1
|
Abstract
Obesity is a multi-factorial disease that is influenced by genetic, epigenetic, and environmental factors. Precision medicine is a practice wherein prevention and treatment strategies take individual variability into account. It involves using a variety of factors including deep phenotyping using clinical, physiologic, and behavioral characteristics, 'omics assays (eg, genomics, epigenomics, transcriptomics, and microbiomics among others), and environmental factors to devise practices that are individualized to subsets of patients. Personalizing the therapeutic modality to the individual can lead to enhanced effectiveness and tolerability. The authors review advances in precision medicine made in the field of bariatrics and discuss future avenues and challenges.
Collapse
Affiliation(s)
- Khushboo Gala
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA. https://twitter.com/KhushbooSGala
| | - Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA; Department of Internal Medicine, Boston University Medical Center, Harrison Avenue, Boston, MA 02111, USA. https://twitter.com/Wissam_Ghusn
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA.
| |
Collapse
|
2
|
Bagheri M, Tanriverdi K, Iafrati MD, Mosley JD, Freedman JE, Ferguson JF. Characterization of the plasma metabolome and lipidome in response to sleeve gastrectomy and gastric bypass surgeries reveals molecular patterns of surgical weight loss. Metabolism 2024; 158:155955. [PMID: 38906372 PMCID: PMC11755375 DOI: 10.1016/j.metabol.2024.155955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES Bariatric surgery improves metabolic health, but the underlying mechanisms are not fully understood. We analyzed the effects of two types of bariatric surgery, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), on the plasma metabolome and lipidome. METHODS We characterized the plasma metabolome (1268 metabolites) and lipidome (953 lipids) pre-operatively and at 3 and 12 months post-operatively in 104 obese adults who were previously recruited to a prospective cohort of bariatric surgery. The metabolomic and lipidomic responses to bariatric surgery over time were analyzed using multivariable linear mixed-effects models. RESULTS There were significant changes in multiple metabolites and lipids, including rapid early changes in amino acid and peptide metabolites, including decreases in branched-chain amino acids (BCAAs), aromatic AAs, alanine and aspartate, and increases in glycine, serine, arginine and citrulline. There were also significant decreases in many triglyceride species, with increases in phosphatidylcholines and phosphatidylethanolamines. There were significant changes in metabolites related to energy metabolism that were apparent only after 12 months. We observed differences by bariatric surgery type in the changes in a small number of primary and secondary bile acids, including glycohyocholate and glyco-beta-muricholate. CONCLUSIONS Our findings highlight the comprehensive changes in metabolites and lipids that occur over the 12 months following bariatric surgery. While both SG and RYGB caused profound changes in the metabolome and lipidome, RYGB was characterized by greater increases in bile acids following surgery.
Collapse
Affiliation(s)
- Minoo Bagheri
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Kahraman Tanriverdi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mark D Iafrati
- Department of Vascular Surgery, Vanderbilt University Medical Center, United States of America
| | - Jonathan D Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States of America; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jane E Freedman
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
3
|
Montcusí B, Madrid-Gambin F, Pozo ÓJ, Marco S, Marin S, Mayol X, Pascual M, Alonso S, Salvans S, Jiménez-Toscano M, Cascante M, Pera M. Circulating metabolic markers after surgery identify patients at risk for severe postoperative complications: a prospective cohort study in colorectal cancer. Int J Surg 2024; 110:1493-1501. [PMID: 38116682 PMCID: PMC10942180 DOI: 10.1097/js9.0000000000000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Early detection of postoperative complications after colorectal cancer (CRC) surgery is associated with improved outcomes. The aim was to investigate early metabolomics signatures capable to detect patients at risk for severe postoperative complications after CRC surgery. MATERIALS AND METHODS Prospective cohort study of patients undergoing CRC surgery from 2015 to 2018. Plasma samples were collected before and after surgery, and analyzed by mass spectrometry obtaining 188 metabolites and 21 ratios. Postoperative complications were registered with Clavien-Dindo Classification and Comprehensive Complication Index. RESULTS One hundred forty-six patients were included. Surgery substantially modified metabolome and metabolic changes after surgery were quantitatively associated with the severity of postoperative complications. The strongest positive relationship with both Clavien-Dindo and Comprehensive Complication Index (β=4.09 and 63.05, P <0.001) corresponded to kynurenine/tryptophan, against an inverse relationship with lysophosphatidylcholines (LPCs) and phosphatidylcholines (PCs). Patients with LPC18:2/PCa36:2 below the cut-off 0.084 µM/µM resulted in a sevenfold higher risk of major complications (OR=7.38, 95% CI: 2.82-21.25, P <0.001), while kynurenine/tryptophan above 0.067 µM/µM a ninefold (OR=9.35, 95% CI: 3.03-32.66, P <0.001). Hexadecanoylcarnitine below 0.093 µM displayed a 12-fold higher risk of anastomotic leakage-related complications (OR=11.99, 95% CI: 2.62-80.79, P =0.004). CONCLUSION Surgery-induced phospholipids and amino acid dysregulation is associated with the severity of postoperative complications after CRC surgery, including anastomotic leakage-related outcomes. The authors provide quantitative insight on metabolic markers, measuring vulnerability to postoperative morbidity that might help guide early decision-making and improve surgical outcomes.
