1
|
Nitahara-Kasahara Y, Posadas-Herrera G, Hirai K, Oda Y, Snagu-Miyamoto N, Yamanashi Y, Okada T. Characterization of disease-specific alterations in metabolites and effects of mesenchymal stromal cells on dystrophic muscles. Front Cell Dev Biol 2024; 12:1363541. [PMID: 38946797 PMCID: PMC11211584 DOI: 10.3389/fcell.2024.1363541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a genetic disorder caused by mutations in the dystrophin-encoding gene that leads to muscle necrosis and degeneration with chronic inflammation during growth, resulting in progressive generalized weakness of the skeletal and cardiac muscles. We previously demonstrated the therapeutic effects of systemic administration of dental pulp mesenchymal stromal cells (DPSCs) in a DMD animal model. We showed preservation of long-term muscle function and slowing of disease progression. However, little is known regarding the effects of cell therapy on the metabolic abnormalities in DMD. Therefore, here, we aimed to investigate the mechanisms underlying the immunosuppressive effects of DPSCs and their influence on DMD metabolism. Methods A comprehensive metabolomics-based approach was employed, and an ingenuity pathway analysis was performed to identify dystrophy-specific metabolomic impairments in the mdx mice to assess the therapeutic response to our established systemic DPSC-mediated cell therapy approach. Results and Discussion We identified DMD-specific impairments in metabolites and their responses to systemic DPSC treatment. Our results demonstrate the feasibility of the metabolomics-based approach and provide insights into the therapeutic effects of DPSCs in DMD. Our findings could help to identify molecular marker targets for therapeutic intervention and predict long-term therapeutic efficacy.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Guillermo Posadas-Herrera
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kunio Hirai
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
| | - Yuki Oda
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
| | - Noriko Snagu-Miyamoto
- Division of Cell and Gene Therapy, Nippon Medical School, Tokyo, Japan
- Division of Oral and Maxillofacial Surgical, Tokyo Women’s Medical School, Tokyo, Japan
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Yang J, Shin J, Sim Y, Lee S, Kang S, Hlaing HO, Yang JY. Development of biomarkers to distinguish different origins of red seabreams (Pagrus major) from Korea and Japan by fatty acid, amino acid, and mineral profiling. Food Res Int 2024; 180:114044. [PMID: 38395545 DOI: 10.1016/j.foodres.2024.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Red seabream (Pagrus major) has been one of the most popular fish in East Asia since early times. However, the discharge of nuclear wastewater into the sea following the Fukushima nuclear disaster in Japan has led to violations of the country of origin labeling. Therefore, the aim of the present study was to determine the origin of fish based on fatty acid, amino acid, and mineral analyses, and to develop biomarkers that can discriminate between Japanese and Korean red seabream. To identify the differences between the two groups, 29 fatty acid families, 17 amino acids, and 4 minerals were analyzed in 60 fish samples (standard sample collected in autumn), and fatty acid profiles were analyzed using heatmap with hierarchical clustering analysis and orthogonal projections to latent structures discriminant analysis. The top 10 fatty acids that were different between the two groups were selected from all seasonal fish samples by combining variable importance in projection scores and p-values. According to the receiver operating characteristic curve analysis results, we proposed percentage linoleic acid (C18:2n-6, cis) as a candidate biomarker with excellent sensitivity and specificity. This study introduces a strategy to identify the origins of red seabream using linoleic acid obtained from fatty acid analysis.
Collapse
Affiliation(s)
- Junho Yang
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea
| | - Jiyoung Shin
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea
| | - Yikang Sim
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea
| | - Sora Lee
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea
| | - Seokwon Kang
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea
| | - Hnin Oo Hlaing
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea
| | - Ji-Young Yang
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
3
|
Huang Y, Shang H, Wang C, Cui H, Tang S, Chang H, Yang H, Jia X, Wan Y. Spatially Resolved Co-Imaging of Polyhalogenated Xenobiotics and Endogenous Metabolites Reveals Xenobiotic-Induced Metabolic Alterations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19330-19340. [PMID: 37983170 DOI: 10.1021/acs.est.3c05817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A large group of polyhalogenated compounds has been added to the list of persistent organic pollutants in a global convention endorsed by over 100 nations. Once entering the biotas, these pollutants are transported to focal sites of toxicological action and affected endogenous metabolites, which exhibited distinct tissue or organ distribution patterns. However, no study is available to achieve simultaneous mapping of the spatial distributions of xenobiotics and endogenous metabolites for clarifying the molecular mechanism of toxicities. Herein, we present a sensitive mass spectrometry imaging method─tetraphenyl phosphonium chloride-enhanced ionization coupled with air flow-assisted ionization-Orbitrap mass spectrometry─which simultaneously determined the spatial distributions of polyhalogenated xenobiotics and endogenous metabolites. The spatially resolved toxicokinetics and toxicodynamics of typical polyhalogenated compounds (chlorinated paraffins (CPs) and hexabromocyclododecane (HBCD)) were assessed in zebrafish. Co-imaging of polyhalogenated compounds and metabolites visualized the major accumulation organs and maternal transfer of HBCD and CPs, and it clarified the reproductive toxicity of HBCD. CPs were accumulated in the liver, heart, and brain and decreased the concentrations of polyamine/inosine-related metabolites and lipid molecules in these organs. HBCD accumulated in the ovary and was effectively transferred to eggs, and it also disrupted normal follicular development and impaired the production of mature eggs from the ovary by inhibiting expressions of the luteinizing hormone/choriogonadotropin receptor gene. The toxic effects of metabolic disruptions were validated by organ-specific histopathological examinations. These results highlight the necessity to assess the distributions and bioeffects of pollutants in a spatial perspective.
