrimp: A modified approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:192-206. [PMID: 30448702 DOI: 10.1016/j.ecoenv.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The present study pertains to two different (standard and adapted) extraction-procedures to extract bacterial extracellular metabolites from the cell-free supernatant (CFS) of S. bongori. Metabolites were extracted with the different polarity solvents using lyophilized-CFS mediated procedure, which revealed more number of compounds than standard procedure. The crude-extracts (CEs) were characterized using FTIR, HPLC and GC-MS analyses. The commonly presented compounds in standard (ME, EA & HE) and lyophilization-mediated extracts (LME, LEA & LHE) were identified through Heat-map analysis. Antibacterial assay: all CEs showed considerable activity on tested MTCC-strains, in which, LME and LEA were found preponderant. Larvicidal bioassay: LME resulted maximum mortality than other CEs on Culex-larvae. Zebrafish embryo-toxicity assay: except HE, all CEs exhibited toxicity at 100 ppm after 96 hpf. Brine shrimp-toxicity assay: ME, LME, EA and LEA have shown significant mortality after 24 h. With these observations, the adapted-extraction-procedure could form significance in the drug development process.
Collapse
Affiliation(s)
| | - Arul Dhayalan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636011, India
| | - Kamaraj Chinnaperumal
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636011, India
| | - Deepak Paramasivam
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636011, India
| | - Aiswarya Dilipkumar
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636011, India
| | - Jothimani Kannupaiyan
- Department of Botany, School of Life Sciences, Periyar University, Salem 636011, India
| | - Santhanam Perumal
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Perumal Pachiappan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636011, India.
| |
Collapse
|
12
|
Versluis D, Nijsse B, Naim MA, Koehorst JJ, Wiese J, Imhoff JF, Schaap PJ, van Passel MWJ, Smidt H, Sipkema D. Comparative Genomics Highlights Symbiotic Capacities and High Metabolic Flexibility of the Marine Genus Pseudovibrio. Genome Biol Evol 2018; 10:125-142. [PMID: 29319806 PMCID: PMC5765558 DOI: 10.1093/gbe/evx271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesized that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV, and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin, and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival, for example through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
Collapse
Affiliation(s)
- Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Bart Nijsse
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Mohd Azrul Naim
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Jutta Wiese
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Johannes F Imhoff
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Mark W J van Passel
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| |
Collapse
|
13
|
Choudhary A, Naughton LM, Dobson ADW, Rai DK. High-performance liquid chromatography/electrospray ionisation mass spectrometric characterisation of metabolites produced by Pseudovibrio sp. W64, a marine sponge derived bacterium isolated from Irish waters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1737-1745. [PMID: 29971859 DOI: 10.1002/rcm.8226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE In recent years, metabolites produced by Pseudovibrio species have gained scientific attention due to their potent antimicrobial activity. Recently, we also have assessed the antibacterial activities of Pseudovibrio sp. W64 isolates against Staphylococcus aureus, where only the dominant tropodithietic acid (TDA) was identified. However, characterisation of other metabolites is necessary as these metabolites may also serve as potent antimicrobial agents. METHODS Liquid chromatography/tandem mass spectrometry (LC/MS/MS), aided by accurate mass measurements, was employed to screen and characterise a range of metabolites produced by Pseudovibrio sp. W64 via assessment of ethyl acetate fractions generated from bacterial cultures. RESULTS Thirteen metabolites unique to the bacterial culture were detected and their chemical structures were assigned by MS/MS and accurate mass measurements. Among the thirteen metabolites, a methyl ester of TDA, a number of cholic acid derivatives, and amino diols and triols were characterised. CONCLUSIONS Pseudovibrio sp. W64 produces methylated TDA in addition to TDA, and metabolises lipids and amino acids in the cell-culture medium. To the best of our knowledge, this is the first report of methylated TDA, cholic acid and its various analogs, and sphinganine being detected in this Pseudovibrio strain. The data generated may help to better understand the biochemical processes and metabolism of bacterial strains towards discovery of antimicrobial agents from marine sources.
Collapse
Affiliation(s)
- Alka Choudhary
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin, D15 KN3K, Ireland
| | - Lynn M Naughton
- School of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork, T23 XE10, Ireland
| | - Dilip K Rai
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin, D15 KN3K, Ireland
| |
Collapse
|
14
|
Alex A, Antunes A. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS One 2018; 13:e0194368. [PMID: 29775460 PMCID: PMC5959193 DOI: 10.1371/journal.pone.0194368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| |
Collapse
|
15
|
Nalini S, Sandy Richard D, Mohammed Riyaz SU, Kavitha G, Inbakandan D. Antibacterial macro molecules from marine organisms. Int J Biol Macromol 2018; 115:696-710. [PMID: 29702164 DOI: 10.1016/j.ijbiomac.2018.04.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 11/29/2022]
Abstract
Marine ecosystem comprises of microorganisms, plants, invertebrates and vertebrates which were rich source of diverse antimicrobial products, which were structurally unique belonging to a known class of macromolecules like peptides, terpenes, alkaloids and proteins, etc. Natural macromolecules from marine ecological niches are a promising source of antibacterial agents against several drug resistant strains of pathogenic microorganisms; whereas rest of the metabolites were derived from marine flora and fauna while some arise from microbes associated with living organisms. >30,000 natural macromolecules have been identified and reported from marine organisms, however only few macromolecules are being explored and validated. The discovery of marine antibacterial macromolecules plays a significant part in the field of drug discovery and biomedical research. Despite the fact that literatures were documented on the antifungal, antiviral, antimalarial and anticancer properties, this review exclusively highlights the different antibacterial natural macromolecules from marine sources like bacteria, fungi, sponge, algae, bryozoans, tunicates, corals, cnidarians, arthropods and echinoderm along with their mode of action.