Collapse
Affiliation(s)
- Blanca Montcusí
- Department of Surgery, Section of Colon and Rectal Surgery, Hospital del Mar
- Colorectal Neoplasms Clinical and Translational Research Group
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM)
- Department of Surgery, Faculty of Medicine, Universitat de Barcelona (UB)
| | - Francisco Madrid-Gambin
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM)
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology
| | - Óscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM)
| | - Santiago Marco
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology
- Department of Electronics and Biomedical Engineering, Faculty of Physics
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology
- Institute of Biomedicine, Universitat de Barcelona (UB)
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Xavier Mayol
- Colorectal Neoplasms Clinical and Translational Research Group
| | - Marta Pascual
- Department of Surgery, Section of Colon and Rectal Surgery, Hospital del Mar
- Colorectal Neoplasms Clinical and Translational Research Group
| | - Sandra Alonso
- Department of Surgery, Section of Colon and Rectal Surgery, Hospital del Mar
- Colorectal Neoplasms Clinical and Translational Research Group
| | - Silvia Salvans
- Department of Surgery, Section of Colon and Rectal Surgery, Hospital del Mar
- Colorectal Neoplasms Clinical and Translational Research Group
| | - Marta Jiménez-Toscano
- Department of Surgery, Section of Colon and Rectal Surgery, Hospital del Mar
- Colorectal Neoplasms Clinical and Translational Research Group
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology
- Institute of Biomedicine, Universitat de Barcelona (UB)
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Miguel Pera
- Department of Surgery, Section of Colon and Rectal Surgery, Hospital del Mar
- Colorectal Neoplasms Clinical and Translational Research Group
- Department of Surgery, Faculty of Medicine, Universitat de Barcelona (UB)
- Department of General and Digestive Surgery, Institut of Digestive and Metabolic Diseases, Hospital Clínic, Barcelona
| |
Collapse
|
4
|
Alimajstorovic Z, Mollan SP, Grech O, Mitchell JL, Yiangou A, Thaller M, Lyons H, Sassani M, Seneviratne S, Hancox T, Jankevics A, Najdekr L, Dunn W, Sinclair AJ. Dysregulation of Amino Acid, Lipid, and Acylpyruvate Metabolism in Idiopathic Intracranial Hypertension: A Non-targeted Case Control and Longitudinal Metabolomic Study. J Proteome Res 2022; 22:1127-1137. [PMID: 36534069 PMCID: PMC10088035 DOI: 10.1021/acs.jproteome.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Idiopathic intracranial hypertension (IIH) is characterized by increased intracranial pressure occurring predominantly in women with obesity. The pathogenesis is not understood. We have applied untargeted metabolomic analysis using ultrahigh-performance liquid chromatography-mass spectrometry to characterize the cerebrospinal fluid (CSF) and serum in IIH compared to control subjects. Methods and findings: Samples were collected from IIH patients (n = 66) with active disease at baseline and again at 12 months following therapeutic weight loss. Control samples were collected from gender- and weight-matched healthy controls (n = 20). We identified annotated metabolites in CSF, formylpyruvate and maleylpyruvate/fumarylpyruvate, which were present at lower concentrations in IIH compared to control subjects and returned to values observed in controls following weight loss. These metabolites showed the opposite trend in serum at baseline. Multiple amino acid metabolic pathways and lipid classes were perturbed in serum and CSF in IIH alone. Serum lipid metabolite pathways were significantly increased in IIH. Conclusions: We observed a number of differential metabolic pathways related to amino acid, lipid, and acylpyruvate metabolism, in IIH compared to controls. These pathways were associated with clinical measures and normalized with disease remission. Perturbation of these metabolic pathways provides initial understanding of disease dysregulation in IIH.