Collapse
Affiliation(s)
- Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hailin Shang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hong Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Fan W, He Y, Su J, Feng Y, Zhuo T, Wang J, Jiao X, Luo Y, Wu J, Geng Y. Effects of leucism on organ development and molecular mechanisms in Northern snakehead (Channa argus) beyond pigmentation alterations. Sci Rep 2023; 13:19689. [PMID: 37952047 PMCID: PMC10640583 DOI: 10.1038/s41598-023-46608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Leucism, a widespread occurrence observed in Northern snakehead (Channa argus), bestows a striking white jade-like body coloration upon affected individuals and has gained substantial popularity in commercial breeding. While the visible manifestation of leucism in snakeheads is primarily limited to body coloration, it is crucial to explore the potential influence of leucism on organ development and elucidate the underlying molecular mechanisms. Through a comparative analysis of growth differences, our study revealed that at 150 days post-fertilization, the white variety exhibited an 8.5% higher liver index and intestinal index, but experienced a 20% and 38% decreased in spleen index and renal interstitial index, respectively, suggesting an enlarged digestive area but relatively smaller immune tissues. Nonetheless, no significant differences were observed in the intestinal flora between the two varieties, suggesting the exclusion of any exogenous impacts from symbiotic flora on the growth and development of the white variety. Importantly, transcriptome analysis demonstrated that the white variety exhibited higher expression levels of innate immune genes. Furthermore, annotation of the gene sets expressed in the liver and spleen revealed 76 and 35 genes respectively, with the white variety displaying lower expression in genes associated with "Viral protein interaction with cytokine and cytokine receptor", "Protein processing in endoplasmic reticulum", and "TNF signaling pathway", while exhibiting higher expression in "Estrogen signaling pathway". Notably, three genes, namely pcdhf 4, nlrc3 card 15-like, and a pol-like were identified in both the liver and spleen, indicating their potential involvement in altering the development and innate immunity of the white variety. This study reveals the systemic impact of leucism that extends beyond mere pigmentation alterations, highlighting the prominent characteristics of this phenotype and providing a foundation for future molecular breeding programs aimed at enhancing this variety.
Collapse
Affiliation(s)
- Wei Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Street No. 211, Wenjiang, 611130, Sichuan, People's Republic of China
- NeiJiang Academy of Agricultural Sciences, Neijiang, 641000, Sichuan, People's Republic of China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River/College of Life Sciences, Neijiang Normal University, Neijiang, 641000, Sichuan, People's Republic of China
| | - Jian Su
- NeiJiang Academy of Agricultural Sciences, Neijiang, 641000, Sichuan, People's Republic of China
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Street No. 211, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Ting Zhuo
- NeiJiang Academy of Agricultural Sciences, Neijiang, 641000, Sichuan, People's Republic of China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River/College of Life Sciences, Neijiang Normal University, Neijiang, 641000, Sichuan, People's Republic of China
| | - Xiaolei Jiao
- NeiJiang Academy of Agricultural Sciences, Neijiang, 641000, Sichuan, People's Republic of China
| | - Yu Luo
- NeiJiang Academy of Agricultural Sciences, Neijiang, 641000, Sichuan, People's Republic of China
| | - Jun Wu
- NeiJiang Academy of Agricultural Sciences, Neijiang, 641000, Sichuan, People's Republic of China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Street No. 211, Wenjiang, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Lorena MDSV, Santos EKD, Ferretti R, Nagana Gowda GA, Odom GL, Chamberlain JS, Matsumura CY. Biomarkers for Duchenne muscular dystrophy progression: impact of age in the mdx tongue spared muscle. Skelet Muscle 2023; 13:16. [PMID: 37705069 PMCID: PMC10500803 DOI: 10.1186/s13395-023-00325-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy without an effective treatment, caused by mutations in the DMD gene, leading to the absence of dystrophin. DMD results in muscle weakness, loss of ambulation, and death at an early age. Metabolomics studies in mdx mice, the most used model for DMD, reveal changes in metabolites associated with muscle degeneration and aging. In DMD, the tongue muscles exhibit unique behavior, initially showing partial protection against inflammation but later experiencing fibrosis and loss of muscle fibers. Certain metabolites and proteins, like TNF-α and TGF-β, are potential biomarkers for dystrophic muscle characterization. METHODS To investigate disease progression and aging, we utilized young (1 month old) and old (21-25 months old) mdx and wild-type tongue muscles. Metabolite changes were analyzed using 1H nuclear magnetic resonance, while TNF-α and TGF-β were assessed using Western blotting to examine inflammation and fibrosis. Morphometric analysis was conducted to assess the extent of myofiber damage between groups. RESULTS The histological analysis of the mid-belly tongue showed no differences between groups. No differences were found between the concentrations of metabolites from wild-type or mdx whole tongues of the same age. The metabolites alanine, methionine, and 3-methylhistidine were higher, and taurine and glycerol were lower in young tongues in both wild type and mdx (p < 0.001). The metabolites glycine (p < 0.001) and glutamic acid (p = 0.0018) were different only in the mdx groups, being higher in young mdx mice. Acetic acid, phosphocreatine, isoleucine, succinic acid, creatine, and the proteins TNF-α and TGF-β had no difference in the analysis between groups (p > 0.05). CONCLUSIONS Surprisingly, histological, metabolite, and protein analysis reveal that the tongue of old mdx remains partially spared from the severe myonecrosis observed in other muscles. The metabolites alanine, methionine, 3-methylhistidine, taurine, and glycerol may be effective for specific assessments, although their use for disease progression monitoring should be cautious due to age-related changes in the tongue muscle. Acetic acid, phosphocreatine, isoleucine, succinate, creatine, TNF-α, and TGF-β do not vary with aging and remain constant in spared muscles, suggesting their potential as specific biomarkers for DMD progression independent of aging.
