1
|
Xu H, Chen S, Meng C, He Y, Huang XJ, You HB. Inhibition of CC chemokine receptor 1 ameliorates osteoarthritis in mouse by activating PPAR-γ. Mol Med 2024; 30:74. [PMID: 38831316 PMCID: PMC11149222 DOI: 10.1186/s10020-024-00823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage destruction and inflammation. CC chemokine receptor 1 (CCR1), a member of the chemokine family and its receptor family, plays a role in the autoimmune response. The impact of BX471, a specific small molecule inhibitor of CCR1, on CCR1 expression in cartilage and its effects on OA remain underexplored. METHODS This study used immunohistochemistry (IHC) to assess CCR1 expression in IL-1β-induced mouse chondrocytes and a medial meniscus mouse model of destabilization of the medial meniscus (DMM). Chondrocytes treated with varying concentrations of BX471 for 24 h were subjected to IL-1β (10 ng/ml) treatment. The levels of the aging-related genes P16INK4a and P21CIP1 were analyzed via western blotting, and senescence-associated β-galactosidase (SA-β-gal) activity was measured. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), aggrecan (AGG), and the transcription factor SOX9 were determined through western blotting and RT‒qPCR. Collagen II, matrix metalloproteinase 13 (MMP13), and peroxisome proliferator-activated receptor (PPAR)-γ expression was analyzed via western blot, RT‒qPCR, and immunofluorescence. The impact of BX471 on inflammatory metabolism-related proteins under PPAR-γ inhibition conditions (using GW-9662) was examined through western blotting. The expression of MAPK signaling pathway-related molecules was assessed through western blotting. In vivo, various concentrations of BX471 or an equivalent medium were injected into DMM model joints. Cartilage destruction was evaluated through Safranin O/Fast green and hematoxylin-eosin (H&E) staining. RESULTS This study revealed that inhibiting CCR1 mitigates IL-1β-induced aging, downregulates the expression of iNOS, COX-2, and MMP13, and alleviates the IL-1β-induced decrease in anabolic indices. Mechanistically, the MAPK signaling pathway and PPAR-γ may be involved in inhibiting the protective effect of CCR1 on chondrocytes. In vivo, BX471 protected cartilage in a DMM model. CONCLUSION This study demonstrated the expression of CCR1 in chondrocytes. Inhibiting CCR1 reduced the inflammatory response, alleviated cartilage aging, and retarded degeneration through the MAPK signaling pathway and PPAR-γ, suggesting its potential therapeutic value for OA.
Collapse
Affiliation(s)
- Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Cheng Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Xiao-Jian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Hong-Bo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Chen L, Lin H, Qin L, Zhang G, Huang D, Chen P, Zhang X. Identification and validation of mutual hub genes in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated usual interstitial pneumonia. Heliyon 2024; 10:e28088. [PMID: 38571583 PMCID: PMC10987927 DOI: 10.1016/j.heliyon.2024.e28088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Objectives The study aims at exploring common hub genes and pathways in idiopathic pulmonary fibrosis (IPF) and rheumatoid arthritis-associated usual interstitial pneumonia (RA-UIP) through integrated bioinformatics analyses. Methods The GSE199152 dataset containing lung tissue samples from IPF and RA-UIP patients was acquired from the Gene Expression Omnibus (GEO) database. The identification of overlapping differentially expressed genes (DEGs) in IPF and RA-UIP was carried out through R language. Protein-protein interaction (PPI) network analysis and module analysis were applied to filter mutual hub genes in the two diseases. Enrichment analyses were also conducted to analyze the possible biological functions and pathways of the overlapped DEGs and hub genes. The diagnostic value of key genes was assessed with R language, and the expressions of these genes in pulmonary cells of IPF and rheumatoid arthritis-associated interstitial lung disease (RA-ILD) patients were analyzed with single cell RNA-sequencing (scRNA-seq) datasets. The expression levels of hub genes were validated in blood samples from patients, specimens of human lung fibroblasts, lung tissue samples from mice, as well as external GEO datasets. Results Four common hub genes (THBS2, TIMP1, POSTN, and CD19) were screened. Enrichment analyses showed that the abnormal expressions of DEGs and hub genes may be connected with the onset of IPF and RA-UIP by regulating the progression of fibrosis. ScRNA-seq analyses illustrated that for both IPF and RA-ILD patients, THBS2, TIMP1, and POSTN were mainly expressed in lung fibroblasts, while CD19 was uniquely high-expressed in B cells. The qRT-PCR and immunohistochemistry (IHC) results verified that the expression levels of hub genes were mostly in accordance with the findings obtained from the bioinformatics analyses. Conclusion Though IPF and RA-UIP are distinct diseases, they may to some extent have mutual pathogenesis in the development of fibrosis. THBS2, TIMP1, POSTN, and CD19 may be the potential biomarkers of IPF and RA-UIP, and intervention on related pathways of these genes could offer new strategies for the precision treatment of IPF and RA-UIP.
