1
|
Zhao J, Chen L, Ma A, Bai X, Zeng Y, Liu D, Liu B, Zhang W, Tang S. Recent advances in coaxial electrospun nanofibers for wound healing. Mater Today Bio 2024; 29:101309. [PMID: 39558931 PMCID: PMC11570975 DOI: 10.1016/j.mtbio.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
The skin is the body's primary immune barrier, defending it against pathogenic invasion. Skin injuries impose a significant physiological burden on patients, making effective wound management essential. Dressings are commonly employed in wound care, and electrospun nanofiber dressings are a research hotspot owing to their ease of fabrication, cost-effectiveness, and structural similarity to the extracellular matrix. Coaxial electrospinning offers considerable advantages in drug delivery, fiber structure transformation, and enhanced interaction with the host. These attributes make coaxial electrospun materials promising candidates for precision and personalized wound dressings in medical treatments. This review provides a comprehensive overview of wound healing and its influencing factors. It also outlines coaxial electrospinning's production principles and benefits in wound dressings. Guided by the factors affecting wound healing, coaxial electrospun nanofiber dressings have different application modalities. Furthermore, we discuss the current limitations and future directions for enhancing the current coaxial electrospun dressing technologies.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Aiwei Ma
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Yating Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Bo Liu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| |
Collapse
|
2
|
Montaño-Grijalva E, Rodríguez-Félix F, Armenta-Villegas L, Del Toro-Sanchez CL, Carvajal-Millan E, Torres-Arreola W, Rodríguez-Félix DE, Tapia-Hernández JA, Barreras-Urbina CG, López-Peña IY, Burruel-Ibarra SE, Santos-Sauceda I, Pompa-Ramos JL. Preparation and Characterization of Zein-Metformin/Gelatin Nanofibers by Coaxial Electrospinning. ACS OMEGA 2024; 9:38423-38436. [PMID: 39310154 PMCID: PMC11411526 DOI: 10.1021/acsomega.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024]
Abstract
Metformin is a drug commonly used for the treatment of type 2 diabetes. However, it has been associated with damaging side effects when used over a long period of time. A potential solution to this problem is the implementation of a prolonged-release system for metformin, which would enhance the efficiency of the doses administered to patients. To achieve this, it is necessary to use materials compatible with humans. Electrospinning is an efficient technique that can be employed for this purpose, utilizing solvents that are safe for human use. Therefore, the objective of this study was to prepare and characterize a system for the prolonged release of metformin from zein and gelatin through coaxial electrospinning as well as to investigate its in vitro release. Metformin-loaded zein/gelatin coaxial nanofibers were prepared using the coaxial electrospinning technique and then characterized by morphological, structural, and thermal analysis. Morphologically, metformin-loaded zein/gelatin coaxial nanofibers were obtained with an average diameter of 322.6 ± 44.5 nm and a smooth surface. Fourier transform infrared spectroscopy (FTIR) analysis showed band shifts at a higher wavenumber due to drug-protein interactions by hydrogen bonding between N-H and C=O groups. Thermal gravimetric analysis (TGA) results suggested a possible interaction between materials due to an increase in the degradation temperatures of zein and gelatin when metformin was included. The transition of the crystallinity of metformin to the amorphous form was also confirmed by differential scanning calorimetry (DSC). Coaxial nanofibers exhibited an encapsulation efficiency of 66% and a profile release that showed an initial release of metformin (40%) in the first hour, followed by a gradual release until it reached equilibrium at 60 h and a cumulative release of 97% of metformin. It was concluded that using the coaxial electrospinning technique, it is possible to obtain nanofibers from polymeric solutions of zein and gelatin to encapsulate metformin, with a potential application as a prolonged-release system.