Collapse
Affiliation(s)
- S Nalini
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - D Sandy Richard
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - S U Mohammed Riyaz
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - G Kavitha
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| |
Collapse
|
16
|
Ecology and Biotechnological Potential of Bacteria Belonging to the Genus Pseudovibrio. Appl Environ Microbiol 2018; 84:AEM.02516-17. [PMID: 29453252 DOI: 10.1128/aem.02516-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the genus Pseudovibrio have been isolated worldwide from a great variety of marine sources as both free-living and host-associated bacteria. So far, the available data depict a group of alphaproteobacteria characterized by a versatile metabolism, which allows them to use a variety of substrates to meet their carbon, nitrogen, sulfur, and phosphorous requirements. Additionally, Pseudovibrio-related bacteria have been shown to proliferate under extreme oligotrophic conditions, tolerate high heavy-metal concentrations, and metabolize potentially toxic compounds. Considering this versatility, it is not surprising that they have been detected from temperate to tropical regions and are often the most abundant isolates obtained from marine invertebrates. Such an association is particularly recurrent with marine sponges and corals, animals that play a key role in benthic marine systems. The data so far available indicate that these bacteria are mainly beneficial to the host, and besides being involved in major nutrient cycles, they could provide the host with both vitamins/cofactors and protection from potential pathogens via the synthesis of antimicrobial secondary metabolites. In fact, the biosynthetic abilities of Pseudovibrio spp. have been emerging in recent years, and both genomic and analytic studies have underlined how these organisms promise novel natural products of biotechnological value.
Collapse
|
17
|
Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Khan NA. Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Lett Appl Microbiol 2018; 66:416-426. [PMID: 29457249 DOI: 10.1111/lam.12867] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022]
Abstract
Here, we hypothesized that the microbial gut flora of animals/pests living in polluted environments, produce substances to thwart bacterial infections. The overall aim of this study was to source microbes inhabiting unusual environmental niches for potential antimicrobial activity. Two cockroach species, Gromphadorhina portentosa (Madagascar) and Blaptica dubia (Dubia) were selected. The gut bacteria from these species were isolated and grown in RPMI 1640 and conditioned media were prepared. Conditioned media were tested against a panel of Gram-positive (Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Bacillus cereus) and Gram-negative (Escherichia coli K1, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, as well as the protist pathogen, Acanthamoeba castellanii. The results revealed that the gut bacteria of cockroaches produce active molecule(s) with potent antibacterial properties, as well as exhibit antiamoebic effects. However, heat-inactivation at 95°C for 10 min had no effect on conditioned media-mediated antibacterial and antiamoebic properties. These results suggest that bacteria from novel sources i.e. from the cockroach's gut produce molecules with bactericidal as well as amoebicidal properties that can ultimately lead to the development of therapeutic drugs. SIGNIFICANCE AND IMPACT OF THE STUDY The bacteria isolated from unusual dwellings such as the cockroaches' gut are a useful source of antibacterial and antiamoebal molecules. These are remarkable findings that will open several avenues in our search for novel antimicrobials from unique sources. Furthermore studies will lead to the identification of molecules to develop future antibacterials from insects.
Collapse
Affiliation(s)
- N Akbar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - R Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - M Iqbal
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - K Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - N A Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
18
|
Uzair B, Menaa F, Khan BA, Mohammad FV, Ahmad VU, Djeribi R, Menaa B. Isolation, purification, structural elucidation and antimicrobial activities of kocumarin, a novel antibiotic isolated from actinobacterium Kocuria marina CMG S2 associated with the brown seaweed Pelvetia canaliculata. Microbiol Res 2018; 206:186-197. [PMID: 29146256 DOI: 10.1016/j.micres.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
AIMS Screening of seaweed-associated bacteria capable of producing antimicrobials. METHODS AND RESULTS Fifteen microbial strains, associated to the brown seaweed Pelvetia canaliculata (Linnaeus) attached to the rocks of Sonmiani Beach (Karachi, Pakistan), were screened. Crude extract filtrates of CMG S2 strain grew on Zobell marine agar (ZMA) had the most remarkable antimicrobial activity. Based on its phenotypic aspects (e.g. Gram-positive, microccoid form), biochemical characteristics (e.g. halotolerance) and genetic analyses, CMG S2 is identified as a putatively new Kocuria marina type strain belonging to the actinobacteria's class and micrococcaceae family. Thereby, the nucleotide sequence analysis of its full-length 16S ribosomal ribonucleic acid (rRNA) gene (GenBank accession number EU073966.1) displayed highest identity (i.e. 99%) and score (2630) with K. marina KMM 3905. Phylogenic trees analysis using the neighbor-joining method showed closest evolutionary distance of CMG S2 with KMM 3905 strain and K. carniphila (DC2201) specie. Interestingly, a unique ultraviolet (UV)-bioactive compound was purified from CMG S2 crude extracts by flash silica gel column and thin-layer chromatography (TLC) techniques. Its chemical structure was unraveled as 4-[(Z)-2 phenyl ethenyl] benzoic acid (PEBA, later named kocumarin) by nuclear magnetic resonance (NMR) spectroscopy techniques. Importantly, kocumarin demonstrated prominent and rapid growth inhibition against all tested fungi and pathogenic bacteria including methicillin-resistant Staphylococcus aureus (MRSA), with a minimal fungal inhibitory concentration (MFC) of 15-25μg/mL and a minimal (bacterial) inhibitory concentration (MIC) of 10-15μg/mL. SIGNIFICANCE AND IMPACT OF THE STUDY Kocumarin represents a new promising natural antibiotic for in vivo and environmental applications.
