1
|
Santos X, Domínguez G, Rodríguez J, Pozuelo J, Hernández M, Martín O, Fajardo C. Evaluation of PLA-Based Composite Films Filled with Cu 2(OH) 3NO 3 Nanoparticles as an Active Material for the Food Industry: Biocidal Properties and Environmental Sustainability. Polymers (Basel) 2024; 16:1772. [PMID: 39000628 PMCID: PMC11243838 DOI: 10.3390/polym16131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
The globalization of markets has diversified the food supply, but it has also made the distribution chain more difficult, increasing the risk of microbial contamination. One strategy to obtain safer food and extend its shelf life is to develop active packaging with antimicrobial properties that prevent the growth of pathogenic microorganisms or spoilage in food products. In this context, and in line with the growing social awareness about the environmental impact generated by plastic waste, this work evaluated the effectiveness of polylactic acid (PLA) films loaded with different concentrations of copper (II) hydroxynitrate nanoparticles (CuHS) against the microbiota of fresh foods (chicken, fish and cheese). The results showed that the developed films containing 1, 3 and 5% w/w of CuHS in the polymeric matrix caused a decrease in the microbial abundance equal to or higher than 3 logarithmic units in all foods tested. Moreover, the mechanical and thermal properties of the formulated composites showed that the added CuHS concentrations did not substantially modify these properties compared to the PLA films. Taking into account the results obtained for antimicrobial activity, Cu (II) migration levels and the cytotoxicity of the films formulated, the PLA composite loaded with 1% CuHS (w/w) was the most suitable for its potential use as food packaging material. In addition, the biodegradation of this composite film was studied under conditions simulating intensive aerobic composting, demonstrating that almost 100% disintegration after 14 days of testing was achieved. Therefore, the innovative PLA-based films developed represent a promising strategy for the fabrication of packaging and active surfaces to increase food shelf life while maintaining food safety. Moreover, their biodegradable character will contribute to efficient waste management, turning plastic residues into a valuable resource.
Collapse
Affiliation(s)
- Xiomara Santos
- Department of Materials Science and Engineering and Chemical Engineering, Higher Polytechnic School, Carlos III University of Madrid, Avenida Universidad 30, 28911 Leganés, Spain; (X.S.)
| | - Gabriela Domínguez
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28805 Alcalá de Henares, Spain; (G.D.); (J.R.); (M.H.)
| | - Juana Rodríguez
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28805 Alcalá de Henares, Spain; (G.D.); (J.R.); (M.H.)
| | - Javier Pozuelo
- Department of Materials Science and Engineering and Chemical Engineering, Higher Polytechnic School, Carlos III University of Madrid, Avenida Universidad 30, 28911 Leganés, Spain; (X.S.)
| | - Manuel Hernández
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28805 Alcalá de Henares, Spain; (G.D.); (J.R.); (M.H.)
| | - Olga Martín
- Department of Materials Science and Engineering and Chemical Engineering, Higher Polytechnic School, Carlos III University of Madrid, Avenida Universidad 30, 28911 Leganés, Spain; (X.S.)
| | - Carmen Fajardo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28805 Alcalá de Henares, Spain; (G.D.); (J.R.); (M.H.)
| |
Collapse
|
2
|
Ulfadillah SA, Chang SH. Antibacterial effects of various molecular weight chitosans against Alicyclobacillus acidoterrestris in orange juice. Int J Biol Macromol 2024; 262:130214. [PMID: 38367781 DOI: 10.1016/j.ijbiomac.2024.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Alicyclobacillus acidoterrestris has been gaining attention due to its unique thermo-acidophilic properties and being associated with the deterioration of pasteurized beverages. The objective of this study was to evaluate the antibacterial activity of chitosan with various molecular weights (MWs) (164, 85, 29.2, and 7.1 kDa) and concentrations (0-100 μg/mL) against A. acidoterrestris and its effect on guaiacol production. Various chitosan MWs were co-incubated for 7 days, and the bacterial growth, guaiacol, and vanillic acid contents during storage were determined. The chitosans performed antibacterial effects against A. acidoterrestris. Further, 164 kDa chitosan showed excellent results in controlling the growth and guaiacol formation in A. acidoterrestris. These findings demonstrated the efficacy of chitosan antibacterial activity against A. acidoterrestris and mitigating the guaiacol formation. Chitosan's antibacterial properties are attributed to the elimination of cells and suppression of guaiacol production. This study introduces a new approach for reducing A. acidoterrestris contamination in fruit juices, with potential product quality and safety advantages.