Collapse
Affiliation(s)
- Marcelo Dos Santos Voltani Lorena
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Estela Kato Dos Santos
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Renato Ferretti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - G A Nagana Gowda
- Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Guy L Odom
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey S Chamberlain
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Cintia Yuri Matsumura
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
6
|
Yang J, Shin J, Kim H, Sim Y, Cha E, Yang J. Analysis of metabolite differences between South Korean and Chinese yellow goosefish (Lophius litulon) using capillary electrophoresis time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123863. [PMID: 37639994 DOI: 10.1016/j.jchromb.2023.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
The yellow goosefish is a benthic fish that belongs to the family Lophiidae and order Lophiiformes and is distributed in the Yellow and East China Seas. This study aimed to distinguish between yellow goosefish from different geographical origins by analyzing their metabolites. Capillary electrophoresis time-of-flight mass spectrometry was used to analyze metabolite profiles in the muscle tissues of yellow goosefish to distinguish between Korean and Chinese yellow goosefish. In total, 271 putative metabolites were extracted using 50% acetonitrile in water. Principal component analysis and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to distinguish different geographical origins using the metabolite profiles obtained. The R2 and Q2 values of the OPLS-DA model were 0.856 and 0.695, respectively, indicating that the model was well-fitted and had good predictability. The heat map revealed that nucleic acid and amino compounds differed between the Korean and Chinese fish, and the variable importance in the projection scores obtained from OPLS-DA showed that there were geographical differences in the primary metabolites (5'-methylthioadenosine, adenosine, uridine 5-diphosphate, guanosine 5-diphosphate, urea, homocarnosine, O-acetylcarnitine, cycloleucine, cycloleucine S-adenosylmethionine, S-adenosylhomocysteine, ethanolamine, myo-inositol 1-phosphate), which were identified as potential candidate biomarkers.
Collapse
Affiliation(s)
- Junho Yang
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea.
| | - Jiyoung Shin
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea.
| | - Hyunsuk Kim
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea.
| | - Yikang Sim
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea.
| | - Eunji Cha
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea.
| | - Jiyoung Yang
- Department of Food Science & Technology, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
7
|
Hotea I, Sirbu C, Plotuna AM, Tîrziu E, Badea C, Berbecea A, Dragomirescu M, Radulov I. Integrating (Nutri-)Metabolomics into the One Health Tendency-The Key for Personalized Medicine Advancement. Metabolites 2023; 13:800. [PMID: 37512507 PMCID: PMC10384896 DOI: 10.3390/metabo13070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolomics is an advanced technology, still under development, with multiple research applications, especially in the field of health. Individual metabolic profiles, the functionality of the body, as well as its interaction with the environment, can be established using this technology. The body's response to various external factors, including the food consumed and the nutrients it contains, has increased researchers' interest in nutrimetabolomics. Establishing correlations between diet and the occurrence of various diseases, or even the development of personalized nutrition plans, could contribute to advances in precision medicine. The interdependence between humans, animals, and the environment is of particular importance today, with the dramatic emergence and spread of zoonotic diseases, food, water and soil contamination, and the degradation of resources and habitats. All these events have led to an increase in risk factors for functional diseases, burdening global health. Thus, this study aimed to highlight the importance of metabolomics, and, in particular, nutrimetabolomics, as a technical solution for a holistic, collaborative, and precise approach for the advancement of the One Health strategy.
Collapse
Affiliation(s)
- Ionela Hotea
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Catalin Sirbu
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Ana-Maria Plotuna
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Emil Tîrziu
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Corina Badea
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Adina Berbecea
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Monica Dragomirescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| |
Collapse
|
8
|
Lorena MDSV, Santos EK, Ferretti R, Gowda GAN, Odom GL, Chamberlain JS, Matsumura CY. Biomarkers for Duchenne muscular dystrophy progression: impact of age in the mdx tongue spared muscle. RESEARCH SQUARE 2023:rs.3.rs-3038923. [PMID: 37398370 PMCID: PMC10312970 DOI: 10.21203/rs.3.rs-3038923/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background: Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy without an effective treatment, caused by mutations in the DMD gene, leading to the absence of dystrophin. DMD results in muscle weakness, loss of ambulation and death at an early age. Metabolomics studies in mdx mice, the most used model for DMD, reveal changes in metabolites associated with muscle degeneration and aging. In DMD, the tongue muscles exhibit unique behavior, initially showing partial protection against inflammation but later experiencing fibrosis and loss of muscle fibers. Certain metabolites and proteins, like TNF-α and TGF-β, are potential biomarkers for dystrophic muscle characterization. Methods: To investigate disease progression and aging, we utilized young (1-month old) and old (21-25 months old) mdx and wild-type mice. Metabolite changes were analyzed using 1-H Nuclear Magnetic Resonance, while TNF-α and TGF-β were assessed using Western blotting to examine inflammation, and fibrosis. Morphometric analysis was conducted to assess the extent of myofiber damage between groups. Results: The histological analysis of the tongue showed no differences between groups. No differences were found between the concentrations of metabolites from wild type or mdx animals of the same age. The metabolites alanine, methionine, 3-methylhistidine were higher, and taurine and glycerol were lower in young animals in both wild type and mdx (p < 0.001). The metabolites glycine (p < 0.001) and glutamic acid (p = 0.0018) were different only in the mdx groups, being higher in young mdx mice. Acetic acid, phosphocreatine, isoleucine, succinic acid, creatine and the proteins TNF-α and TGF-β had no difference in the analysis between groups (p > 0.05). Conclusions: Surprisingly, histological and protein analysis reveals that the tongue of young and old mdx animals is protected from severe myonecrosis observed in other muscles. The metabolites alanine, methionine, 3-methylhistidine, taurine, and glycerol may be effective for specific assessments, although their use for disease progression monitoring should be cautious due to age-related changes. Acetic acid, phosphocreatine, isoleucine, succinate, creatine, TNF-α, and TGF-β do not vary with aging and remain constant in spared muscles, suggesting their potential as specific biomarkers for DMD progression independent of aging.
