1
|
Yang M, Li Q, Huang M, Liu X, Wang B. T Lymphocyte Mitochondrial Markers as Independent Risk Factors for Poor Prognosis of COVID-19. Infect Drug Resist 2024; 17:4887-4898. [PMID: 39524978 PMCID: PMC11550917 DOI: 10.2147/idr.s470530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) primarily targets mitochondria. However, the description of mitochondrial signaling in immune cells remains limited in COVID-19. This study aimed to elucidate the pivotal roles played by immune cells and mitochondria in the pathogenesis of COVID-19 and the resulting clinical outcomes. Methods We obtained epidemiological characteristics, laboratory parameters and T cell mitochondrial damage indicators in 296 COVID-19 patients. And we further evaluated the predictive value of novel T lymphocyte mitochondrial markers and conventional immune inflammatory markers as clinical outcomes in COVID-19 patients. Finally, Binary logistic regression analysis was conducted to identify the independent risk factors associated with the prognosis of patients with COVID-19. Results The severe group exhibited lower counts of Mito+CD3+, Mito+CD4+, and Mito+CD8+ cells compared to the non-severe group. Significantly higher positive rates of CD3+, CD3+CD4+, and CD3+CD8+T cell mitochondrial damage were observed in the severe group compared to the non-severe group. The CD3+CD8+T cells MMP-low% had the highest AUC value of 0.864 (95% CI =0.794-0.934) to evaluate COVID-19 outcome. Binary logistic regression analysis showed that CD3+T cells MMP-low%, CD3+CD4+T cells MMP-low% and CD3+CD8+T cells MMP-low% were independent risk factors for adverse outcomes in COVID-19 patients. Conclusion Our research suggests that a substantial proportion of COVID-19 patients exhibited mitochondrial impairment with T-lymphocyte. T cells mitochondrial markers can serve as predictive factors and independent risk factors for predicting adverse outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Qianqian Li
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Mengxin Huang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Xiaoman Liu
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Baogui Wang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| |
Collapse
|
2
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2024:10.1007/s11357-024-01398-4. [PMID: 39495479 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. GeroScience 2024; 46:5267-5286. [PMID: 38668888 PMCID: PMC11336094 DOI: 10.1007/s11357-024-01165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.
Collapse
Affiliation(s)
- Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| | | | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Ret U 2, 7624, Pecs, Hungary.
| | - Erzsebet Ezer
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
4
|
Wang C, Zhang H, Zhang J, Hong Z, Miao C, Wang T, Lin H, Li Y, Liu G. Mycoplasma pneumoniae-induced Kawasaki disease via PINK1/Parkin-mediated mitophagy. Exp Cell Res 2024; 441:114182. [PMID: 39094903 DOI: 10.1016/j.yexcr.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)--α and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. Mp-LAMPs increased the levels of TNF-α, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.
Collapse
Affiliation(s)
- Chengyi Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China; Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou 350001, PR China
| | - Huijie Zhang
- Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou 350001, PR China
| | - Jinyan Zhang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China
| | - Zesheng Hong
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China
| | - Chong Miao
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou 350001, PR China
| | - Tengyang Wang
- Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China
| | - Han Lin
- Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China
| | - Yinglin Li
- Pediatric Intensive Care Unit, The Affiliated Hospital(Group) of Putian University, Putian 351100, PR China.