Collapse
Affiliation(s)
- Siti Ayu Ulfadillah
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| |
Collapse
|
3
|
Shao X, Sun H, Wang X, Zhou R. Synergistic effects of EDTA and lysozyme on the properties of hydroxypropyl starch nano antibacterial films. Curr Res Food Sci 2023; 8:100657. [PMID: 38204880 PMCID: PMC10777376 DOI: 10.1016/j.crfs.2023.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Hydroxypropyl starch (HPS) nano antibacterial films incorporating Ethylene Diamine Tetraacetic Acid (EDTA) and lysozyme (LY) were fabricated via solvent casting method. The synergistic effects of EDTA and LY on the microstructure, component interactions, color, optical, mechanical, barrier and antibacterial properties of HPS nano antibacterial films were evaluated. The results indicated that EDTA and LY were well dispersed in the matrix of the HPS nano antibacterial films, the film-forming substrates have good compatibility, resulting in a dense multi-layer structure of the HPS nano antibacterial films. The addition of EDTA and LY increased the color parameters (L*, a*, b* and △E*) of the HPS nano antibacterial films. The synergistic effects of EDTA and LY significantly decreased the light transmission of the HPS nano antibacterial films. The presence of EDTA and LY increased the tensile strength (TS) and the elongation at break (EAB) of the HPS nano antibacterial films. The TS and EAB of E2.5L1 reached the highest values of 6.329 MPa and 50.24 %, respectively. The incorporation of EDTA and LY had positive effects on the improvement of water vapor permeability (WVP) and oxygen permeability (OP). The WVP and OP of E2.5L1 reached the highest values of 0.9350 × 10-12 g cm/cm2•s•Pa and 0.297 × 10 -2 g m/m2 •d, respectively. In addition, EDTA and LY had significant synergistic effects on the antibacterial activity against S. aureus (Gram-positive bacteria) and E. coli (Gram-negative bacteria). E2.5L1 exhibited the highest antibacterial activity and the inhibition zone diameters of S. aureus and E. coli were 3.69 mm and 4.28 mm, respectively. The HPS nano antibacterial films incorporating EDTA and LY are potential functional packaging materials.
Collapse
Affiliation(s)
- Xinru Shao
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Haitao Sun
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Ximing Wang
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Ran Zhou
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
- College of Food Science and Engineering, Changchun University, No. 6543 Weixing Road, Changchun, 130022, Jilin, PR China
| |
Collapse
|
4
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
5
|
Perveen S, Anwar MJ, Ismail T, Hameed A, Naqvi SS, Mahomoodally MF, Saeed F, Imran A, Hussain M, Imran M, Ur Rehman H, Khursheed T, Tufail T, Mehmood T, Ali SW, Al Jbawi E. Utilization of biomaterials to develop the biodegradable food packaging. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:1122-1139. [DOI: 10.1080/10942912.2023.2200606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/23/2023] [Indexed: 05/18/2024]
Affiliation(s)
- Saima Perveen
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Tariq Ismail
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Aneela Hameed
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Syeda Sameen Naqvi
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Habib Ur Rehman
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Tara Khursheed
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Islamabad, Pakistan
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Tahir Mehmood
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
6
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Yu W, Guo J, Liu Y, Xue X, Wang X, Wei L, Ma J. Potential Impact of Combined Inhibition by Bacteriocins and Chemical Substances of Foodborne Pathogenic and Spoilage Bacteria: A Review. Foods 2023; 12:3128. [PMID: 37628127 PMCID: PMC10453098 DOI: 10.3390/foods12163128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, food safety caused by foodborne pathogens and spoilage bacteria has become a major public health problem worldwide. Bacteriocins are a kind of antibacterial peptide synthesized by microbial ribosomes, and are widely used as food preservatives. However, when used individually bacteriocins may have limitations such as high cost of isolation and purification, narrow inhibitory spectrum, easy degradation by enzymes, and vulnerability to complex food environments. Numerous studies have demonstrated that co-treatment with bacteriocins and a variety of chemical substances can have synergistic antibacterial effects on spoilage microorganisms and foodborne pathogens, effectively prolonging the shelf life of food and ensuring food safety. Therefore, this paper systematically summarizes the synergistic bacteriostatic strategies of bacteriocins in combination with chemical substances such as essential oils, plant extracts, and organic acids. The impacts of bacteriocins when used individually and in combination with other chemical substances on different food substrates are clarified, and bacteriocin-chemical substance compositions that enhance antibacterial effectiveness and reduce the potential negative effects of chemical preservatives are highlighted and discussed. Combined treatments involving bacteriocins and different kinds of chemical substances are expected to be a promising new antibacterial method and to become widely used in both the food industry and biological medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (W.Y.); (J.G.); (Y.L.); (X.X.); (X.W.); (L.W.)