Collapse
Affiliation(s)
| | - Estela Kato Santos
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP)
| | - Renato Ferretti
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP)
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center; Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington
| | - Guy L Odom
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine
| | - Jeffrey S Chamberlain
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine
| | - Cintia Yuri Matsumura
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP)
| |
Collapse
|
9
|
Ji S, Ma P, Cao X, Wang J, Yu X, Luo X, Lu J, Hou W, Zhang Z, Yan Y, Dong Y, Wang H. Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice. FEBS Open Bio 2022; 12:2213-2226. [PMID: 36325691 PMCID: PMC9714366 DOI: 10.1002/2211-5463.13504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
When skeletal muscle is damaged, satellite cells (SCs) are activated to proliferate rapidly and fuse with the damaged muscle fibers to form new muscle fibers, thereby promoting muscle growth and remodeling and repair of trauma. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. Therefore, we hypothesized that, when muscles are injured, myoblast-derived exosomes may regulate muscle repair and regeneration. Here, we investigated the underlying mechanism by applying C2C12-derived exosomes to injured mouse skeletal muscles. The expression levels of skeletal muscle regeneration factors paired box 7 and lipid-promoting factor peroxisome proliferator-activated receptor γ were upregulated, whereas the expression levels of fibrosis factors collagen-1 and α-smooth muscle actin decreased. The expression of proliferating cell nuclear antigen was elevated after applying C2C12-derived exosomes to SCs. Application of C2C12-derived exosomes to fibro-adipogenic progenitors resulted in an increase in peroxisome proliferator-activated receptor γ expression and adipogenesis capacity, whereas α-smooth muscle actin expression and fibrosis capacity decreased. Analysis of the transcriptome and proteome of SCs after treatment with exosomes showed the involvement of multiple biological processes, including proliferation and differentiation of SCs, muscle regeneration, skeletal muscle atrophy, and the inflammatory response after muscle injury. Hence, our data suggest that C2C12-derived exosomes can promote the regeneration of skeletal muscle fibers, accelerate the production of fat from damaged muscles, inhibit the fibrosis of damaged muscles, and accelerate injury repair, which is related to exosome-mediated regulation of the proliferation of SCs, differentiation of fibro-adipogenic progenitors, and modulation of SC mRNA expression and protein formation and decomposition.
Collapse
Affiliation(s)
- Shusen Ji
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Pei Ma
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaorui Cao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Juan Wang
- Department of Nephrology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineChina
| | - Xiuju Yu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaomao Luo
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Jiayin Lu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Wei Hou
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | | | - Yi Yan
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yanjun Dong
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Haidong Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review highlights the key studies investigating various types of biomarkers in Duchenne muscular dystrophy (DMD). RECENT FINDINGS Several proteomic and metabolomic studies have been undertaken in both human DMD patients and animal models of DMD that have identified potential biomarkers in DMD. Although there have been a number of proteomic and metabolomic studies that have identified various potential biomarkers in DMD, more definitive studies still need to be undertaken in DMD patients to firmly correlate these biomarkers with diagnosis, disease progression, and monitoring the effects of novel treatment strategies being developed.
Collapse
Affiliation(s)
- Theo Lee-Gannon
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xuan Jiang
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tara C Tassin
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pradeep P A Mammen
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Heart Failure, Ventricular Assist Device & Heart Transplant Program, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Multi Platforms Strategies and Metabolomics Approaches for the Investigation of Comprehensive Metabolite Profile in Dogs with Babesia canis Infection. Int J Mol Sci 2022; 23:ijms23031575. [PMID: 35163517 PMCID: PMC8835742 DOI: 10.3390/ijms23031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host–pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.
Collapse
|
12
|
Tsonaka R, Signorelli M, Sabir E, Seyer A, Hettne K, Aartsma-Rus A, Spitali P. Longitudinal metabolomic analysis of plasma enables modeling disease progression in Duchenne muscular dystrophy mouse models. Hum Mol Genet 2021; 29:745-755. [PMID: 32025735 PMCID: PMC7104681 DOI: 10.1093/hmg/ddz309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and plasma have been reported in pre-clinical and clinical cross-sectional comparisons. We present here a 7-month longitudinal study comparing plasma metabolomic data in wild-type and mdx mice. A mass spectrometry approach was used to study metabolites in up to five time points per mouse at 6, 12, 18, 24 and 30 weeks of age, providing an unprecedented in depth view of disease trajectories. A total of 106 metabolites were studied. We report a signature of 31 metabolites able to discriminate between healthy and disease at various stages of the disease, covering the acute phase of muscle degeneration and regeneration up to the deteriorating phase. We show how metabolites related to energy production and chachexia (e.g. glutamine) are affected in mdx mice plasma over time. We further show how the signature is connected to molecular targets of nutraceuticals and pharmaceutical compounds currently in development as well as to the nitric oxide synthase pathway (e.g. arginine and citrulline). Finally, we evaluate the signature in a second longitudinal study in three independent mouse models carrying 0, 1 or 2 functional copies of the dystrophin paralog utrophin. In conclusion, we report an in-depth metabolomic signature covering previously identified associations and new associations, which enables drug developers to peripherally assess the effect of drugs on the metabolic status of dystrophic mice.