| | - Guanghua Liu
- Department of Pediatrics, Fujian Children's Hospital(Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, PR China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
5
|
Abstract
Coronavirus Disease-19 (COVID-19) pandemic is caused by SARS-CoV-2 that has infected more than 600 million people and killed more than 6 million people worldwide. This infection affects mainly certain groups of people that have high susceptibility to present severe COVID-19 due to comorbidities. Moreover, the long-COVID-19 comprises a series of symptoms that may remain in some patients for months after infection that further compromises their health. Thus, since this pandemic is profoundly affecting health, economy, and social life of societies, a deeper understanding of viral replication cycle could help to envisage novel therapeutic alternatives that limit or stop COVID-19. Several findings have unexpectedly discovered that mitochondria play a critical role in SARS-CoV-2 cell infection. Indeed, it has been suggested that this organelle could be the origin of its replication niches, the double membrane vesicles (DMV). In this regard, mitochondria derived vesicles (MDV), involved in mitochondria quality control, discovered almost 15 years ago, comprise a subpopulation characterized by a double membrane. MDV shedding is induced by mitochondrial stress, and it has a fast assembly dynamic, reason that perhaps has precluded their identification in electron microscopy or tomography studies. These and other features of MDV together with recent SARS-CoV-2 protein interactome and other findings link SARS-CoV-2 to mitochondria and support that these vesicles are the precursors of SARS-CoV-2 induced DMV. In this work, the morphological, biochemical, molecular, and cellular evidence that supports this hypothesis is reviewed and integrated into the current model of SARS-CoV-2 cell infection. In this scheme, some relevant questions are raised as pending topics for research that would help in the near future to test this hypothesis. The intention of this work is to provide a novel framework that could open new possibilities to tackle SARS-CoV-2 pandemic through mitochondria and DMV targeted therapies.
Collapse
Affiliation(s)
- Pavel Montes de Oca-B
- Neurociencia Cognitiva, Instituto de Fisiologia-UNAM, CDMX, CDMX, 04510, Mexico
- Unidad de Neurobiologia Dinamica, Instituto Nacional de Neurologia y Neurocirugia, CDMX, CDMX, 14269, Mexico
| |
Collapse
|
6
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
7
|
Noonong K, Chatatikun M, Surinkaew S, Kotepui M, Hossain R, Bunluepuech K, Noothong C, Tedasen A, Klangbud WK, Imai M, Kawakami F, Kubo M, Kitagawa Y, Ichikawa H, Kanekura T, Sukati S, Somsak V, Udomwech L, Ichikawa T, Nissapatorn V, Tangpong J, Indo HP, Majima HJ. Mitochondrial oxidative stress, mitochondrial ROS storms in long COVID pathogenesis. Front Immunol 2023; 14:1275001. [PMID: 38187378 PMCID: PMC10766822 DOI: 10.3389/fimmu.2023.1275001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Significance This review discusses the coronavirus disease 2019 (COVID-19) pathophysiology in the context of diabetes and intracellular reactions by COVID-19, including mitochondrial oxidative stress storms, mitochondrial ROS storms, and long COVID. Recent advances The long COVID is suffered in ~10% of the COVID-19 patients. Even the virus does not exist, the patients suffer the long COVID for even over a year, This disease could be a mitochondria dysregulation disease. Critical issues Patients who recover from COVID-19 can develop new or persistent symptoms of multi-organ complications lasting weeks or months, called long COVID. The underlying mechanisms involved in the long COVID is still unclear. Once the symptoms of long COVID persist, they cause significant damage, leading to numerous, persistent symptoms. Future directions A comprehensive map of the stages and pathogenetic mechanisms related to long COVID and effective drugs to treat and prevent it are required, which will aid the development of future long COVID treatments and symptom relief.
Collapse
Affiliation(s)
- Kunwadee Noonong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, Thailand
| | - Manas Kotepui
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Rahni Hossain
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Chanittha Noothong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wiyada Kwanhian Klangbud
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Motoki Imai
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Division of Microbiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Division of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Ichikawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Suriyan Sukati
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Lunla Udomwech
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Hiroko P. Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Amanogawa Galaxy Astronomy Research Center, Kagoshima University Graduate School of Engineering, Kagoshima, Japan
| | - Hideyuki J. Majima
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
8
|
Panteleev MA, Sveshnikova AN, Shakhidzhanov SS, Zamaraev AV, Ataullakhanov FI, Rumyantsev AG. The Ways of the Virus: Interactions of Platelets and Red Blood Cells with SARS-CoV-2, and Their Potential Pathophysiological Significance in COVID-19. Int J Mol Sci 2023; 24:17291. [PMID: 38139118 PMCID: PMC10743882 DOI: 10.3390/ijms242417291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The hematological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important in COVID-19 pathophysiology. However, the interactions of SARS-CoV-2 with platelets and red blood cells are still poorly understood. There are conflicting data regarding the mechanisms and significance of these interactions. The aim of this review is to put together available data and discuss hypotheses, the known and suspected effects of the virus on these blood cells, their pathophysiological and diagnostic significance, and the potential role of platelets and red blood cells in the virus's transport, propagation, and clearance by the immune system. We pay particular attention to the mutual activation of platelets, the immune system, the endothelium, and blood coagulation and how this changes with the evolution of SARS-CoV-2. There is now convincing evidence that platelets, along with platelet and erythroid precursors (but not mature erythrocytes), are frequently infected by SARS-CoV-2 and functionally changed. The mechanisms of infection of these cells and their role are not yet entirely clear. Still, the changes in platelets and red blood cells in COVID-19 are significantly associated with disease severity and are likely to have prognostic and pathophysiological significance in the development of thrombotic and pulmonary complications.