Collapse
Affiliation(s)
- Zerin Alimajstorovic
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Susan P. Mollan
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2WB, U.K
| | - Olivia Grech
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - James L. Mitchell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Mark Thaller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Matilde Sassani
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Senali Seneviratne
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Thomas Hancox
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andris Jankevics
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
| | - Lukáš Najdekr
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, Hněvotínská 5, Olomouc 77900, Czech Republic
| | - Warwick Dunn
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Alexandra J. Sinclair
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, U.K
| |
Collapse
|
5
|
Abstract
Metabolomics emerged as an important tool to gain insights on how the body responds to therapeutic interventions. Bariatric surgery is the most effective treatment for severe obesity and obesity-related co-morbidities. Our aim was to conduct a systematic review of the available data on metabolomics profiles that characterize patients submitted to different bariatric surgery procedures, which could be useful to predict clinical outcomes including weight loss and type 2 diabetes remission. For that, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed. Data from forty-seven original study reports addressing metabolomics profiles induced by bariatric surgery that met eligibility criteria were compiled and summarized. Amino acids, lipids, energy-related and gut microbiota-related were the metabolite classes most influenced by bariatric surgery. Among these, higher pre-operative levels of specific lipids including phospholipids, long-chain fatty acids and bile acids were associated with post-operative T2D remission. As conclusion, metabolite profiling could become a useful tool to predict long term response to different bariatric surgery procedures, allowing more personalized interventions and improved healthcare resources allocation.
Collapse
Affiliation(s)
- Matilde Vaz
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia S Pereira
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana P Monteiro
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
6
|
Jones B, Sands C, Alexiadou K, Minnion J, Tharakan G, Behary P, Ahmed AR, Purkayastha S, Lewis MR, Bloom S, Li JV, Tan TM. The Metabolomic Effects of Tripeptide Gut Hormone Infusion Compared to Roux-en-Y Gastric Bypass and Caloric Restriction. J Clin Endocrinol Metab 2022; 107:e767-e782. [PMID: 34460933 PMCID: PMC8764224 DOI: 10.1210/clinem/dgab608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY) are regulators of energy intake and glucose homeostasis and are thought to contribute to the glucose-lowering effects of bariatric surgery. OBJECTIVE To establish the metabolomic effects of a combined infusion of GLP-1, OXM, and PYY (tripeptide GOP) in comparison to a placebo infusion, Roux-en-Y gastric bypass (RYGB) surgery, and a very low-calorie diet (VLCD). DESIGN AND SETTING Subanalysis of a single-blind, randomized, placebo-controlled study of GOP infusion (ClinicalTrials.gov NCT01945840), including VLCD and RYGB comparator groups. PATIENTS AND INTERVENTIONS Twenty-five obese patients with type 2 diabetes or prediabetes were randomly allocated to receive a 4-week subcutaneous infusion of GOP (n = 14) or 0.9% saline control (n = 11). An additional 22 patients followed a VLCD, and 21 underwent RYGB surgery. MAIN OUTCOME MEASURES Plasma and urine samples collected at baseline and 4 weeks into each intervention were subjected to cross-platform metabolomic analysis, followed by unsupervised and supervised modeling approaches to identify similarities and differences between the effects of each intervention. RESULTS Aside from glucose, very few metabolites were affected by GOP, contrasting with major metabolomic changes seen with VLCD and RYGB. CONCLUSIONS Treatment with GOP provides a powerful glucose-lowering effect but does not replicate the broader metabolomic changes seen with VLCD and RYGB. The contribution of these metabolomic changes to the clinical benefits of RYGB remains to be elucidated.
Collapse
MESH Headings
- Adult
- Aged
- Blood Glucose/analysis
- Caloric Restriction/methods
- Caloric Restriction/statistics & numerical data
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Diabetes Mellitus, Type 2/urine
- Drug Therapy, Combination/methods
- Female
- Gastric Bypass/methods
- Gastric Bypass/statistics & numerical data
- Gastrointestinal Hormones/administration & dosage
- Glucagon-Like Peptide 1/administration & dosage
- Humans
- Infusions, Subcutaneous
- Male
- Metabolomics/statistics & numerical data
- Middle Aged
- Obesity, Morbid/blood
- Obesity, Morbid/metabolism
- Obesity, Morbid/therapy
- Obesity, Morbid/urine
- Oxyntomodulin/administration & dosage
- Peptide YY/administration & dosage
- Single-Blind Method
- Treatment Outcome
- Weight Loss
- Young Adult
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Caroline Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kleopatra Alexiadou
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Preeshila Behary
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Stephen Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Correspondence: Tricia M. Tan, MB, ChB, BSc, PhD, FRCP, FRCPath, 6th Floor, Commonwealth Building, Hammersmith Campus, Imperial College London, London W12 0HS, UK.