Collapse
Affiliation(s)
- Liangyu Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Respiratory and Critical Care Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Haobo Lin
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangzhou, China
- Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Linmang Qin
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangzhou, China
- Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Guangfeng Zhang
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangzhou, China
- Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Donghui Huang
- Department of Respiratory and Critical Care Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Peisheng Chen
- Department of Respiratory and Critical Care Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xiao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Rheumatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Patel S, McDonald JI, Mohammed H, Parthasarathy V, Hernandez V, Stuckey T, Lin AH, Gundimeda SK, Lin B, Reading J, Chan LLY. Development of a high-throughput image cytometric screening method as a research tool for immunophenotypic characterization of patient samples from clinical studies. J Immunol Methods 2024; 524:113587. [PMID: 38040192 DOI: 10.1016/j.jim.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Immunophenotyping has been the primary assay for characterization of immune cells from patients undergoing therapeutic treatments in clinical research, which is critical for understanding disease progression and treatment efficacy. Currently, flow cytometry has been the dominant methodology for characterizing surface marker expression for immunological research. Flow cytometry has been proven to be an effective and efficient method for immunophenotyping, however, it requires highly trained users and a large time commitment. Recently, a novel image cytometry system (Cellaca® PLX Image Cytometer, Revvity Health Sciences, Inc., Lawrence, MA) has been developed as a complementary method to flow cytometry for performing rapid and high-throughput immunophenotyping. In this work, we demonstrated an image cytometric screening method to characterize immune cell populations, streamlining the analysis of routine surface marker panels. The T cell, B cell, NK cell, and monocyte populations of 46 primary PBMC samples from subjects enrolled in autoimmune and oncological disease study cohorts were analyzed with two optimized immunophenotyping staining kits: Panel 1 (CD3, CD56, CD14) and Panel 2 (CD3, CD56, CD19). We validated the proposed image cytometry method by comparing the Cellaca® PLX and the AuroraTM flow cytometer (Cytek Biosciences, Fremont, CA). The image cytometry system was employed to generate bright field and fluorescent images, as well as scatter plots for multiple patient PBMC samples. In addition, the image cytometry method can directly determine cell concentrations for downstream assays. The results demonstrated comparable CD3, CD14, CD19, and CD56 cell populations from the primary PBMC samples, which showed an average of 5% differences between flow and image cytometry. The proposed image cytometry method provides a novel research tool to potentially streamline immunophenotyping workflow for characterizing patient samples in clinical studies.
Collapse
Affiliation(s)
- Samir Patel
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | - James I McDonald
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | - Hamza Mohammed
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | | | - Veronica Hernandez
- Allen Institute for Immunology, 615 Westlake Avenue N, Seattle, WA 98109, USA
| | - Tyanna Stuckey
- Allen Institute for Immunology, 615 Westlake Avenue N, Seattle, WA 98109, USA
| | - Allen H Lin
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | | | - Bo Lin
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | - Julian Reading
- Allen Institute for Immunology, 615 Westlake Avenue N, Seattle, WA 98109, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., Lawrence, MA 01843, USA.
| |
Collapse
|
4
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front Immunol 2022; 13:907733. [PMID: 35874704 PMCID: PMC9304905 DOI: 10.3389/fimmu.2022.907733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
5
|
Zvejniece L, Kozireva S, Rudevica Z, Leonciks A, Ehlin-Henriksson B, Kashuba E, Kholodnyuk I. Expression of the Chemokine Receptor CCR1 in Burkitt Lymphoma Cell Lines Is Linked to the CD10-Negative Cell Phenotype and Co-Expression of the EBV Latent Genes EBNA2, LMP1, and LMP2. Int J Mol Sci 2022; 23:ijms23073434. [PMID: 35408790 PMCID: PMC8998437 DOI: 10.3390/ijms23073434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Chemokines and their receptors regulate the migration of immune cells and the dissemination of cancer cells. CCR1, CCR2, CCR3, and CCR5 all belong to a single protein homology cluster and respond to the same inflammatory chemokines. We previously reported that CCR1 and CCR2B are induced upon Epstein-Barr virus (EBV) infection of B cells in vitro. EBV is present in almost all cases of endemic Burkitt lymphoma (BL); however, the contribution of EBV in the pathogenesis of the disease is not fully understood. Here, we analyzed the relation of the expression of CCR1, CCR2, CCR3, and CCR5, the EBV DNA load and expression of EBV latent genes in nine EBV-carrying and four EBV-negative BL cell lines. We revealed that CCR1 is expressed at high mRNA and protein levels in two CD10-negative BL cell lines with co-expression of the EBV latent genes EBNA2, LMP1, and LMP2. Low levels of CCR2 transcripts were found in three BL cell lines. CCR3 and CCR5 transcripts were hardly detectable. Our data suggest that in vivo, CCR1 may be involved in the dissemination of BL cells and in the selection of BL cells with restricted EBV gene expression programs.