Collapse
Affiliation(s)
- Bushra Uzair
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan.
| | - Farid Menaa
- Department of Advanced Technologies, California Innovations Corporation, San Diego, CA, United States.
| | - Barkat Ali Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Pakistan
| | | | - Viqar Uddin Ahmad
- H.E.J. Research Institute of Biological and Chemical Science, Karachi, Pakistan
| | - Ryad Djeribi
- Biofilms and Biocontamination of Materials, Annaba University, Algeria
| | - Bouzid Menaa
- Department of Advanced Technologies, California Innovations Corporation, San Diego, CA, United States
| |
Collapse
|
19
|
Dickschat JS, Rinkel J, Klapschinski T, Petersen J. Characterisation of the l-Cystine β-Lyase PatB from Phaeobacter inhibens: An Enzyme Involved in the Biosynthesis of the Marine Antibiotic Tropodithietic Acid. Chembiochem 2017; 18:2260-2267. [PMID: 28895253 DOI: 10.1002/cbic.201700358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 01/22/2023]
Abstract
The l-cystine β-lyase from Phaeobacter inhibens is involved in the biosynthesis of the sulfur-containing antibiotic tropodithietic acid. The recombinant enzyme was obtained by heterologous expression in Escherichia coli and biochemically characterised by unambiguous chemical identification of the products formed from the substrate l-cystine, investigation of the substrate spectrum, determination of the enzyme kinetics, sequence alignment with closely related homologues and site-directed mutagenesis to identify a highly conserved lysine residue that is critical for functionality. PatB from P. inhibens is a new member of the small group of characterised l-cystine β-lyases and the first example of an enzyme with such an activity that is required for the biosynthesis of an antibiotic. A comparison of PatB to previously reported enzymes with l-cystine β-lyase activity from bacteria and plants is given.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Tim Klapschinski
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| |
Collapse
|
20
|
A Place to Call Home: An Analysis of the Bacterial Communities in Two Tethya rubra Samaai and Gibbons 2005 Populations in Algoa Bay, South Africa. Mar Drugs 2017; 15:md15040095. [PMID: 28346340 PMCID: PMC5408241 DOI: 10.3390/md15040095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022] Open
Abstract
Sponges are important sources of bioactive secondary metabolites. These compounds are frequently synthesized by bacterial symbionts, which may be recruited from the surrounding seawater or transferred to the sponge progeny by the parent. In this study, we investigated the bacterial communities associated with the sponge Tethya rubra Samaai and Gibbons 2005. Sponge specimens were collected from Evans Peak and RIY Banks reefs in Algoa Bay, South Africa and taxonomically identified by spicule analysis and molecular barcoding. Crude chemical extracts generated from individual sponges were profiled by ultraviolet high performance liquid chromatography (UV-HPLC) and subjected to bioactivity assays in mammalian cells. Next-generation sequencing analysis of 16S rRNA gene sequences was used to characterize sponge-associated bacterial communities. T. rubra sponges collected from the two locations were morphologically and genetically indistinguishable. Chemical extracts from sponges collected at RIY banks showed mild inhibition of the metabolic activity of mammalian cells and their UV-HPLC profiles were distinct from those of sponges collected at Evans Peak. Similarly, the bacterial communities associated with sponges from the two locations were distinct with evidence of vertical transmission of symbionts from the sponge parent to its embryos. We conclude that these distinct bacterial communities may be responsible for the differences observed in the chemical profiles of the two Algoa Bay T. rubra Samaai and Gibbons 2005 populations.
Collapse
|
21
|
Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aasci.2016.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Nicacio KJ, Ióca LP, Fróes AM, Leomil L, Appolinario LR, Thompson CC, Thompson FL, Ferreira AG, Williams DE, Andersen RJ, Eustaquio AS, Berlinck RGS. Cultures of the Marine Bacterium Pseudovibrio denitrificans Ab134 Produce Bromotyrosine-Derived Alkaloids Previously Only Isolated from Marine Sponges. JOURNAL OF NATURAL PRODUCTS 2017; 80:235-240. [PMID: 28191971 DOI: 10.1021/acs.jnatprod.6b00838] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein we report the isolation and spectroscopic identification of fistularin-3 (1), 11-hydroxyaerothionin (2), and verongidoic acid (3), as well as the UPLC-HRMS detection of aerothionin (4), homopurpuroceratic acid B (5), purealidin L (6), and aplysinamisine II (7), from cultures of the marine bacterium Pseudovibrio denitrificans Ab134, isolated from tissues of the marine sponge Arenosclera brasiliensis. These results unambiguously demonstrate for the first time that bromotyrosine-derived alkaloids that were previously isolated only from Verongida sponges can be biosynthesized by a marine bacterium.