Collapse
Affiliation(s)
- Roula Tsonaka
- Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Mirko Signorelli
- Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Ekrem Sabir
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | | | - Kristina Hettne
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
13
|
de Meeûs d’Argenteuil C, Boshuizen B, Oosterlinck M, van de Winkel D, De Spiegelaere W, de Bruijn CM, Goethals K, Vanderperren K, Delesalle CJG. Flexibility of equine bioenergetics and muscle plasticity in response to different types of training: An integrative approach, questioning existing paradigms. PLoS One 2021; 16:e0249922. [PMID: 33848308 PMCID: PMC8043414 DOI: 10.1371/journal.pone.0249922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Equine bioenergetics have predominantly been studied focusing on glycogen and fatty acids. Combining omics with conventional techniques allows for an integrative approach to broadly explore and identify important biomolecules. Friesian horses were aquatrained (n = 5) or dry treadmill trained (n = 7) (8 weeks) and monitored for: evolution of muscle diameter in response to aquatraining and dry treadmill training, fiber type composition and fiber cross-sectional area of the M. pectoralis, M. vastus lateralis and M. semitendinosus and untargeted metabolomics of the M. pectoralis and M. vastus lateralis in response to dry treadmill training. Aquatraining was superior to dry treadmill training to increase muscle diameter in the hindquarters, with maximum effect after 4 weeks. After dry treadmill training, the M. pectoralis showed increased muscle diameter, more type I fibers, decreased fiber mean cross sectional area, and an upregulated oxidative metabolic profile: increased β-oxidation (key metabolites: decreased long chain fatty acids and increased long chain acylcarnitines), TCA activity (intermediates including succinyl-carnitine and 2-methylcitrate), amino acid metabolism (glutamine, aromatic amino acids, serine, urea cycle metabolites such as proline, arginine and ornithine) and xenobiotic metabolism (especially p-cresol glucuronide). The M. vastus lateralis expanded its fast twitch profile, with decreased muscle diameter, type I fibers and an upregulation of glycolytic and pentose phosphate pathway activity, and increased branched-chain and aromatic amino acid metabolism (cis-urocanate, carnosine, homocarnosine, tyrosine, tryptophan, p-cresol-glucuronide, serine, methionine, cysteine, proline and ornithine). Trained Friesians showed increased collagen and elastin turn-over. Results show that branched-chain amino acids, aromatic amino acids and microbiome-derived xenobiotics need further study in horses. They feed the TCA cycle at steps further downstream from acetyl CoA and most likely, they are oxidized in type IIA fibers, the predominant fiber type of the horse. These study results underline the importance of reviewing existing paradigms on equine bioenergetics.
Collapse
Affiliation(s)
- Constance de Meeûs d’Argenteuil
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, The Netherlands
| | - Maarten Oosterlinck
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Klara Goethals
- Department of Nutrition, Genetics and Ethology, Research Group Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine John Ghislaine Delesalle
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Van Pelt DW, Kharaz YA, Sarver DC, Eckhardt LR, Dzierzawski JT, Disser NP, Piacentini AN, Comerford E, McDonagh B, Mendias CL. Multiomics analysis of the mdx/mTR mouse model of Duchenne muscular dystrophy. Connect Tissue Res 2021; 62:24-39. [PMID: 32664808 DOI: 10.1080/03008207.2020.1791103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease characterized by extensive muscle weakness. Patients with DMD lack a functional dystrophin protein, which transmits force and organizes the cytoskeleton of skeletal muscle. Multiomic studies have been proposed as a way to obtain novel insight about disease processes from preclinical models, and we used this approach to study pathological changes in dystrophic muscles. MATERIALS AND METHODS We evaluated hindlimb muscles of male mdx/mTR mice, which lack a functional dystrophin protein and have deficits in satellite cell abundance and proliferative capacity. Wild type (WT) C57BL/6 J mice served as controls. Muscle fiber contractility was measured, along with changes in the transcriptome using RNA sequencing, and in the proteome, metabolome, and lipidome using mass spectrometry. RESULTS While mdx/mTR mice displayed gross pathological changes and continued cycles of degeneration and regeneration, we found no differences in permeabilized fiber contractility between strains. However, there were numerous changes in the transcriptome and proteome related to protein balance, contractile elements, extracellular matrix, and metabolism. There was only a 53% agreement in fold-change data between the proteome and transcriptome. Numerous changes in markers of skeletal muscle metabolism were observed, with dystrophic muscles exhibiting elevated glycolytic metabolites such as 6-phosphoglycerate, fructose-6-phosphate and glucose-6-phosphate, fructose bisphosphate, phosphorylated hexoses, and phosphoenolpyruvate. CONCLUSIONS These findings highlight the utility of multiomics in studying muscle disease, and provide additional insight into the pathological changes in dystrophic muscles that might help to indirectly guide evidence-based nutritional or exercise prescription in DMD patients.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky , Lexington, KY, USA
| | - Yalda A Kharaz
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, UK
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Logan R Eckhardt
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Justin T Dzierzawski
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, MI, USA
| | | | - Alex N Piacentini
- Research Institute, Hospital for Special Surgery , New York, NY, USA
| | - Eithne Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, UK
| | - Brian McDonagh