Collapse
Affiliation(s)
- Laura Zvejniece
- Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Street, 1067 Riga, Latvia; (L.Z.); (S.K.)
| | - Svetlana Kozireva
- Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Street, 1067 Riga, Latvia; (L.Z.); (S.K.)
| | - Zanna Rudevica
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Street k-1, 1067 Riga, Latvia; (Z.R.); (A.L.)
| | - Ainars Leonciks
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Street k-1, 1067 Riga, Latvia; (Z.R.); (A.L.)
| | - Barbro Ehlin-Henriksson
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institute, SE-171 65 Stockholm, Sweden; (B.E.-H.); (E.K.)
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institute, SE-171 65 Stockholm, Sweden; (B.E.-H.); (E.K.)
- Laboratory of Molecular Mechanisms of Cell Transformation, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, 45 Vasylkivska Street, UA-03022 Kyiv, Ukraine
| | - Irina Kholodnyuk
- Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Street, 1067 Riga, Latvia; (L.Z.); (S.K.)
- Correspondence:
| |
Collapse
|
6
|
Komaki S, Ohmomo H, Hachiya T, Sutoh Y, Ono K, Furukawa R, Umekage S, Otsuka-Yamasaki Y, Tanno K, Sasaki M, Shimizu A. Longitudinal DNA methylation dynamics as a practical indicator in clinical epigenetics. Clin Epigenetics 2021; 13:219. [PMID: 34903243 PMCID: PMC8670275 DOI: 10.1186/s13148-021-01202-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND One of the fundamental assumptions of DNA methylation in clinical epigenetics is that DNA methylation status can change over time with or without interplay with environmental and clinical conditions. However, little is known about how DNA methylation status changes over time under ordinary environmental and clinical conditions. In this study, we revisited the high frequency longitudinal DNA methylation data of two Japanese males (24 time-points within three months) and characterized the longitudinal dynamics. RESULTS The results showed that the majority of CpGs on Illumina HumanMethylation450 BeadChip probe set were longitudinally stable over the time period of three months. Focusing on dynamic and stable CpGs extracted from datasets, dynamic CpGs were more likely to be reported as epigenome-wide association study (EWAS) markers of various traits, especially those of immune- and inflammatory-related traits; meanwhile, the stable CpGs were enriched in metabolism-related genes and were less likely to be EWAS markers, indicating that the stable CpGs are stable both in the short-term within individuals and under various environmental and clinical conditions. CONCLUSIONS This study indicates that CpGs with different stabilities are involved in different functions and traits, and thus, they are potential indicators that can be applied for clinical epigenetic studies to outline underlying mechanisms.
Collapse
Affiliation(s)
- Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kanako Ono
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Ryohei Furukawa
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan.,Department of Biology, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan
| | - So Umekage
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yayoi Otsuka-Yamasaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan.,Department of Hygiene and Preventive Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan.,Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan. .,Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan.
| |
Collapse
|
7
|
Kholodnyuk I, Rivkina A, Hippe L, Svirskis S, Kozireva S, Ventina I, Spaka I, Soloveichika M, Pavlova J, Murovska M, Lejniece S. Chemokine Receptors CCR1 and CCR2 on Peripheral Blood Mononuclear Cells of Newly Diagnosed Patients with the CD38-Positive Chronic Lymphocytic Leukemia. J Clin Med 2020; 9:E2312. [PMID: 32708233 PMCID: PMC7408836 DOI: 10.3390/jcm9072312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 01/29/2023] Open
Abstract
Chemokines and their receptors direct migration and infiltration of immune cells. CCR1 and CCR2 maintain sequence similarity and respond to a number of the same chemokines secreted in lymphoid organs. Expression of CD38 on leukemic cells has been associated with poor clinical outcomes in patients with chronic lymphocytic leukemia (CLL) and is considered as the negative predictor of progression. In our study of newly diagnosed CLL patients, which included 39 CD38-positive and 22 CD38-negative patients, CCR1 and/or CCR2 were always detected, using flow cytometry, on the peripheral blood (PB) CD19+CD5+ lymphocytes in patients with >30% of the CD38+ CD19+CD5+ lymphocytes (n = 16). Spearman's rank correlation analysis determined correlations between the frequency of the CCR1- and CCR2-expressing PB CD19+CD5+ lymphocytes and the frequency of the CD38-positive CD19+CD5+ lymphocytes (rs = 0.50 and rs = 0.38, respectively). No significant correlations were observed between ZAP70 mRNA expression levels in PB mononuclear cells and the frequency of the circulating CCR1+ or CCR2+ CD19+CD5+ lymphocytes. Further association studies are needed to verify prognostic relevance of the CCR1/CCR2 expression on leukemic cells in CLL patients at diagnosis. We suggest that CCR1/CCR2 signaling pathways could represent attractive targets for development of CLL anti-progression therapeutics.