Collapse
Affiliation(s)
- Karen J Nicacio
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Adriana M Fróes
- Instituto de Biologia, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro , Avenida Carlos Chagas Fo. 373, Bloco A, Anexo A3, Sl. 302, Cidade Universitária, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Luciana Leomil
- Instituto de Biologia, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro , Avenida Carlos Chagas Fo. 373, Bloco A, Anexo A3, Sl. 302, Cidade Universitária, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Luciana R Appolinario
- Instituto de Biologia, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro , Avenida Carlos Chagas Fo. 373, Bloco A, Anexo A3, Sl. 302, Cidade Universitária, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Christiane C Thompson
- Instituto de Biologia, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro , Avenida Carlos Chagas Fo. 373, Bloco A, Anexo A3, Sl. 302, Cidade Universitária, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Fabiano L Thompson
- Instituto de Biologia, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro , Avenida Carlos Chagas Fo. 373, Bloco A, Anexo A3, Sl. 302, Cidade Universitária, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Alessandra S Eustaquio
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago , 900 S. Ashland Avenue, Chicago, Illinois 60607, United States
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
23
|
Sonnenschein EC, Nielsen KF, D'Alvise P, Porsby CH, Melchiorsen J, Heilmann J, Kalatzis PG, López-Pérez M, Bunk B, Spröer C, Middelboe M, Gram L. Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis. THE ISME JOURNAL 2017; 11:569-583. [PMID: 27552638 PMCID: PMC5270555 DOI: 10.1038/ismej.2016.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/12/2016] [Accepted: 07/03/2016] [Indexed: 11/08/2022]
Abstract
Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99-100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level by average nucleotide identity using pairwise genome comparison. The four sub-clusters could not be associated with a specific environmental niche, however, correlated with the pattern of sub-typing using co-isolated phages, the number of prophages in the genomes and the distribution in ocean provinces. Major genomic differences within the sub-clusters include prophages and toxin-antitoxin systems. In general, the genome of R. mobilis revealed adaptation to a particle-associated life style and querying TARA ocean data confirmed that R. mobilis is more abundant in the particle-associated fraction than in the free-living fraction occurring in 40% and 6% of the samples, respectively. Our data and the TARA data, although lacking sufficient data from the polar regions, demonstrate that R. mobilis is a globally distributed marine bacterial species found primarily in the upper open oceans. It has preserved key phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture.
Collapse
Affiliation(s)
- Eva C Sonnenschein
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paul D'Alvise
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cisse H Porsby
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
- Biogen Manufacturing, Biogen Idec Allé 1, Hillerød, Denmark
| | - Jette Melchiorsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens Heilmann
- Technical University of Denmark, National Institute for Aquatic Resources, Charlottenlund, Denmark
| | - Panos G Kalatzis
- Hellenic Centre for Marine Research, Institute of Aquaculture, Heraklion, Greece
- Section for Marine Biology, University of Copenhagen, Helsingør, Denmark
| | - Mario López-Pérez
- División de Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan, Alicante, Spain
| | - Boyke Bunk
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cathrin Spröer
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mathias Middelboe
- Section for Marine Biology, University of Copenhagen, Helsingør, Denmark
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Antibacterial, Anticoagulant and Anti-inflammatory Activities of Marine Bacillus cereus S1. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2016. [DOI: 10.22207/jpam.10.4.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Raina JB, Tapiolas D, Motti CA, Foret S, Seemann T, Tebben J, Willis BL, Bourne DG. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 2016; 4:e2275. [PMID: 27602265 PMCID: PMC4994080 DOI: 10.7717/peerj.2275] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Bacterial communities associated with healthy corals produce antimicrobial compounds that inhibit the colonization and growth of invasive microbes and potential pathogens. To date, however, bacteria-derived antimicrobial molecules have not been identified in reef-building corals. Here, we report the isolation of an antimicrobial compound produced by Pseudovibrio sp. P12, a common and abundant coral-associated bacterium. This strain was capable of metabolizing dimethylsulfoniopropionate (DMSP), a sulfur molecule produced in high concentrations by reef-building corals and playing a role in structuring their bacterial communities. Bioassay-guided fractionation coupled with nuclear magnetic resonance (NMR) and mass spectrometry (MS), identified the antimicrobial as tropodithietic acid (TDA), a sulfur-containing compound likely derived from DMSP catabolism. TDA was produced in large quantities by Pseudovibrio sp., and prevented the growth of two previously identified coral pathogens, Vibrio coralliilyticus and V. owensii, at very low concentrations (0.5 μg/mL) in agar diffusion assays. Genome sequencing of Pseudovibrio sp. P12 identified gene homologs likely involved in the metabolism of DMSP and production of TDA. These results provide additional evidence for the integral role of DMSP in structuring coral-associated bacterial communities and underline the potential of these DMSP-metabolizing microbes to contribute to coral disease prevention.
Collapse
Affiliation(s)
- Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia; Australian Institute of Marine Science, Townsville, QLD, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Marine Biology and Aquaculture, College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia; AIMS@JCU, James Cook University, Townsville, QLD, Australia
| | - Dianne Tapiolas
- Australian Institute of Marine Science , Townsville, QLD , Australia
| | - Cherie A Motti
- Australian Institute of Marine Science , Townsville, QLD , Australia
| | - Sylvain Foret
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Torsten Seemann
- Victorian Life Sciences Computation Initiative, University of Melbourne , Melbourne, Victoria , Australia
| | - Jan Tebben
- Section Chemical Ecology, Alfred Wegener Institute, Bremerhaven, Germany; University of New South Wales, Sydney, NSW, Australia
| | - Bette L Willis
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Marine Biology and Aquaculture, College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia; Marine Biology and Aquaculture, College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia
| |
Collapse
|
26
|
Isolation and characterization of dipropyl-, S-propyl ester from Exiguobacterium mexicanum (MSSRF-S9) against larvae of malaria and dengue vectors. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Satheesh S, Ba-akdah MA, Al-Sofyani AA. Natural antifouling compound production by microbes associated with marine macroorganisms — A review. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
28
|
Esteves AIS, Amer N, Nguyen M, Thomas T. Sample Processing Impacts the Viability and Cultivability of the Sponge Microbiome. Front Microbiol 2016; 7:499. [PMID: 27242673 PMCID: PMC4876369 DOI: 10.3389/fmicb.2016.00499] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/28/2016] [Indexed: 12/17/2022] Open
Abstract
Sponges host complex microbial communities of recognized ecological and biotechnological importance. Extensive cultivation efforts have been made to isolate sponge bacteria, but most still elude cultivation. To identify the bottlenecks of sponge bacterial cultivation, we combined high-throughput 16S rRNA gene sequencing with a variety of cultivation media and incubation conditions. We aimed to determine the extent to which sample processing and cultivation conditions can impact bacterial viability and recovery in culture. We isolated 325 sponge bacteria from six specimens of Cymbastela concentrica and three specimens of Scopalina sp. These isolates were distributed over 37 different genera and 47 operational taxonomic units (defined at 97% 16S rRNA gene sequence identity). The cultivable bacterial community was highly specific to its sponge host and different media compositions yielded distinct microbial isolates. Around 97% of the isolates could be detected in the original sponge and represented a large but highly variable proportion (0.5–92% total abundance, depending on sponge species) of viable bacteria obtained after sample processing, as determined by propidium monoazide selective DNA modification of compromised cells. Our results show that the most abundant viable bacteria are also the most predominant groups found in cultivation, reflecting, to some extent, the relative abundances of the viable bacterial community, rather than the overall community estimated by direct molecular approaches. Cultivation is therefore shaped not only by the growth conditions provided, but also by the different cell viabilities of the bacteria that constitute the cultivation inoculum. These observations highlight the need to perform experiments to assess each method of sample processing for its accurate representation of the actual in situ bacterial community and its yield of viable cells.