Collapse
Affiliation(s)
- Mikhail A. Panteleev
- Department of Medical Physics, Physics Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Anastasia N. Sveshnikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Faculty of Fundamental Physics and Chemical Engineering, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Soslan S. Shakhidzhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Alexey V. Zamaraev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Ulitsa Vavilova, 119991 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Fazoil I. Ataullakhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Aleksandr G. Rumyantsev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
| |
Collapse
|
9
|
Mahmoodpoor A, Mohammadzadeh M, Asghari R, Tagizadeh M, Iranpour A, Rezayi M, Pahnvar AJ, Emamalizadeh B, Sohrabifar N, Kazeminasab S. Prognostic potential of circulating cell free mitochondrial DNA levels in COVID-19 patients. Mol Biol Rep 2023; 50:10249-10255. [PMID: 37934373 DOI: 10.1007/s11033-023-08841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND In viral infections, mitochondria act as one of the main hubs of the pathogenesis. Recent findings present new insights into the potential role of circulating cell-free mitochondrial DNA (ccf-mtDNA) in COVID-19 pathogenesis by the induction of immune response and aggressive cytokine storm in SARS-CoV-2 infection. METHODS AND RESULTS The levels of ccf-mtDNA were investigated in 102 hospitalized patients with COVID-19 using the quantitative PCR (q-PCR) method. Statistical analysis confirmed a strong association between the levels of ccf-mtDNA and and mortality, ICU admission, and intubation. Also, our findings highlighted the pivotal role of comorbidities as a risk factor for COVID-19 mortality and severity. CONCLUSION Higher levels of ccf-mtDNA can serve as a potential early indicator for progress and poor prognosis of COVID-19.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Mohammadzadeh
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rogayyeh Asghari
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Tagizadeh
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mansour Rezayi
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynour Jalali Pahnvar
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Sadr Laboratories Group, Medical Genetics Laboratory, Tabriz, Iran.
| |
Collapse
|
10
|
Yang L, Wu Y, Jin W, Mo N, Ye G, Su Z, Tang L, Wang Y, Li Y, Du J. The potential role of ferroptosis in COVID-19-related cardiovascular injury. Biomed Pharmacother 2023; 168:115637. [PMID: 37844358 DOI: 10.1016/j.biopha.2023.115637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a global health threat in 2019. An important feature of the disease is that multiorgan symptoms of SARS-CoV-2 infection persist after recovery. Evidence indicates that people who recovered from COVID-19, even those under the age of 65 years without cardiovascular risk factors such as smoking, obesity, hypertension, and diabetes, had a significantly increased risk of cardiovascular disease for up to one year after diagnosis. Therefore, it is important to closely monitor individuals who have recovered from COVID-19 for potential cardiovascular damage that may manifest at a later stage. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the production of reactive oxygen species (ROS) and increased lipid peroxide levels. Several studies have demonstrated that ferroptosis plays an important role in cancer, ischemia/reperfusion injury (I/RI), and other cardiovascular diseases. Altered iron metabolism, upregulation of reactive oxygen species, and glutathione peroxidase 4 inactivation are striking features of COVID-19-related cardiovascular injury. SARS-CoV-2 can cause cardiovascular ferroptosis, leading to cardiovascular damage. Understanding the mechanism of ferroptosis in COVID-19-related cardiovascular injuries will contribute to the development of treatment regimens for preventing or reducing COVID-19-related cardiovascular complications. In this article, we go over the pathophysiological underpinnings of SARS-CoV-2-induced acute and chronic cardiovascular injury, the function of ferroptosis, and prospective treatment approaches.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Mo
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zixin Su