- Department of Physiology, School of Medicine, National University of Ireland , Galway, Ireland
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Research Institute, Hospital for Special Surgery , New York, NY, USA.,Department of Physiology & Biophysics, Weill Cornell Medical College , New York, NY, USA
| |
Collapse
|
15
|
Liu J, Zhao M, Zhu Y, Zheng L, Yin Y. Plasma Metabolomic and Lipidomic Profiling of a Genetically Modified Mouse Model of Scavenger Receptor Class B Type I. Proteomics 2020; 20:e2000050. [PMID: 33090674 DOI: 10.1002/pmic.202000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and is becoming the principal cause of death globally. The reverse cholesterol transport (RCT) mediated by scavenger receptor class B type I (SR-BI) is a major protection mechanism against atherosclerosis. To investigate the metabolome changes and to find potential biomarkers involved in RCT, nontargeted metabolomics and nontargeted lipidomics are applied to SR-BI knockout mice that are fed a high fat and high cholesterol diet. SR-BI knockout mice and controls are told apart using multidimensional statistical analysis, and potential biomarkers are found and identified. The pathophysiological meaning of the biomarkers and the perturbed metabolic pathways are also addressed, which could provide new evidence for atherosclerosis studies.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Yizhang Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
16
|
Tran H, McConville M, Loukopoulos P. Metabolomics in the study of spontaneous animal diseases. J Vet Diagn Invest 2020; 32:635-647. [PMID: 32807042 PMCID: PMC7488963 DOI: 10.1177/1040638720948505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using analytical chemistry techniques such as nuclear magnetic resonance (NMR) spectroscopy and liquid or gas chromatography-mass spectrometry (LC/GC-MS), metabolomics allows detection of most endogenous and exogenous metabolites in a biological sample. Metabolomics has a wide range of applications, and has been employed in nutrition science, toxicology, environmental studies, and systems biology. Metabolomics is particularly useful in biomedical science, and has been used for diagnostic laboratory testing, identifying targets for drug development, and monitoring drug metabolism, mode of action, and toxicity. Despite its immense potential, metabolomics remains underutilized in the study of spontaneous animal diseases. Our aim was to comprehensively review the existing literature on the use of metabolomics in spontaneous veterinary diseases. Three databases were used to find journal articles that applied metabolomics in veterinary medicine. A screening process was then conducted to eliminate references that did not meet the eligibility criteria; only primary research studies investigating spontaneous animal disease were included; 38 studies met the inclusion criteria. The main techniques used were NMR and MS. All studies detected metabolite alterations in diseased animals compared with non-diseased animals. Metabolomics was mainly used to study diseases of the digestive, reproductive, and musculoskeletal systems. Inflammatory conditions made up the largest proportion of studies when articles were categorized by disease process. Following a comprehensive analysis of the literature on metabolomics in spontaneous veterinary diseases, we concluded that metabolomics, although in its early stages in veterinary research, is a promising tool regarding diagnosis, biomarker discovery, and in uncovering new insights into disease pathophysiology.
Collapse
Affiliation(s)
- Helena Tran
- Melbourne Veterinary School, Faculty of
Veterinary and Agricultural Sciences, University of Melbourne, Melbourne,
Victoria, Australia
| | - Malcolm McConville
- Bio21 Institute, Metabolomics Australia,
University of Melbourne, Melbourne, Victoria, Australia
| | - Panayiotis Loukopoulos
- Melbourne Veterinary School, Faculty of
Veterinary and Agricultural Sciences, University of Melbourne, Melbourne,
Victoria, Australia
| |
Collapse
|
17
|
Santacruz L, Hurtado DX, Doohan R, Thomas OP, Puyana M, Tello E. Metabolomic study of soft corals from the Colombian Caribbean: PSYCHE and 1H-NMR comparative analysis. Sci Rep 2020; 10:5417. [PMID: 32214197 PMCID: PMC7096504 DOI: 10.1038/s41598-020-62413-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Marine organisms have evolved to survive against predators in complex marine ecosystems via the production of chemical compounds. Soft corals (Cnidaria, Anthozoa, Octocorallia) are an important source of chemically diverse metabolites with a broad spectrum of biological activities. Herein, we perform a comparative study between high-resolution proton nuclear magnetic resonance (1H-NMR) and pure shift yielded by chirp excitation (PSYCHE) experiments to analyze the metabolic profile of 24 soft corals from the Colombian Caribbean to correlate chemical fingerprints with their cytotoxic activity against three cancer cell lines (human cervical carcinoma (SiHa), human prostatic carcinoma (PC3) and human lung adenocarcinoma (A549)). All data obtained were explored using multivariate analysis using principal components analysis (PCA) and orthogonal partial least squares (OPLS) analysis. The results did not show a significant correlation between clusters using 1H-NMR data in the PCA and OPLS-DA models and therefore did not provide conclusive evidence; on the other hand, a metabolomic analysis of PSYCHE data obtained under the same parameters revealed that when a decoupled experiment is performed, it was possible to establish a statistically valid correlation between the chemical composition of soft corals and their cytotoxic activity against the PC3 cancer cell line, where the asperdiol and plexaurolone markers were putatively identified and related to the cytotoxic activity presented by extracts of Plexaurella sp. and Plexaura kukenthali, respectively. These results increase the speed, effectiveness and reliability of analyses for the study of this type of complex matrices.