Collapse
Affiliation(s)
- Ana I S Esteves
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales Kensington, NSW, Australia
| | - Nimra Amer
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales Kensington, NSW, Australia
| | - Mary Nguyen
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales Kensington, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales Kensington, NSW, Australia
| |
Collapse
|
29
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
30
|
Porsby CH, Gram L. Phaeobacter inhibens as biocontrol agent against Vibrio vulnificus in oyster models. Food Microbiol 2016; 57:63-70. [PMID: 27052703 DOI: 10.1016/j.fm.2016.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Molluscan shellfish can cause food borne diseases and here we investigated if addition of Vibrio-antagonising bacteria could reduce Vibrio vulnificus in model oyster systems and prevent its establishment in live animals. Phaeobacter inhibens, which produces an antibacterial compound, tropodithietic acid (TDA), inhibited V. vulnificus as did pure TDA (MIC of 1-3.9 μM). P. inhibens DSM 17395 (at 10(6) cfu/ml) eradicated 10(5) cfu/ml V. vulnificus CMCP6 (a rifampicin resistant variant) from a co-culture oyster model system (oyster juice) whereas the pathogen grew to 10(7) cfu/ml when co-cultured with a TDA negative Phaeobacter mutant. P. inhibens grew well in oyster juice to 10(8) CFU/ml and sterile filtered samples from these cultures were inhibitory to Vibrio spp. P. inhibens established itself in live European flat oysters (Ostrea edulis) and remained at 10(5) cfu/g for five days. However, the presence of P. inhibens could not prevent subsequently added V. vulnificus from entering the live animals, likely because of too low levels of the biocontrol strain. Whilst the oyster model studies provided indication that P. inhibens DSM 17395 could be a good candidate as biocontrol agent against V. vulnificus further optimization is need in the actual animal rearing situation.
Collapse
Affiliation(s)
- Cisse Hedegaard Porsby
- Department of Systems Biology, Technical University of Denmark, Matematikorvet, bldg. 301, DK-2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Matematikorvet, bldg. 301, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
31
|
Skariyachan S, Acharya AB, Subramaniyan S, Babu S, Kulkarni S, Narayanappa R. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: an in vitro and in silico investigation. J Biomol Struct Dyn 2015; 34:1865-83. [PMID: 26577929 DOI: 10.1080/07391102.2015.1094412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The current study explores therapeutic potential of metabolites extracted from marine sponge (Cliona sp.)-associated bacteria against MDR pathogens and predicts the binding prospective of probable lead molecules against VP40 target of Ebola virus. The metabolite-producing bacteria were characterized by agar overlay assay and as per the protocols in Bergey's manual of determinative bacteriology. The antibacterial activities of extracted metabolites were tested against clinical pathogens by well-diffusion assay. The selected metabolite producers were characterized by 16S rDNA sequencing. Chemical screening and Fourier Transform Infrared (FTIR) analysis for selected compounds were performed. The probable lead molecules present in the metabolites were hypothesized based on proximate analysis, FTIR data, and literature survey. The drug-like properties and binding potential of lead molecules against VP40 target of Ebola virus were hypothesized by computational virtual screening and molecular docking. The current study demonstrated that clear zones around bacterial colonies in agar overlay assay. Antibiotic sensitivity profiling demonstrated that the clinical isolates were multi-drug resistant, however; most of them showed sensitivity to secondary metabolites (MIC-15 μl/well). The proximate and FTIR analysis suggested that probable metabolites belonged to alkaloids with O-H, C-H, C=O, and N-H groups. 16S rDNA characterization of selected metabolite producers demonstrated that 96% and 99% sequence identity to Comamonas testosteroni and Citrobacter freundii, respectively. The docking studies suggested that molecules such as Gymnastatin, Sorbicillactone, Marizomib, and Daryamide can designed as probable lead candidates against VP40 target of Ebola virus.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| | - Archana B Acharya
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| | - Saumya Subramaniyan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| | - Sumangala Babu
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| | | | - Rajeswari Narayanappa
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India
| |
Collapse
|
32
|
Alex A, Antunes A. Whole Genome Sequencing of the Symbiont Pseudovibrio sp. from the Intertidal Marine Sponge Polymastia penicillus Revealed a Gene Repertoire for Host-Switching Permissive Lifestyle. Genome Biol Evol 2015; 7:3022-32. [PMID: 26519859 PMCID: PMC5635592 DOI: 10.1093/gbe/evv199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sponges harbor a complex consortium of microbial communities living in symbiotic relationship benefiting each other through the integration of metabolites. The mechanisms influencing a successful microbial association with a sponge partner are yet to be fully understood. Here, we sequenced the genome of Pseudovibrio sp. POLY-S9 strain isolated from the intertidal marine sponge Polymastia penicillus sampled from the Atlantic coast of Portugal to identify the genomic features favoring the symbiotic relationship. The draft genome revealed an exceptionally large genome size of 6.6 Mbp compared with the previously reported genomes of the genus Pseudovibrio isolated from a coral and a sponge larva. Our genomic study detected the presence of several biosynthetic gene clusters—polyketide synthase, nonribosomal peptide synthetase and siderophore—affirming the potential ability of the genus Pseudovibrio to produce a wide variety of metabolic compounds. Moreover, we identified a repertoire of genes encoding adaptive symbioses factors (eukaryotic-like proteins), such as the ankyrin repeats, tetratrico peptide repeats, and Sel1 repeats that improve the attachment to the eukaryotic hosts and the avoidance of the host’s immune response. The genome also harbored a large number of mobile elements (∼5%) and gene transfer agents, which explains the massive genome expansion and suggests a possible mechanism of horizontal gene transfer. In conclusion, the genome of POLY-S9 exhibited an increase in size, number of mobile DNA, multiple metabolite gene clusters, and secretion systems, likely to influence the genome diversification and the evolvability.