Collapse
Affiliation(s)
| | - Francisco Rodríguez-Félix
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo, Sonora C.P. 83000, Mexico
| | - Lorena Armenta-Villegas
- Department
of Chemical Biological Sciences, University
of Sonora, Hermosillo, Sonora C.P. 83000, Mexico
| | | | - Elizabeth Carvajal-Millan
- Animal
Origin Food Technology Coordination, Food
and Development Research Center A.C., Hermosillo, Sonora 83000, Mexico
| | - Wilfrido Torres-Arreola
- Department
of Food Research and Graduate Program, University
of Sonora, Hermosillo, Sonora C.P. 83000, Mexico
| | | | | | | | - Itzel Yanira López-Peña
- Vegetable
Origin Food Technology Coordination, Food
and Development Research Center A.C., Hermosillo, Sonora 83000, Mexico
| | | | - Irela Santos-Sauceda
- Department
of Polymers and Materials Research, University
of Sonora, Hermosillo, Sonora C.P. 83000, Mexico
| | - José Luis Pompa-Ramos
- Department
of Polymers and Materials Research, University
of Sonora, Hermosillo, Sonora C.P. 83000, Mexico
| |
Collapse
|
3
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [PMID: 38679260 DOI: 10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Targeted nanoparticles (NPs) are aimed at improving clinical outcomes by enhancing the diagnostic and therapeutic efficacy of drugs in the treatment of Alzheimer's disease (AD). METHODS Curcumin (CUR)-loaded poly-lactic-co-glycolic acid (PLGA) NPs (CNPs) were produced to demonstrate a prolonged release and successfully embedded into 3D printed sodium alginate (SA)/gelatin (GEL) scaffolds that can dissolve rapidly sublingually. Characterization and in vitro activity of the NPs and scaffolds were evaluated. RESULTS Based on the in vitro drug release studies, 99.6 % of the encapsulated CUR was released in a controlled manner within 18 days for the CNPs. In vitro cell culture studies showed that all samples exhibited cell viability above 84.2 % and no significant cytotoxic effect on SH-SY5Y cells. The samples were analyzed through 2 different pathways by PCR analysis. Real-time PCR results indicated that CNP and CNP-embedded SA/GEL scaffolds (CNPSGS) may show neuroprotective effects by modulating the Wnt/β-catenin pathway. The gene expression level of β-catenin slightly increased compared to the gene expression levels of other proteins and enzymes with these treatments. However, the PI3K/Akt/GSK-3β signaling pathway was regulated at the same time because of the crosstalk between these 2 pathways. CONCLUSION CNPSGS might be an effective therapeutic alternative for AD treatment.
Collapse
Affiliation(s)
- Humeyra Betul Yekeler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Ece Guler
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Patricia Santos Beato
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Sushma Priya
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | | | - Murat Dogan
- Department of Pharmaceutical Biotechnology, Cumhuriyet University, Sivas 58140, Türkiye; Cancer Survivorship Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 625 N. Michigan Ave., Suite 2100, Chicago, IL, 60611, USA
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Muhammet Emin Cam
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34854, Türkiye.
| |
Collapse
|
4
|
Polat EB, Hazar-Yavuz AN, Guler E, Ozcan GS, Taskin T, Duruksu G, Elcioglu HK, Yazır Y, Cam ME. Sublingual Administration of Teucrium Polium-Loaded Nanofibers with Ultra-Fast Release in the Treatment of Diabetes Mellitus: In Vitro and In Vivo Evaluation. J Pharm Sci 2024; 113:1068-1087. [PMID: 38123068 DOI: 10.1016/j.xphs.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
In this study, Teucrium polium (TP) methanolic extract, which has antidiabetic activity and protects the β-cells of the pancreas, was loaded in polyethylene oxide/sodium alginate nanofibers by electrospinning and administered sublingually to evaluate their effectiveness in type-2 diabetes mellitus (T2DM) by cell culture and in vivo studies. The gene expressions of insulin, glucokinase, GLUT-1, and GLUT-2 improved in TP-loaded nanofibers (TPF) on human beta cells 1.1B4 and rat beta cells BRIN-BD11. Fast-dissolving (<120 s) sublingual TPF exhibited better sustainable anti-diabetic activity than the suspension form, even in the twenty times lower dosage in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, GLUT-2, SGLT-2, PPAR-γ, insulin, and tumor necrosis factor-alpha were improved. TP and TPF treatments ameliorated morphological changes in the liver, pancreas, and kidney. The fiber diameter increased, tensile strength decreased, and the working temperature range enlarged by loading TP in fibers. Thus, TPF has proven to be a novel supportive treatment approach for T2DM with the features of being non-toxic, easy to use, and effective.