Collapse
Affiliation(s)
- Liliana Santacruz
- Bioprospecting Research Group and Biosciences Doctoral Program, Faculty of Engineering, Campus Puente del Común, Universidad de la Sabana, 250001, Chía, Colombia
| | - Diana X Hurtado
- Bioprospecting Research Group and Biosciences Doctoral Program, Faculty of Engineering, Campus Puente del Común, Universidad de la Sabana, 250001, Chía, Colombia
| | - Roisin Doohan
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33, Galway, Ireland
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33, Galway, Ireland
| | - Mónica Puyana
- Departamento de Ciencias Biológicas y Ambientales, Universidad Jorge Tadeo Lozano, Carrera 4 # 22-61, 110311, Bogotá, Colombia
| | - Edisson Tello
- Bioprospecting Research Group and Biosciences Doctoral Program, Faculty of Engineering, Campus Puente del Común, Universidad de la Sabana, 250001, Chía, Colombia.
| |
Collapse
|
18
|
Abstract
INTRODUCTION Canis lupus familiaris is a domestic dog and many owners consider their pets as a family member. Medical bills with dogs are overcame only by the health care received by humans. Medical care is constantly progressing, and so is veterinary care. Metabolomics is the ''omic" technique aimed to the study of metabolome, low-molecular weight molecules, through biofluids or tissue samples. And it also allows to evaluate disease diagnosis and prognosis, therapeutic evaluation and toxicological studies. OBJECTIVES The goal of this paper is to review the current and potential applications of metabolomics in domestic dogs. METHOD ScienceDirect, Scopus, Reaxys and PubMed were searched for papers that performed canine metabolomics in any research area. RESULTS We analysed 38 papers, published until April 2019 in canine metabolomics approach. Metabolomic research in dogs so far can be divided into three areas: (a) Metabolomics studies in veterinary science, such as improving pet dogs health and welfare. (b) Diet, breeds and species discrimination. (c) Use of dogs as animal model in different diseases and drug development (evaluation toxicity and effect). CONCLUSIONS The results of this review showed that interest in metabolomics is growing in veterinary research. Several canine diseases have been evaluated with some promise for potential biomarker and/or disease mechanism discovery. Because canine metabolomics is a relatively new area, the researches spread across different research areas and with few studies in each area.
Collapse
Affiliation(s)
- Graciela Carlos
- Post Graduation Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil.
| | | | - Pedro Eduardo Fröehlich
- Post Graduation Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
19
|
Disease-specific and glucocorticoid-responsive serum biomarkers for Duchenne Muscular Dystrophy. Sci Rep 2019; 9:12167. [PMID: 31434957 PMCID: PMC6704115 DOI: 10.1038/s41598-019-48548-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Extensive biomarker discoveries for DMD have occurred in the past 7 years, and a vast array of these biomarkers were confirmed in independent cohorts and across different laboratories. In these previous studies, glucocorticoids and age were two major confounding variables. In this new study, using SomaScan technology and focusing on a subset of young DMD patients who were not yet treated with glucocorticoids, we identified 108 elevated and 70 decreased proteins in DMD relative to age matched healthy controls (p value < 0.05 after adjusting for multiple testing). The majority of the elevated proteins were muscle centric followed by cell adhesion, extracellular matrix proteins and a few pro-inflammatory proteins. The majority of decreased proteins were of cell adhesion, however, some had to do with cell differentiation and growth factors. Subsequent treatment of this group of DMD patients with glucocorticoids affected two major groups of pharmacodynamic biomarkers. The first group consisted of 80 serum proteins that were not associated with DMD and either decreased or increased following treatment with glucocorticoids, and therefore were reflective of a broader effect of glucocorticoids. The second group consisted of 17 serum proteins that were associated with DMD and these tended to normalize under treatment, thus reflecting physiologic effects of glucocorticoid treatment in DMD. In summary, we have identified a variety of circulating protein biomarkers that reflect the complex nature of DMD pathogenesis and response to glucocorticoids.
Collapse
|
20
|
Vannoy CH, Leroy V, Broniowska K, Lu QL. Metabolomics Analysis of Skeletal Muscles from FKRP-Deficient Mice Indicates Improvement After Gene Replacement Therapy. Sci Rep 2019; 9:10070. [PMID: 31296900 PMCID: PMC6624266 DOI: 10.1038/s41598-019-46431-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Muscular dystrophy-dystroglycanopathies comprise a heterogeneous and complex group of disorders caused by loss-of-function mutations in a multitude of genes that disrupt the glycobiology of α-dystroglycan, thereby affecting its ability to function as a receptor for extracellular matrix proteins. Of the various genes involved, FKRP codes for a protein that plays a critical role in the maturation of a novel glycan found only on α-dystroglycan. Yet despite knowing the genetic cause of FKRP-related dystroglycanopathies, the molecular pathogenesis of disease and metabolic response to therapeutic intervention has not been fully elucidated. To address these challenges, we utilized mass spectrometry-based metabolomics to generate comprehensive metabolite profiles of skeletal muscle across diseased, treated, and normal states. Notably, FKRP-deficient mice elicit diverse metabolic abnormalities in biomarkers of extracellular matrix remodeling and/or aging, pentoses/pentitols, glycolytic intermediates, and lipid metabolism. More importantly, the restoration of FKRP protein activity following AAV-mediated gene therapy induced a substantial correction of these metabolic impairments. While interconnections of the affected molecular mechanisms remain unclear, our datasets support the notion that global metabolic profiling can be valuable for determining the involvement of previously unsuspected regulatory or pathological pathways as well as identifying potential targets for drug discovery and diagnostics.