Collapse
Affiliation(s)
- Anoop Alex
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
33
|
Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens. Appl Environ Microbiol 2015; 82:502-9. [PMID: 26519388 DOI: 10.1128/aem.02992-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/29/2015] [Indexed: 01/14/2023] Open
Abstract
Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However, when supernatants of noninhibitory, low-iron cultures of Phaeobacter inhibens were acidified, antibacterial activity was detected in a bioassay. The absence of TDA in nonacidified cultures and the presence of TDA in acidified cultures were verified by liquid chromatography-high-resolution mass spectrometry. A noninhibitory TDA analog (pre-TDA) was produced by P. inhibens, Ruegeria mobilis F1926, and Phaeobacter sp. strain 27-4 under low-iron concentrations and was instantaneously converted to TDA when pH was lowered. Production of TDA in the presence of Fe(3+) coincides with formation of a dark brown substance, which could be precipitated by acid addition. From this brown pigment TDA could be liberated slowly with aqueous ammonia, and both direct-infusion mass spectrometry and elemental analysis indicated a [Fe(III)(TDA)2]x complex. The pigment could also be produced by precipitation of pure TDA with FeCl3. Our results raise questions about how biologically active TDA is produced in natural marine settings where iron is typically limited and whether the affinity of TDA to iron points to a physiological or ecological function of TDA other than as an antibacterial compound.
Collapse
|
34
|
Ziesche L, Bruns H, Dogs M, Wolter L, Mann F, Wagner-Döbler I, Brinkhoff T, Schulz S. Homoserine Lactones, Methyl Oligohydroxybutyrates, and Other Extracellular Metabolites of Macroalgae-Associated Bacteria of the Roseobacter Clade: Identification and Functions. Chembiochem 2015. [PMID: 26212108 DOI: 10.1002/cbic.201500189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Twenty-four strains of marine Roseobacter clade bacteria were isolated from macroalgae and investigated for the production of quorum-sensing autoinducers, N-acylhomoserine lactones (AHLs). GC/MS analysis of the extracellular metabolites allowed us to evaluate the release of other small molecules as well. Nineteen strains produced AHLs, ranging from 3-OH-C10:0-HSL (homoserine lactone) to (2E,11Z)-C18:2-HSL, but no specific phylogenetic or ecological pattern of individual AHL occurrence was observed when cluster analysis was performed. Other identified compounds included indole, tropone, methyl esters of oligomers of 3-hydroxybutyric acid, and various amides, such as N-9-hexadecenoylalanine methyl ester (9-C16:1-NAME), a structural analogue of AHLs. Several compounds were tested for their antibacterial and antialgal activity on marine isolates likely to occur in the habitat of the macroalgae. Both AHLs and 9-C16:1-NAME showed high antialgal activity against Skeletonema costatum, whereas their antibacterial activity was low.
Collapse
Affiliation(s)
- Lisa Ziesche
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Hilke Bruns
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Marco Dogs
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Laura Wolter
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Florian Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
| |
Collapse
|
35
|
Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl Microbiol Biotechnol 2014; 99:1571-86. [PMID: 25549621 DOI: 10.1007/s00253-014-6334-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
In recent decade, seaweeds-associated microbial communities have been significantly evaluated for functional and chemical analyses. Such analyses let to conclude that seaweeds-associated microbial communities are highly diverse and rich sources of bioactive compounds of exceptional molecular structure. Extracting bioactive compounds from seaweed-associated microbial communities have been recently increased due to their broad-spectrum antimicrobial activities including antibacterial, antifungal, antiviral, anti-settlement, antiprotozoan, antiparasitic, and antitumor. These allelochemicals not only provide protection to host from other surrounding pelagic microorganisms, but also ensure their association with the host. Antimicrobial compounds from marine sources are promising and priority targets of biotechnological and pharmaceutical applications. This review describes the bioactive metabolites reported from seaweed-associated bacterial and fungal communities and illustrates their bioactivities. Biotechnological application of metagenomic approach for identifying novel bioactive metabolites is also dealt, in view of their future development as a strong tool to discover novel drug targets from seaweed-associated microbial communities.
Collapse
|
36
|
Characterisation of non-autoinducing tropodithietic Acid (TDA) production from marine sponge Pseudovibrio species. Mar Drugs 2014; 12:5960-78. [PMID: 25513851 PMCID: PMC4278212 DOI: 10.3390/md12125960] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 12/15/2022] Open
Abstract
The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.