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Shoraka S, Mohebbi SR, Hosseini SM, Zali MR. Comparison of plasma mitochondrial DNA copy number in asymptomatic and symptomatic COVID-19 patients. Front Microbiol 2023; 14:1256042. [PMID: 37869674 PMCID: PMC10587688 DOI: 10.3389/fmicb.2023.1256042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Since the beginning of the COVID-19 pandemic, a wide clinical spectrum, from asymptomatic infection to mild or severe disease and death, have been reported in COVID-19 patients. Studies have suggested several possible factors, which may affect the clinical outcome of COVID-19. A pro-inflammatory state and impaired antiviral response have been suggested as major contributing factors in severe COVID-19. Considering that mitochondria have an important role in regulating the immune responses to pathogens, pro-inflammatory signaling, and cell death, it has received much attention in SARS-CoV-2 infection. Recent studies have demonstrated that high levels of cell-free mitochondrial DNA (cf-mtDNA) are associated with an increased risk of COVID-19 intensive care unit (ICU) admission and mortality. However, there have been few studies on cf-mtDNA in SARS-CoV-2 infection, mainly focusing on critically ill COVID-19 cases. In the present study, we investigated cf-mtDNA copy number in COVID-19 patients and compared between asymptomatic and symptomatic cases, and assessed the clinical values. We also determined the cf-nuclear DNA (cf-nDNA) copy number and mitochondrial transcription factor A (TFAM) mRNA level in the studied groups. Materials and methods Plasma and buffy coat samples were collected from 37 COVID-19 patients and 33 controls. Briefly, after total DNA extraction, plasma cf-mtDNA, and cf-nDNA copy numbers were measured by absolute qPCR using a standard curve method. Furthermore, after total RNA extraction from buffy coat and cDNA synthesis, TFAM mRNA levels were evaluated by qPCR. Results The results showed that cf-mtDNA levels in asymptomatic COVID-19 patients were statistically significantly higher than in symptomatic cases (p value = 0.01). However, cf-nDNA levels were higher in symptomatic patients than in asymptomatic cases (p value = 0.00). There was no significant difference between TFAM levels in the buffy coat of these two groups (p value > 0.05). Also, cf-mtDNA levels showed good diagnostic potential in COVID-19 subgroups. Conclusion cf-mtDNA is probably important in the outcome of SARS-CoV-2 infection due to its role in inflammation and immune response. It can also be a promising candidate biomarker for the diagnosis of COVID-19 subgroups. Further investigation will help understanding the COVID-19 pathophysiology and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
13
|
Tripathi A, Bartosh A, Whitehead C, Pillai A. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits. Mol Psychiatry 2023; 28:3806-3815. [PMID: 37528226 PMCID: PMC10730412 DOI: 10.1038/s41380-023-02189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Inflammation and social behavior deficits are associated with a number of neuropsychiatric disorders. Chronic stress, a major risk factor for depression and other mental health conditions is known to increase inflammatory responses and social behavior impairments. Disturbances in mitochondria function have been found in chronic stress conditions, however the mechanisms that link mitochondrial dysfunction to stress-induced social behavior deficits are not well understood. In this study, we found that chronic restraint stress (RS) induces significant increases in serum cell-free mitochondrial DNA (cf-mtDNA) levels in mice, and systemic Deoxyribonuclease I (DNase I) treatment attenuated RS-induced social behavioral deficits. Our findings revealed potential roles of mitophagy and Mitochondrial antiviral-signaling protein (MAVS) in mediating chronic stress-induced changes in cf-mtDNA levels and social behavior. Furthermore, we showed that inhibition of Toll-like receptor 9 (TLR9) attenuates mtDNA-induced social behavior deficits. Together, these findings show that cf-mtDNA-TLR9 signaling is critical in mediating stress-induced social behavior deficits.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Alona Bartosh
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carl Whitehead
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
14
|