| |
Collapse
|
8
|
Mirhaji SS, Soleimanpour M, Derakhshankhah H, Jafari S, Mamashli F, Rooki M, Karimi MR, Nedaei H, Pirhaghi M, Motasadizadeh H, Ghasemi A, Nezamtaheri MS, Saadatpour F, Goliaei B, Delattre C, Saboury AA. Design, optimization and characterization of a novel antibacterial chitosan-based hydrogel dressing for promoting blood coagulation and full-thickness wound healing: A biochemical and biophysical study. Int J Biol Macromol 2023; 241:124529. [PMID: 37085077 DOI: 10.1016/j.ijbiomac.2023.124529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
The use of hydrogel dressings has become increasingly popular as a scaffold for skin tissue engineering. Herein, we have developed an innovative wound dressing using chitosan, fibrinogen, nisin, and EDTA as an effective antibacterial scaffold for wound treatment. The structural and functional characteristics of the hydrogel, including morphology, mechanical strength, drug encapsulation and release, swelling behaviors, blood coagulation, cytotoxicity, and antibacterial activity, were studied. Spectroscopic studies indicated that the attachment of chitosan to fibrinogen is associated with minimal change in its secondary structure; subsequently, at higher temperatures, it is expected to preserve fibrinogen's conformational stability. Mechanical and blood coagulation analyses indicated that the incorporation of fibrinogen into the hydrogel resulted in accelerated clotting and enhanced mechanical properties. Our cell studies showed biocompatibility and non-toxicity of the hydrogel along with the promotion of cell migration. In addition, the prepared hydrogel indicated an antibacterial behavior against both Gram-positive and Gram-negative bacteria. Interestingly, the in vivo data revealed enhanced tissue regeneration and recovery within 17 days in the studied animals. Taken together, the results obtained from in vitro and histological assessments indicate that this innovatively designed hydrogel shows good potential as a candidate for wound healing.
Collapse
Affiliation(s)
| | - Marjan Soleimanpour
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Meisam Rooki
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran
| | | | - Hadi Nedaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Fatemeh Saadatpour
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Cédric Delattre
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France; Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Essential oil-loaded antimicrobial and antioxidant zein/poly(lactic acid) film as active food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
11
|
Advances in Bio-Based Materials for Food Packaging Applications. MEMBRANES 2022; 12:membranes12080735. [PMID: 36005650 PMCID: PMC9412566 DOI: 10.3390/membranes12080735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023]
|
12
|
Schrama D, Czolk R, Raposo de Magalhães C, Kuehn A, Rodrigues PM. Fish Allergenicity Modulation Using Tailored Enriched Diets—Where Are We? Front Physiol 2022; 13:897168. [PMID: 35694394 PMCID: PMC9174421 DOI: 10.3389/fphys.2022.897168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Food allergy is an abnormal immune response to specific proteins in a certain food. The chronicity, prevalence, and the potential fatality of food allergy, make it a serious socio-economic problem. Fish is considered the third most allergenic food in the world, affecting part of the world population with a higher incidence in children and adolescents. The main allergen in fish, responsible for the large majority of fish-allergic reactions in sensitized patients, is a small and stable calcium-binding muscle protein named beta-parvalbumin. Targeting the expression or/and the 3D conformation of this protein by adding specific molecules to fish diets has been the innovative strategy of some researchers in the fields of fish allergies and nutrition. This has shown promising results, namely when the apo-form of β-parvalbumin is induced, leading in the case of gilthead seabream to a 50% reduction of IgE-reactivity in fish allergic patients.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
- *Correspondence: Pedro M. Rodrigues,
| |
Collapse
|
13
|
Yap PG, Lai ZW, Tan JS. Bacteriocins from lactic acid bacteria: purification strategies and applications in food and medical industries: a review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00227-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Bacteriocins are generally defined as ribosomally synthesized peptides, which are produced by lactic acid bacteria (LAB) that affect the growth of related or unrelated microorganisms. Conventionally, the extracted bacteriocins are purified by precipitation, where ammonium sulphate is added to precipitate out the protein from the solution.
Main text
To achieve the high purity of bacteriocins, a combination with chromatography is used where the hydrophobicity and cationic properties of bacteriocins are employed. The complexity column inside the chromatography can afford to resolve the loss of bacteriocins during the ammonium sulphate precipitation. Recently, an aqueous two-phase system (ATPS) has been widely used in bacteriocins purification due to the several advantages of its operational simplicity, mild process conditions and versatility. It reduces the operation steps and processing time yet provides high recovery products which provide alternative ways to conventional methods in downstream processing. Bacteriocins are widely approached in the food and medical industry. In food application, nisin, which is produced by Lactococcus lactis subsp. has been introduced as food preservative due to its natural, toxicology safe and effective against the gram-positive bacteria. Besides, bacteriocins provide a board range in medical industries where they are used as antibiotics and probiotics.
Short conclusion
In summary, this review focuses on the downstream separation of bacteriocins from various sources using both conventional and recent ATPS techniques. Finally, recommendations for future interesting areas of research that need to be pursued are highlighted.
Collapse
|
14
|
Chakraborty P, Nath D, Hoque M, Sarkar P, Hati S, Mishra BK. Biopolymer‐based antimicrobial coatings for aquatic food products: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priyanka Chakraborty
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| | - Debarshi Nath
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Monjurul Hoque
- Teagasc Ashtown Food Research Centre Teagasc Ashtown Dublin 15 Ireland
- School of Food and Nutritional Sciences University College Cork T12 R229 Cork Ireland
| | - Preetam Sarkar
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Subrota Hati
- Department of Dairy Microbiology SMC College of Dairy Science Anand Agricultural University India
| | - Birendra Kumar Mishra
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| |
Collapse
|