Collapse
|
37
|
Crowley SP, O'Gara F, O'Sullivan O, Cotter PD, Dobson ADW. Marine Pseudovibrio sp. as a novel source of antimicrobials. Mar Drugs 2014; 12:5916-29. [PMID: 25501794 PMCID: PMC4278209 DOI: 10.3390/md12125916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance among pathogenic microorganisms is becoming ever more common. Unfortunately, the development of new antibiotics which may combat resistance has decreased. Recently, however the oceans and the marine animals that reside there have received increased attention as a potential source for natural product discovery. Many marine eukaryotes interact and form close associations with microorganisms that inhabit their surfaces, many of which can inhibit the attachment, growth or survival of competitor species. It is the bioactive compounds responsible for the inhibition that is of interest to researchers on the hunt for novel bioactives. The genus Pseudovibrio has been repeatedly identified from the bacterial communities isolated from marine surfaces. In addition, antimicrobial activity assays have demonstrated significant antimicrobial producing capabilities throughout the genus. This review will describe the potency, spectrum and possible novelty of the compounds produced by these bacteria, while highlighting the capacity for this genus to produce natural antimicrobial compounds which could be employed to control undesirable bacteria in the healthcare and food production sectors.
Collapse
Affiliation(s)
- Susan P Crowley
- Teagasc, Moorepark Food Research Centre, Fermoy Co. Cork, Ireland.
| | - Fergal O'Gara
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | - Orla O'Sullivan
- Teagasc, Moorepark Food Research Centre, Fermoy Co. Cork, Ireland.
| | - Paul D Cotter
- Teagasc, Moorepark Food Research Centre, Fermoy Co. Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
38
|
Exo-metabolome of Pseudovibrio sp. FO-BEG1 analyzed by ultra-high resolution mass spectrometry and the effect of phosphate limitation. PLoS One 2014; 9:e96038. [PMID: 24787987 PMCID: PMC4008564 DOI: 10.1371/journal.pone.0096038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/02/2014] [Indexed: 02/03/2023] Open
Abstract
Oceanic dissolved organic matter (DOM) is an assemblage of reduced carbon compounds, which results from biotic and abiotic processes. The biotic processes consist in either release or uptake of specific molecules by marine organisms. Heterotrophic bacteria have been mostly considered to influence the DOM composition by preferential uptake of certain compounds. However, they also secrete a variety of molecules depending on physiological state, environmental and growth conditions, but so far the full set of compounds secreted by these bacteria has never been investigated. In this study, we analyzed the exo-metabolome, metabolites secreted into the environment, of the heterotrophic marine bacterium Pseudovibrio sp. FO-BEG1 via ultra-high resolution mass spectrometry, comparing phosphate limited with phosphate surplus growth conditions. Bacteria belonging to the Pseudovibrio genus have been isolated worldwide, mainly from marine invertebrates and were described as metabolically versatile Alphaproteobacteria. We show that the exo-metabolome is unexpectedly large and diverse, consisting of hundreds of compounds that differ by their molecular formulae. It is characterized by a dynamic recycling of molecules, and it is drastically affected by the physiological state of the strain. Moreover, we show that phosphate limitation greatly influences both the amount and the composition of the secreted molecules. By assigning the detected masses to general chemical categories, we observed that under phosphate surplus conditions the secreted molecules were mainly peptides and highly unsaturated compounds. In contrast, under phosphate limitation the composition of the exo-metabolome changed during bacterial growth, showing an increase in highly unsaturated, phenolic, and polyphenolic compounds. Finally, we annotated the detected masses using multiple metabolite databases. These analyses suggested the presence of several masses analogue to masses of known bioactive compounds. However, the annotation was successful only for a minor part of the detected molecules, underlining the current gap in knowledge concerning the biosynthetic ability of marine heterotrophic bacteria.
Collapse
|
39
|
Horta A, Pinteus S, Alves C, Fino N, Silva J, Fernandez S, Rodrigues A, Pedrosa R. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Mar Drugs 2014; 12:1676-89. [PMID: 24663118 PMCID: PMC3967231 DOI: 10.3390/md12031676] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/14/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.
Collapse
Affiliation(s)
- André Horta
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Susete Pinteus
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Celso Alves
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Nádia Fino
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Joana Silva
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Sara Fernandez
- Higher School of Agricultural Engineering (ETSEA), University of Lleida, E-25003 Lleida, Spain.