Tian Y, Yu B, Zhang Y, Zhang S, Lv B, Gong S, Li J. Exploration of the potential common pathogenic mechanisms in COVID-19 and silicosis by using bioinformatics and system biology. Funct Integr Genomics 2023; 23:199. [PMID: 37278873 PMCID: PMC10241611 DOI: 10.1007/s10142-023-01092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Silicosis is an occupational lung disease that is common worldwide. In recent years, coronavirus disease 2019 (COVID-19) has provided daunting challenges to public healthcare systems globally. Although multiple studies have shown a close link between COVID-19 and other respiratory diseases, the inter-relational mechanisms between COVID-19 and silicosis remain unclear. This study aimed to explore the shared molecular mechanisms and drug targets of COVID-19 and silicosis. Gene expression profiling identified four modules that were most closely associated with both diseases. Furthermore, we performed functional analysis and constructed a protein-protein interaction network. Seven hub genes (budding uninhibited by benzimidazoles 1 [BUB1], protein regulator of cytokinesis 1 [PRC1], kinesin family member C1 [KIFC1], ribonucleotide reductase regulatory subunit M2 [RRM2], cyclin-dependent kinase inhibitor 3 [CDKN3], Cyclin B2 [CCNB2], and minichromosome maintenance complex component 6 [MCM6]) were involved in the interaction between COVID-19 and silicosis. We investigated how diverse microRNAs and transcription factors regulate these seven genes. Subsequently, the correlation between the hub genes and infiltrating immune cells was explored. Further in-depth analyses were performed based on single-cell transcriptomic data from COVID-19, and the expression of hub-shared genes was characterized and located in multiple cell clusters. Finally, molecular docking results reveal small molecular compounds that may improve COVID-19 and silicosis. The current study reveals the common pathogenesis of COVID-19 and silicosis, which may provide a novel reference for further research.
Collapse
Affiliation(s)
- Yunze Tian
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Beibei Yu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Yongfeng Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Sanpeng Zhang
- Operating room, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, 710004, Xi'an, China
| | - Boqiang Lv
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China
| | - Shouping Gong
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China.
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province, Xi'an, 710004, China.
| |
Collapse
|
15
|
Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem 2023; 478:1325-1343. [PMID: 36308668 PMCID: PMC9617539 DOI: 10.1007/s11010-022-04593-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
SARS-CoV-2 is a positive-strand RNA virus that infects humans through the nasopharyngeal and oral route causing COVID-19. Scientists left no stone unturned to explore a targetable key player in COVID-19 pathogenesis against which therapeutic interventions can be initiated. This article has attempted to review, coordinate and accumulate the most recent observations in support of the hypothesis predicting the altered state of mitochondria concerning mitochondrial redox homeostasis, inflammatory regulations, morphology, bioenergetics and antiviral signalling in SARS-CoV-2 infection. Mitochondria is extremely susceptible to physiological as well as pathological stimuli, including viral infections. Recent studies suggest that SARS-CoV-2 pathogeneses alter mitochondrial integrity, in turn mitochondria modulate cellular response against the infection. SARS-CoV-2 M protein inhibited mitochondrial antiviral signalling (MAVS) protein aggregation in turn hinders innate antiviral response. Viral open reading frames (ORFs) also play an instrumental role in altering mitochondrial regulation of immune response. Notably, ORF-9b and ORF-6 impair MAVS activation. In aged persons, the NLRP3 inflammasome is over-activated due to impaired mitochondrial function, increased mitochondrial reactive oxygen species (mtROS), and/or circulating free mitochondrial DNA, resulting in a hyper-response of classically activated macrophages. This article also tries to understand how mitochondrial fission-fusion dynamics is affected by the virus. This review comprehends the overall mitochondrial attribute in pathogenesis as well as prognosis in patients infected with COVID-19 taking into account pertinent in vitro, pre-clinical and clinical data encompassing subjects with a broad range of severity and morbidity. This endeavour may help in exploring novel non-canonical therapeutic strategies to COVID-19 disease and associated complications.