| |
Collapse
|
7
|
Huang X, Wu L, Gao L, Yu S, Chen X, Wang C, Yang W. Impact of Self-Monitoring on Weight Loss After Bariatric Surgery. Obes Surg 2021; 31:4399-4404. [PMID: 34319468 DOI: 10.1007/s11695-021-05600-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Weight loss after bariatric surgery varies among patients. Patients who do not comply with self-monitoring are predicted to lose less weight than those who comply with self-monitoring. OBJECTIVE To assess the effect of compliance with self-monitoring behavior on long-term %excess weight loss (%EWL) and %total weight loss (%TWL) among patients receiving laparoscopic sleeve gastrectomy (LSG) and laparoscopic Roux-en-Y gastric bypass (LRYGB). METHODS We used retrospective analysis to evaluate the self-monitoring behavior of patients and their weight changes throughout a 2-year follow-up. The participants were divided into two groups: group 1 consisted of participants who kept self-monitoring behavior records for all follow-ups and group 2 consisted of participants who kept self-monitoring behavior records for only six months of follow-up. Our investigators used telephone interviews to collect the data. By comparing %EWL and %TWL, we assessed the possible relationship between the long-term self-monitoring behavior, weight loss outcome, and operation type. RESULTS There were 384 included samples. %EWL was significantly different between group 1 and group 2, and group 1 participants had better outcomes regardless of operational method. In group 2, LRYGB patients had better %EWL outcomes than LSG patients. CONCLUSIONS Patients with long-term self-monitoring behaviors have better %EWL and %TWL. Patients in LRYGB group had better weight loss outcomes than the LSG group.
Collapse
Affiliation(s)
- Xinke Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lina Wu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Lilian Gao
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuqing Yu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | | |
Collapse
|
8
|
Metabolomics in Bariatric Surgery: Towards Identification of Mechanisms and Biomarkers of Metabolic Outcomes. Obes Surg 2021; 31:4564-4574. [PMID: 34318371 DOI: 10.1007/s11695-021-05566-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022]
Abstract
Bariatric surgery has been widely performed for the treatment of obesity and type 2 diabetes. Efforts have been made to investigate the mechanisms underlying the metabolic effects achieved by bariatric surgery and to identify candidates who will benefit from this surgery. Metabolomics, which includes comprehensive profiling of metabolites in biological samples, has been utilized for various disease entities to discover pathophysiological metabolic pathways and biomarkers predicting disease progression or prognosis. Over the last decade, metabolomic studies on patients undergoing bariatric surgery have identified significant biomarkers related to metabolic effects. This review describes the significance, progress, and challenges for the future of metabolomics in the area of bariatric surgery.
Collapse
|
9
|
Barati-Boldaji R, Esmaeilinezhad Z, Babajafari S, Kazemi A, Clark CC, Mazidi M, Ofori-Asenso R, Haghighat N, Shafiee M, Mazloomi SM. Bariatric surgery reduces branched-chain amino acids’ levels: a systematic review and meta-analysis. Nutr Res 2021; 87:80-90. [DOI: 10.1016/j.nutres.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
|
10
|
Herzog K, Berggren J, Al Majdoub M, Balderas Arroyo C, Lindqvist A, Hedenbro J, Groop L, Wierup N, Spégel P. Metabolic Effects of Gastric Bypass Surgery: Is It All About Calories? Diabetes 2020; 69:2027-2035. [PMID: 32527768 DOI: 10.2337/db20-0131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022]
Abstract
Bariatric surgery is an efficient method to induce weight loss and also, frequently, remission of type 2 diabetes (T2D). Unpaired studies have shown bariatric surgery and dietary interventions to differentially affect multiple hormonal and metabolic parameters, suggesting that bariatric surgery causes T2D remission at least partially via unique mechanisms. In the current study, plasma metabolite profiling was conducted in patients with (n = 10) and without T2D (n = 9) subjected to Roux-en-Y gastric bypass surgery (RYGB). Mixed-meal tests were conducted at baseline, after the presurgical very-low-calorie diet (VLCD) intervention, immediately after RYGB, and after a 6-week recovery period. Thereby, we could compare fasted and postprandial metabolic consequences of RYGB and VLCD in the same patients. VLCD yielded a pronounced increase in fasting acylcarnitine levels, whereas RYGB, both immediately and after a recovery period, resulted in a smaller but opposite effect. Furthermore, we observed profound changes in lipid metabolism following VLCD but not in response to RYGB. Most changes previously associated with RYGB were found to be consequences of the presurgical dietary intervention. Overall, our results question previous findings of unique metabolic effects of RYGB and suggest that the effect of RYGB on the metabolite profile is mainly attributed to caloric restriction.