| | - Américo Rodrigues
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Rui Pedrosa
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
40
|
Murniasih T, . SK, . LK, . MH, . WP. An Antibacterial Compound Isolated from Sponge-associated bacteria Rhodobacteracea
bacterium. JOURNAL OF MEDICAL SCIENCES 2014. [DOI: 10.3923/jms.2014.75.80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Graça AP, Bondoso J, Gaspar H, Xavier JR, Monteiro MC, de la Cruz M, Oves-Costales D, Vicente F, Lage OM. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS One 2013; 8:e78992. [PMID: 24236081 PMCID: PMC3827338 DOI: 10.1371/journal.pone.0078992] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022] Open
Abstract
Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus), fish pathogen (Aliivibrio fischeri) and environmentally relevant bacteria (Vibrio harveyi). The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%), Vibrio (22.7%) and Bacillus (7.6%). Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I) and nonribosomal peptide synthetases (NRPSs) genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
| | - Joana Bondoso
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
| | - Helena Gaspar
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisboa, Portugal
| | - Joana R. Xavier
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores – Departamento de Biologia da Universidade dos Açores, Ponta Delgada, Portugal
- CEAB, Centre d'Estudis Avançats de Blanes, (CSIC), Blanes (Girona), Spain
| | - Maria Cândida Monteiro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
- * E-mail:
| |
Collapse
|
42
|
Culture-dependent and independent approaches for identifying novel halogenases encoded by Crambe crambe (marine sponge) microbiota. Sci Rep 2013; 3:2780. [PMID: 24071658 PMCID: PMC3784947 DOI: 10.1038/srep02780] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023] Open
Abstract
Sponges harbour microbial communities that contribute to the genetic and metabolic potential of their host. Among metabolites produced by sponge-associated microbial communities, halogenated compounds are of special interest because of their biotechnological potential. In this study, we have examined the diversity of the cultivable fraction of the marine demosponge Crambe crambe microbiota. Application of complementary cultivation methods yielded 107 bacterial isolates, some of which may be sponge-specific based on their phylogenetic analysis. Among these, Psychrobacter sp. was found to contain a putative halogenase gene. In addition to the culture-dependent approach for discovering halogenase genes, a cDNA library was constructed to determine the diversity of halogenase genes expressed in situ by the C. crambe microbiota. To this end, seventeen putative tryptophan halogenase cDNA sequences were identified, most of which were only remotely related to known halogenase genes, indicating the potential for novel bioactive compounds being produced by the C. crambe microbiota.
Collapse
|
43
|
Bondarev V, Richter M, Romano S, Piel J, Schwedt A, Schulz-Vogt HN. The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol 2013; 15:2095-113. [PMID: 23601235 PMCID: PMC3806328 DOI: 10.1111/1462-2920.12123] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/08/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
The majority of strains belonging to the genus Pseudovibrio have been isolated from marine invertebrates such as tunicates, corals and particularly sponges, but the physiology of these bacteria is poorly understood. In this study, we analyse for the first time the genomes of two Pseudovibrio strains – FO-BEG1 and JE062. The strain FO-BEG1 is a required symbiont of a cultivated Beggiatoa strain, a sulfide-oxidizing, autotrophic bacterium, which was initially isolated from a coral. Strain JE062 was isolated from a sponge. The presented data show that both strains are generalistic bacteria capable of importing and oxidizing a wide range of organic and inorganic compounds to meet their carbon, nitrogen, phosphorous and energy requirements under both, oxic and anoxic conditions. Several physiological traits encoded in the analysed genomes were verified in laboratory experiments with both isolates. Besides the versatile metabolic abilities of both Pseudovibrio strains, our study reveals a number of open reading frames and gene clusters in the genomes that seem to be involved in symbiont–host interactions. Both Pseudovibrio strains have the genomic potential to attach to host cells, interact with the eukaryotic cell machinery, produce secondary metabolites and supply the host with cofactors.
Collapse
Affiliation(s)
- Vladimir Bondarev
- Max Planck Institute for Marine Microbiology, Ecophysiology Group, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Dobretsov S, Abed RMM, Teplitski M. Mini-review: Inhibition of biofouling by marine microorganisms. BIOFOULING 2013; 29:423-41. [PMID: 23574279 DOI: 10.1080/08927014.2013.776042] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
| | | | | |
Collapse
|
45
|
Ceh J, Raina JB, Soo RM, van Keulen M, Bourne DG. Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef. PLoS One 2012; 7:e36920. [PMID: 22629343 PMCID: PMC3353996 DOI: 10.1371/journal.pone.0036920] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 04/15/2012] [Indexed: 02/01/2023] Open
Abstract
Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction.
Collapse
Affiliation(s)
- Janja Ceh
- School of Biological Sciences and Biotechnology, Murdoch University, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
46
|
O'Halloran JA, Barbosa TM, Morrissey JP, Kennedy J, Dobson ADW, O'Gara F. Pseudovibrio axinellae sp. nov., isolated from an Irish marine sponge. Int J Syst Evol Microbiol 2012; 63:141-145. [PMID: 22368168 DOI: 10.1099/ijs.0.040196-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A Gram-negative, motile, rod-shaped bacterial strain, designated Ad2(T), was isolated from a marine sponge, Axinella dissimilis, which was collected from a semi-enclosed marine lake in Ireland. Strain Ad2(T) grew optimally at 24 °C, at pH 7.0 and in the presence of 3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Ad2(T) clustered with members of the genus Pseudovibrio, and showed 97.3-98.2 % sequence similarity to the type strains of recognized Pseudovibrio species. DNA-DNA relatedness values between strain Ad2(T) and the type strains of other Pseudovibrio species were <27 %. The DNA G+C content of strain Ad2(T) was 50.5 mol%. The major fatty acid was 18 : 1ω7c. Differences in phenotypic properties, together with phylogenetic and DNA-DNA hybridization analyses, indicated that strain Ad2(T) represented a novel species of the genus Pseudovibrio. The name Pseudovibrio axinellae sp. nov. is proposed, with Ad2(T) (= DSM 24994(T) = NCIMB 14761(T)) as the type strain.
Collapse
Affiliation(s)
- John A O'Halloran
- Department of Microbiology, University College Cork, Cork, Ireland.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Teresa M Barbosa
- Department of Microbiology, University College Cork, Cork, Ireland
| | - John P Morrissey
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Jonathan Kennedy
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- Department of Microbiology, University College Cork, Cork, Ireland.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Investigation of bioactivity of extracts of Marine Sponge, Spongosorites halichondrioides (Dendy, 1905) from western coastal areas of India. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60495-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Flemer B, Kennedy J, Margassery L, Morrissey J, O’Gara F, Dobson A. Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J Appl Microbiol 2011; 112:289-301. [DOI: 10.1111/j.1365-2672.2011.05211.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|