Collapse
Affiliation(s)
- Elif Beyzanur Polat
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkiye; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Gul Sinemcan Ozcan
- MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkiye
| | - Turgut Taskin
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Gokhan Duruksu
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34722, Turkiye
| | - Hatice Kubra Elcioglu
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Yusufhan Yazır
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkiye
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkiye; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34722, Turkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; SFA R&D Laboratories, Teknopark Istanbul, Istanbul 34906, Türkiye; ATA BIO Technology, Teknopol Istanbul, Istanbul 34930, Türkiye.
| |
Collapse
|
5
|
Ulker Turan C, Derviscemaloglu M, Guvenilir Y. Herbal active ingredient-loaded poly(ω-pentadecalactone-co-δ-valerolactone)/gelatin nanofibrous membranes. Eur J Pharm Biopharm 2024; 194:62-73. [PMID: 38042509 DOI: 10.1016/j.ejpb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Recently, there has been an accelerating interest in novel biocompatible wound dressings made of nano-sized materials, especially nanofibers. Electrospun nanofibers provide high surface area and mimic the extracellular matrix which enhances biocompatibility. Besides, nanofibrous structures have high active ingredient loading capacity as a result of their high surface-to-volume ratio and porosity. In the present study, curcumin-loaded poly(ω-pentadecalactone-co-δ-valerolactone)/gelatin (PDL-VL/Gel) nanofibrous membranes were fabricated to be used for healing skin wounds. Poly(ω-pentadecalactone-co-δ-valerolactone) copolymer has been enzymatically synthesized in previous studies, thus it improves the originality of the membrane. It was aimed to obtain a synergetic effect and increase the novelty of the work by blending synthetic and natural polymers. Moreover, it was preferred to provide antibacterial activity by the incorporation of a herbal ingredient (curcumin) as a natural alternative to commercial antibiotics. Varied amounts of curcumin (5-25 %, w:v) were electrospun together with PDL-VL/Gel (equal volume ratio) polymer blend (fiber diameters ranged between 554 and 1074 nm) and several characterizations (morphological and molecular structure, wettability characteristics, and thermal behavior) were applied to examine the curcumin incorporation. Afterwards, in vitro curcumin release studies were carried out and mathematical modeling was applied to release data to clarify the transport mechanism. Curcumin release profiles comprised of an initial burst release in the first hour followed by a sustained release through 24 h. Based on the antibacterial activity test results, 15 % curcumin loading ratio was found to be sufficient for the treatment of skin wounds infected by Gram-negative (E. coli) and Gram-positive (S. aureus and B. subtilis) bacteria. Additionally, nanofibrous membranes did not lead to cytotoxicity, and curcumin content further enhanced the viability of fibroblasts. Thus, the presented antibacterial nanofibrous membrane is suggested to be applied for the treatment of wound infections and accelerating the healing process.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Gebze Technical University, Department of Bioengineering, Kocaeli 41400, Turkey.
| | - Mete Derviscemaloglu
- Istanbul Technical University, Department of Molecular Biology and Genetics, Istanbul 34369, Turkey
| | - Yuksel Guvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul 34369, Turkey
| |
Collapse
|
6
|
Firouzi Amandi A, Shahrtash SA, Kalavi S, Moliani A, Mousazadeh H, Rezai Seghin Sara M, Dadashpour M. Fabrication and characterization of metformin-loaded PLGA/Collagen nanofibers for modulation of macrophage polarization for tissue engineering and regenerative medicine. BMC Biotechnol 2023; 23:55. [PMID: 38115008 PMCID: PMC10731790 DOI: 10.1186/s12896-023-00825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
In tissue engineering (TE) and regenerative medicine, the accessibility of engineered scaffolds that modulate inflammatory states is extremely necessary. The aim of the current work was to assess the efficacy of metformin (MET) incorporated in PLGA/Collagen nanofibers (Met-PLGA/Col NFs) to modulate RAW264.7 macrophage phenotype from pro-inflammatory status (M1) to anti-inflammatory status (M2). Given this, MET-PLGA/Col NFs were fabricated using an electrospinning technique. Structural characterization such as morphology, chemical and mechanical properties, and drug discharge pattern were assessed. MTT assay test exposed that MET-PLGA/Col NFs remarkably had increased cell survival in comparison with pure PLGA/Collagen NFs and control (p < 0.05) 72 h after incubation. Based on the qPCR assay, a reduction in the expression of iNOS-2 and SOCS3 was found in the cells seeded on MET-PLGA/Col NFs, demonstrating the substantial modulation of the M1 phenotype to the M2 phenotype. Moreover, it was determined a main decrease in the pro-inflammatory cytokines and mediator's expression but the growth factors amount related to anti-inflammatory M2 were meaningfully upregulated. Finally, MET-PLGA/Col NFs possibly will ensure a beneficial potential for effective variation of the macrophage response from an inflammatory phase (M1) to a pro-regenerative (M2) phase.