Collapse
Affiliation(s)
- Irina Kholodnyuk
- Institute of Microbiology and Virology, Riga Stradins University, Riga LV-1067, Latvia; (L.H.); (S.S.); (S.K.); (I.V.); (I.S.); (J.P.); (M.M.)
| | - Alla Rivkina
- Department of Internal Diseases, Riga Stradins University, Riga LV-1038, Latvia; (A.R.); (S.L.)
- Riga East University Hospital, Clinic of Chemotherapy and Hematology, Riga LV-1038, Latvia;
| | - Laura Hippe
- Institute of Microbiology and Virology, Riga Stradins University, Riga LV-1067, Latvia; (L.H.); (S.S.); (S.K.); (I.V.); (I.S.); (J.P.); (M.M.)
| | - Simons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, Riga LV-1067, Latvia; (L.H.); (S.S.); (S.K.); (I.V.); (I.S.); (J.P.); (M.M.)
| | - Svetlana Kozireva
- Institute of Microbiology and Virology, Riga Stradins University, Riga LV-1067, Latvia; (L.H.); (S.S.); (S.K.); (I.V.); (I.S.); (J.P.); (M.M.)
| | - Ildze Ventina
- Institute of Microbiology and Virology, Riga Stradins University, Riga LV-1067, Latvia; (L.H.); (S.S.); (S.K.); (I.V.); (I.S.); (J.P.); (M.M.)
| | - Irina Spaka
- Institute of Microbiology and Virology, Riga Stradins University, Riga LV-1067, Latvia; (L.H.); (S.S.); (S.K.); (I.V.); (I.S.); (J.P.); (M.M.)
| | - Marina Soloveichika
- Riga East University Hospital, Clinic of Chemotherapy and Hematology, Riga LV-1038, Latvia;
| | - Jelena Pavlova
- Institute of Microbiology and Virology, Riga Stradins University, Riga LV-1067, Latvia; (L.H.); (S.S.); (S.K.); (I.V.); (I.S.); (J.P.); (M.M.)
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradins University, Riga LV-1067, Latvia; (L.H.); (S.S.); (S.K.); (I.V.); (I.S.); (J.P.); (M.M.)
| | - Sandra Lejniece
- Department of Internal Diseases, Riga Stradins University, Riga LV-1038, Latvia; (A.R.); (S.L.)
- Riga East University Hospital, Clinic of Chemotherapy and Hematology, Riga LV-1038, Latvia;
| |
Collapse
|
8
|
Rundgren IM, Ersvær E, Ahmed AB, Ryningen A, Bruserud Ø. A Pilot Study of Circulating Monocyte Subsets in Patients Treated with Stem Cell Transplantation for High-Risk Hematological Malignancies. ACTA ACUST UNITED AC 2020; 56:medicina56010036. [PMID: 31963675 PMCID: PMC7023283 DOI: 10.3390/medicina56010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Autologous and allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies, and monocytes are probably involved in hematological reconstitution as well as posttransplant immunoregulation. The aim of our study was to investigate the levels of circulating monocyte subsets in allotransplant recipients. Materials and Methods: The levels of the classical, intermediate, and nonclassical monocyte subsets were determined by flow cytometry. Sixteen patients and 18 healthy controls were included, and the levels were analyzed during pretransplant remission (n = 13), early posttransplant during cytopenia (n = 9), and early reconstitution (n = 9). Results: Most patients in remission showed a majority of classical monocytes. The patients showed severe early posttransplant monocytopenia, but the total peripheral blood monocyte counts normalized very early on, and before neutrophil and platelet counts. During the first 7–10 days posttransplant (i.e., during cytopenia) a majority of the circulating monocytes showed a nonclassical phenotype, but later (i.e., 12–28 days posttransplant) the majority showed a classical phenotype. However, the variation range of classical monocytes was wider for patients in remission and during regeneration than for healthy controls. Conclusions: The total peripheral blood monocyte levels normalize at the very early stages and before neutrophil reconstitution after stem cell transplantation, and a dominance of classical monocytes is reached within 2–4 weeks posttransplant.
Collapse
Affiliation(s)
- Ida Marie Rundgren
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (E.E.); (A.R.)
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (E.E.); (A.R.)
| | - Aymen Bushra Ahmed
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Anita Ryningen
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (E.E.); (A.R.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence: ; Tel.: +47-55972997
| |
Collapse
|