Collapse
Affiliation(s)
- Chandan Bhowal
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
16
|
Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci 2023; 24:8034. [PMID: 37175745 PMCID: PMC10179190 DOI: 10.3390/ijms24098034] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
- Department of Life and Health Science, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
17
|
Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
|
18
|
Briggs GD, Gelzinnis S, Meakes S, King KL, Balogh ZJ. NOT ALL CELL-FREE MITOCHONDRIAL DNA IS EQUAL IN TRAUMA PATIENTS. Shock 2022; 58:231-235. [PMID: 36125357 PMCID: PMC9512242 DOI: 10.1097/shk.0000000000001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
ABSTRACT Mitochondrial DNA (mtDNA) acts as a proinflammatory damage-associated molecular pattern that stimulates innate immune activation via Toll-like receptor 9, similarly to bacterial DNA. A number of clinical studies have measured elevated cell-free mtDNA in the plasma of trauma patients, thought to originate from tissue injury and inflammatory processes; however, the magnitude of this increase, the absolute concentration, and the association with poor outcomes varies considerably across studies. Measurements of cell-free mtDNA in healthy individuals have shown that the majority of "cell-free" mtDNA (>95%) can be centrifuged/filtered from plasma in the size range of 0.45 to 5 μm, suggesting that there are larger forms of mtDNA-containing complexes in the plasma that could be considered cell-free. Whether this is true for trauma patients (and other relevant disease states) and the clinical relevance of the larger forms of mtDNA is unknown. These findings from healthy individuals also suggest that the centrifugation speeds used to generate cell-free plasma (which are rarely consistent among studies) could result in mixed populations of cell-free mtDNA that could confound associations with outcomes. We demonstrate in this study of 25 major trauma patients that the majority of the cell-free mtDNA in trauma patient plasma (>95%) is removed after centrifugation at 16,000g. Despite the larger forms of mtDNA being predominant, they do not correlate with outcomes or expected parameters such as injury/shock severity, multiple organ failure, and markers of inflammation, whereas low-molecular-weight cell-free mtDNA correlates strongly with these variables.
Collapse
Affiliation(s)
- Gabrielle D. Briggs
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Scott Gelzinnis
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Simone Meakes
- Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Kate L. King
- Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Zsolt J. Balogh
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
19
|
Streng LWJM, de Wijs CJ, Raat NJH, Specht PAC, Sneiders D, van der Kaaij M, Endeman H, Mik EG, Harms FA. In Vivo and Ex Vivo Mitochondrial Function in COVID-19 Patients on the Intensive Care Unit. Biomedicines 2022; 10:biomedicines10071746. [PMID: 35885051 PMCID: PMC9313105 DOI: 10.3390/biomedicines10071746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction has been linked to disease progression in COVID-19 patients. This observational pilot study aimed to assess mitochondrial function in COVID-19 patients at intensive care unit (ICU) admission (T1), seven days thereafter (T2), and in healthy controls and a general anesthesia group. Measurements consisted of in vivo mitochondrial oxygenation and oxygen consumption, in vitro assessment of mitochondrial respiration in platelet-rich plasma (PRP) and peripheral blood mononuclear cells (PBMCs), and the ex vivo quantity of circulating cell-free mitochondrial DNA (mtDNA). The median mitoVO2 of COVID-19 patients on T1 and T2 was similar and tended to be lower than the mitoVO2 in the healthy controls, whilst the mitoVO2 in the general anesthesia group was significantly lower than that of all other groups. Basal platelet (PLT) respiration did not differ substantially between the measurements. PBMC basal respiration was increased by approximately 80% in the T1 group when contrasted to T2 and the healthy controls. Cell-free mtDNA was eight times higher in the COVID-T1 samples when compared to the healthy controls samples. In the COVID-T2 samples, mtDNA was twofold lower when compared to the COVID-T1 samples. mtDNA levels were increased in COVID-19 patients but were not associated with decreased mitochondrial O2 consumption in vivo in the skin, and ex vivo in PLT or PBMC. This suggests the presence of increased metabolism and mitochondrial damage.