Collapse
Affiliation(s)
| | | | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Mousazadeh
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
7
|
Abdelhakeem E, Monir S, Teaima MHM, Rashwan KO, El-Nabarawi M. State-of-the-Art Review of Advanced Electrospun Nanofiber Composites for Enhanced Wound Healing. AAPS PharmSciTech 2023; 24:246. [PMID: 38030812 DOI: 10.1208/s12249-023-02702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a complex biological process with four main phases: hemostasis, inflammation, proliferation, and remodeling. Current treatments such as cotton and gauze may delay the wound healing process which gives a demand for more innovative treatments. Nanofibers are nanoparticles that resemble the extracellular matrix of the skin and have a large specific surface area, high porosity, good mechanical properties, controllable morphology, and size. Nanofibers are generated by electrospinning method that utilizes high electric force. Electrospinning device composed of high voltage power source, syringe that contains polymer solution, needle, and collector to collect nanofibers. Many polymers can be used in nanofiber that can be from natural or from synthetic origin. As such, electrospun nanofibers are potential scaffolds for wound healing applications. This review discusses the advanced electrospun nanofiber morphologies used in wound healing that is prepared by modified electrospinning techniques.
Collapse
Affiliation(s)
- Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt.
| | - Sawsan Monir
- Production Sector, Semisolid Department, Nile Company for Pharmaceuticals and Chemical Industries, Cairo, Egypt
| | - Mahmoud H M Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| | - Kareem Omar Rashwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
8
|
Seyhan SA, Alkaya DB, Cesur S, Sahin A. Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers. Int J Biol Macromol 2023; 239:124201. [PMID: 37001771 DOI: 10.1016/j.ijbiomac.2023.124201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
In this study, PLA/PEG nanofibers (NFs) loaded with amygdalin (AMG) and bitter almond kernels extract were produced by electrospinning to prevent local breast cancer recurrence, and the effect of produced NFs on the MCF-7 cell line was investigated in vitro. The electrospun NFs were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis (DSC) and tensile strength and physical analyzes were performed. Loading of AMG to nanofibers increased fiber diameters from 827.93 ± 174.507 nm to 1855.32 ± 291.057 μm. When drug release results were analyzed, the NFs showed a controlled release profile extending up to 10 h. The encapsulation efficiency of AMG-loaded NFs was calculated at 100 ± 0,01 %, 94 ± 0,02 %, and 88 ± 0,02 %. When in vitro cytotoxicity results were analyzed, showed that all NFs are effective in inducing cytotoxicity against MCF-7 breast cancer cells. Importantly, 20 mg AMG-loaded NFs displayed effectively higher cytotoxic effects against breast cancer cells relative to the other NFs. Considering all the results, AMG-loaded NFs can give sustained release of drugs at the local sites. Therefore, AMG-loaded nanofibers can reduce the risk of local recurrence of cancer after surgery and can be directly implanted into solid tumor cells for treatment.