Collapse
Affiliation(s)
- Charles Harvey Vannoy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA.
| | - Victoria Leroy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | | | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA.
| |
Collapse
|
21
|
Ussery E, Bridges KN, Pandelides Z, Kirkwood AE, Bonetta D, Venables BJ, Guchardi J, Holdway D. Effects of environmentally relevant metformin exposure on Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:58-65. [PMID: 30336378 DOI: 10.1016/j.aquatox.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Metformin is one of the most prevalent pharmaceuticals in both surface and waste waters, yet little is known about the bioavailability and/or effects of developmental exposure on early life stage (ELS) fish. Here, we demonstrate that embryo-larval stages of medaka are capable of taking up metformin from the aquatic environment, provided exposure occurs prior to chorion hardening (∼6-hpf). Once transferred to clean water, ELS medaka are able to completely depurate metformin in <24-hours. Furthermore, ELS medaka exposed to a range of relevant concentrations of waterborne metformin (from 6 hpf through 28-days post hatch) had significantly reduced growth metrics, altered metabolomes, and changes in the expression of genes associated with cell growth. The range of concentrations investigated were 1.0, 3.2, 10, 32, and 100 μg·L-1. To examine effects of chronic, low level metformin exposure across the full medaka life-cycle, we exposed newly fertilized embryos to 3.2 μg L-1 waterborne metformin for 165-days. The weight and length of adult fish were examined, as were effects on the production of some steroid hormones, specifically a significant increase (control females: 0.161 ± 0.023 pg/mg; metformin treated females: 3.42 ± 0.543) in the production of 11-ketotestosterone was observed in adult female medaka. Collectively, these results suggest that current environmental exposure scenarios may be sufficient to cause effects on developing fish.
Collapse
Affiliation(s)
- Erin Ussery
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St.N., Oshawa, Ontario, L1H 7K4, Canada.
| | - Kristin N Bridges
- Advanced Environmental Research Institute & Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Zacharias Pandelides
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St.N., Oshawa, Ontario, L1H 7K4, Canada
| | - Andrea E Kirkwood
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St.N., Oshawa, Ontario, L1H 7K4, Canada
| | - Dario Bonetta
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St.N., Oshawa, Ontario, L1H 7K4, Canada
| | - Barney J Venables
- Advanced Environmental Research Institute & Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - John Guchardi
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St.N., Oshawa, Ontario, L1H 7K4, Canada
| | - Douglas Holdway
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St.N., Oshawa, Ontario, L1H 7K4, Canada
| |
Collapse
|
22
|
Buzkova J, Nikkanen J, Ahola S, Hakonen AH, Sevastianova K, Hovinen T, Yki-Järvinen H, Pietiläinen KH, Lönnqvist T, Velagapudi V, Carroll CJ, Suomalainen A. Metabolomes of mitochondrial diseases and inclusion body myositis patients: treatment targets and biomarkers. EMBO Mol Med 2018; 10:e9091. [PMID: 30373890 PMCID: PMC6284386 DOI: 10.15252/emmm.201809091] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial disorders (MDs) are inherited multi-organ diseases with variable phenotypes. Inclusion body myositis (IBM), a sporadic inflammatory muscle disease, also shows mitochondrial dysfunction. We investigated whether primary and secondary MDs modify metabolism to reveal pathogenic pathways and biomarkers. We investigated metabolomes of 25 mitochondrial myopathy or ataxias patients, 16 unaffected carriers, six IBM and 15 non-mitochondrial neuromuscular disease (NMD) patients and 30 matched controls. MD and IBM metabolomes clustered separately from controls and NMDs. MDs and IBM showed transsulfuration pathway changes; creatine and niacinamide depletion marked NMDs, IBM and infantile-onset spinocerebellar ataxia (IOSCA). Low blood and muscle arginine was specific for patients with m.3243A>G mutation. A four-metabolite blood multi-biomarker (sorbitol, alanine, myoinositol, cystathionine) distinguished primary MDs from others (76% sensitivity, 95% specificity). Our omics approach identified pathways currently used to treat NMDs and mitochondrial stroke-like episodes and proposes nicotinamide riboside in MDs and IBM, and creatine in IOSCA and IBM as novel treatment targets. The disease-specific metabolic fingerprints are valuable "multi-biomarkers" for diagnosis and promising tools for follow-up of disease progression and treatment effect.
Collapse
Affiliation(s)
- Jana Buzkova
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Joni Nikkanen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Sofia Ahola
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Anna H Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Ksenia Sevastianova
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Topi Hovinen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Research Programs Unit, Diabetes and Obesity, Obesity Research Unit, University of Helsinki, Helsinki, Finland
- Abdominal Centre, Endocrinology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Christopher J Carroll
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
- Neuroscience Centre, Helsinki Institute Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Metabolomic Analyses Reveal Extensive Progenitor Cell Deficiencies in a Mouse Model of Duchenne Muscular Dystrophy. Metabolites 2018; 8:metabo8040061. [PMID: 30282911 PMCID: PMC6315702 DOI: 10.3390/metabo8040061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/19/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a musculoskeletal disorder that causes severe morbidity and reduced lifespan. Individuals with DMD have an X-linked mutation that impairs their ability to produce functional dystrophin protein in muscle. No cure exists for this disease and the few therapies that are available do not dramatically delay disease progression. Thus, there is a need to better understand the mechanisms underlying DMD which may ultimately lead to improved treatment options. The muscular dystrophy (MDX) mouse model is frequently used to explore DMD disease traits. Though some studies of metabolism in dystrophic mice exist, few have characterized metabolic profiles of supporting cells in the diseased environment. Using nontargeted metabolomics we characterized metabolic alterations in muscle satellite cells (SCs) and serum of MDX mice. Additionally, live-cell imaging revealed MDX-derived adipose progenitor cell (APC) defects. Finally, metabolomic studies revealed a striking elevation of acylcarnitines in MDX APCs, which we show can inhibit APC proliferation. Together, these studies highlight widespread metabolic alterations in multiple progenitor cell types and serum from MDX mice and implicate dystrophy-associated metabolite imbalances in APCs as a potential contributor to adipose tissue disequilibrium in DMD.
Collapse
|