Collapse
Affiliation(s)
- Lucia W. J. M. Streng
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
- Correspondence:
| | - Calvin J. de Wijs
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Nicolaas J. H. Raat
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Patricia A. C. Specht
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Dimitri Sneiders
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Mariëlle van der Kaaij
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Egbert G. Mik
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Floor A. Harms
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| |
Collapse
|
20
|
Chandra A, Johri A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci 2022; 12:brainsci12020190. [PMID: 35203953 PMCID: PMC8870638 DOI: 10.3390/brainsci12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Ever since it was first reported in Wuhan, China, the coronavirus-induced disease of 2019 (COVID-19) has become an enigma of sorts with ever expanding reports of direct and indirect effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on almost all the vital organ systems. Along with inciting acute pulmonary complications, the virus attacks the cardiac, renal, hepatic, and gastrointestinal systems as well as the central nervous system (CNS). The person-to-person variability in susceptibility of individuals to disease severity still remains a puzzle, although the comorbidities and the age/gender of a person are believed to play a key role. SARS-CoV-2 needs angiotensin-converting enzyme 2 (ACE2) receptor for its infectivity, and the association between SARS-CoV-2 and ACE2 leads to a decline in ACE2 activity and its neuroprotective effects. Acute respiratory distress may also induce hypoxia, leading to increased oxidative stress and neurodegeneration. Infection of the neurons along with peripheral leukocytes’ activation results in proinflammatory cytokine release, rendering the brain more susceptible to neurodegenerative changes. Due to the advancement in molecular biology techniques and vaccine development programs, the world now has hope to relatively quickly study and combat the deadly virus. On the other side, however, the virus seems to be still evolving with new variants being discovered periodically. In keeping up with the pace of this virus, there has been an avalanche of studies. This review provides an update on the recent progress in adjudicating the CNS-related mechanisms of SARS-CoV-2 infection and its potential to incite or accelerate neurodegeneration in surviving patients. Current as well as emerging therapeutic opportunities and biomarker development are highlighted.
Collapse
|
21
|
Valdés-Aguayo JJ, Garza-Veloz I, Vargas-Rodríguez JR, Martinez-Vazquez MC, Avila-Carrasco L, Bernal-Silva S, González-Fuentes C, Comas-García A, Alvarado-Hernández DE, Centeno-Ramirez ASH, Rodriguez-Sánchez IP, Delgado-Enciso I, Martinez-Fierro ML. Peripheral Blood Mitochondrial DNA Levels Were Modulated by SARS-CoV-2 Infection Severity and Its Lessening Was Associated With Mortality Among Hospitalized Patients With COVID-19. Front Cell Infect Microbiol 2022; 11:754708. [PMID: 34976854 PMCID: PMC8716733 DOI: 10.3389/fcimb.2021.754708] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the virus hijacks the mitochondria causing damage of its membrane and release of mt-DNA into the circulation which can trigger innate immunity and generate an inflammatory state. In this study, we explored the importance of peripheral blood mt-DNA as an early predictor of evolution in patients with COVID-19 and to evaluate the association between the concentration of mt-DNA and the severity of the disease and the patient’s outcome. Methods A total 102 patients (51 COVID-19 cases and 51 controls) were included in the study. mt-DNA obtained from peripheral blood was quantified by qRT-PCR using the NADH mitochondrial gene. Results There were differences in peripheral blood mt-DNA between patients with COVID-19 (4.25 ng/μl ± 0.30) and controls (3.3 ng/μl ± 0.16) (p = 0.007). Lower mt-DNA concentrations were observed in patients with severe COVID-19 when compared with mild (p= 0.005) and moderate (p= 0.011) cases of COVID-19. In comparison with patients with severe COVID-19 who survived (3.74 ± 0.26 ng/μl) decreased levels of mt-DNA in patients with severe COVID-19 who died (2.4 ± 0.65 ng/μl) were also observed (p = 0.037). Conclusion High levels of mt-DNA were associated with COVID-19 and its decrease could be used as a potential biomarker to establish a prognosis of severity and mortality of patients with COVID-19.
Collapse
Affiliation(s)
- José J Valdés-Aguayo
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - José R Vargas-Rodríguez
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - María C Martinez-Vazquez
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Lorena Avila-Carrasco
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Sofia Bernal-Silva
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Andreu Comas-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Diana E Alvarado-Hernández
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Iram P Rodriguez-Sánchez
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|