Collapse
|
9
|
Jang EJ, Patel R, Patel M. Electrospinning Nanofibers as a Dressing to Treat Diabetic Wounds. Pharmaceutics 2023; 15:pharmaceutics15041144. [PMID: 37111630 PMCID: PMC10142830 DOI: 10.3390/pharmaceutics15041144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, diabetic mellitus (DM) is a common metabolic disease that effectively inhibits insulin production, destroys pancreatic β cells, and consequently, promotes hyperglycemia. This disease causes complications, including slowed wound healing, risk of infection in wound areas, and development of chronic wounds all of which are significant sources of mortality. With an increasing number of people diagnosed with DM, the current method of wound healing does not meet the needs of patients with diabetes. The lack of antibacterial ability and the inability to sustainably deliver necessary factors to wound areas limit its use. To overcome this, a new method of creating wound dressings for diabetic patients was developed using an electrospinning methodology. The nanofiber membrane mimics the extracellular matrix with its unique structure and functionality, owing to which it can store and deliver active substances that greatly aid in diabetic wound healing. In this review, we discuss several polymers used to create nanofiber membranes and their effectiveness in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Eun Jo Jang
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21938, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Synthesis and Characterization of Conducting Polymer/Alginate Composite Hydrogels: Effect of Conducting Polymer Loading on the Release Behaviour of Metformin Drug. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Su S, Bedir T, Kalkandelen C, Sasmazel HT, Basar AO, Chen J, Ekren N, Gunduz O. A drug-eluting nanofibrous hyaluronic acid-keratin mat for diabetic wound dressing. EMERGENT MATERIALS 2022; 5:1617-1627. [DOI: 10.1007/s42247-022-00418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2025]
|
12
|
Erzengin S, Guler E, Eser E, Polat EB, Gunduz O, Cam ME. In vitro and in vivo evaluation of 3D printed sodium alginate/polyethylene glycol scaffolds for sublingual delivery of insulin: Preparation, characterization, and pharmacokinetics. Int J Biol Macromol 2022; 204:429-440. [DOI: 10.1016/j.ijbiomac.2022.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
|
13
|
Cesur S, Cam ME, Sayin FS, Gunduz O. Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer's disease. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Maleki H, Khoshnevisan K, Sajjadi-Jazi SM, Baharifar H, Doostan M, Khoshnevisan N, Sharifi F. Nanofiber-based systems intended for diabetes. J Nanobiotechnology 2021; 19:317. [PMID: 34641920 PMCID: PMC8513238 DOI: 10.1186/s12951-021-01065-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic mellitus (DM) is the most communal metabolic disease resulting from a defect in insulin secretion, causing hyperglycemia by promoting the progressive destruction of pancreatic β cells. This autoimmune disease causes many severe disorders leading to organ failure, lower extremity amputations, and ultimately death. Modern delivery systems e.g., nanofiber (NF)-based systems fabricated by natural and synthetic or both materials to deliver therapeutics agents and cells, could be the harbinger of a new era to obviate DM complications. Such delivery systems can effectively deliver macromolecules (insulin) and small molecules. Besides, NF scaffolds can provide an ideal microenvironment to cell therapy for pancreatic β cell transplantation and pancreatic tissue engineering. Numerous studies indicated the potential usage of therapeutics/cells-incorporated NF mats to proliferate/regenerate/remodeling the structural and functional properties of diabetic skin ulcers. Thus, we intended to discuss the aforementioned features of the NF system for DM complications in detail.
Collapse
Affiliation(s)
- Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Farshad Sharifi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| |
Collapse
|
15
|
Xu H, Xu X, Li S, Song WL, Yu DG, Annie Bligh SW. The Effect of Drug Heterogeneous Distributions within Core-Sheath Nanostructures on Its Sustained Release Profiles. Biomolecules 2021; 11:1330. [PMID: 34572545 PMCID: PMC8469915 DOI: 10.3390/biom11091330] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
The sustained release of a water-soluble drug is always a key and important issue in pharmaceutics. In this study, using cellulose acetate (CA) as a biomacromolecular matrix, core-sheath nanofibers were developed for providing a sustained release of a model drug-metformin hydrochloride (MET). The core-sheath nanofibers were fabricated using modified tri-axial electrospinning, in which a detachable homemade spinneret was explored. A process-nanostructure-performance relationship was demonstrated through a series of characterizations. The prepared nanofibers F2 could release 95% of the loaded MET through a time period of 23.4 h and had no initial burst effect. The successful sustained release performances of MET can be attributed to the following factors: (1) the reasonable application of insoluble CA as the filament-forming carrier, which determined that the drug was released through a diffusion manner; (2) the core-sheath nanostructure provided the possibility of both encapsulating the drug completely and realizing the heterogeneous distributions of MET in the nanofibers with a higher drug load core than the sheath; (3) the thickness of the sheath sections were able to be exploited for further manipulating a better drug extended release performance. The mechanisms for manipulating the drug sustained release behaviors are proposed. The present proof-of-concept protocols can pave a new way to develop many novel biomolecule-based nanostructures for extending the release of water-soluble drugs.
Collapse
Affiliation(s)
- Haixia Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
| | - Xizi Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
| | - Siyu Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
| | - Wen-Liang Song
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - S. W. Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
16
|
Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03566-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|