Collapse
Affiliation(s)
- Katharina Herzog
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Johan Berggren
- Department of Surgery and Urology, Kalmar Hospital, Kalmar, Sweden
- Neuroendocrine Cell Biology, Department of Experimental Medical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Mahmoud Al Majdoub
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | | | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Department of Experimental Medical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Jan Hedenbro
- Neuroendocrine Cell Biology, Department of Experimental Medical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Leif Groop
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Neuroendocrine Cell Biology, Department of Experimental Medical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Peter Spégel
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| |
Collapse
|
11
|
So SSY, Yeung CHC, Schooling CM, El-Nezami H. Targeting bile acid metabolism in obesity reduction: A systematic review and meta-analysis. Obes Rev 2020; 21:e13017. [PMID: 32187830 DOI: 10.1111/obr.13017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
A systematic review and meta-analysis was conducted of studies that address the association of bile acid (BA) with obesity and of studies on the effects of treatment in patients with obesity on BA metabolism, assessed from systemic BA, fibroblast growth factor 19 (FGF19), 7α-hydroxy-4-cholesten-3-one (C4) level, and faecal BA. We searched PubMed, Embase, and the Cochrane Library from inception to 1 August 2019 using the keywords obesity, obese, body mass index, and overweight with bile acid, FGF19, FXR, and TGR5. Two reviewers independently searched, selected, and assessed the quality of studies. Data were analysed using either fixed or random effect models with inverse variance weighting. Of 3771 articles, 33 papers were relevant for the association of BA with obesity of which 22 were included in the meta-analysis, and 50 papers were relevant for the effect of obesity interventions on BA of which 20 were included in the meta-analysis. Circulating fasting total BA was not associated with obesity. FGF19 was inversely and faecal BA excretion was positively associated with obesity. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) modulated BA metabolism, ie, increased BA and FGF19. Our results indicate that BA metabolism is altered in obesity. Certain bariatric surgeries including RYGB and SG modulate BA, whether these underlie the beneficial effect of the treatment should be investigated.
Collapse
Affiliation(s)
- Stephanie Sik Yu So
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chris Ho Ching Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Graduate School of Public Health and Health Policy, City University of New York, New York, United States
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Abstract
AbstractKnowing the biological signals associated with appetite control is crucial for understanding the regulation of food intake. Biomarkers of appetite have been defined as physiological measures that relate to subjective appetite ratings, measured food intake, or both. Several metabolites including amino acids, lipids and glucose were proposed as key molecules associated with appetite control over 60 years ago, and along with bile acids are all among possible appetite biomarker candidates. Additional metabolites that have been associated with appetite include endocannabinoids, lactate, cortisol and β-hydroxybutyrate. However, although appetite is a complex integrative process, studies often investigated a limited number of markers in isolation. Metabolomics involves the study of small molecules or metabolites present in biological samples such as urine or blood, and may present a powerful approach to further the understanding of appetite control. Using multiple analytical techniques allows the characterisation of molecules, such as carbohydrates, lipids, amino acids, bile acids and fatty acids. Metabolomics has proven successful in identifying markers of consumption of certain foods and biomarkers implicated in several diseases. However, it has been underexploited in appetite control or obesity. The aim of the present narrative review is to: (1) provide an overview of existing metabolites that have been identified in human biofluids and associated with appetite control; and (2) discuss the potential of metabolomics to deepen understanding of appetite control in humans.
Collapse
|
13
|
Haange SB, Jehmlich N, Krügel U, Hintschich C, Wehrmann D, Hankir M, Seyfried F, Froment J, Hübschmann T, Müller S, Wissenbach DK, Kang K, Buettner C, Panagiotou G, Noll M, Rolle-Kampczyk U, Fenske W, von Bergen M. Gastric bypass surgery in a rat model alters the community structure and functional composition of the intestinal microbiota independently of weight loss. MICROBIOME 2020; 8:13. [PMID: 32033593 PMCID: PMC7007695 DOI: 10.1186/s40168-020-0788-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/13/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is a last-resort treatment to induce substantial and sustained weight loss in cases of severe obesity. This anatomical rearrangement affects the intestinal microbiota, but so far, little information is available on how it interferes with microbial functionality and microbial-host interactions independently of weight loss. METHODS A rat model was employed where the RYGB-surgery cohort is compared to sham-operated controls which were kept at a matched body weight by food restriction. We investigated the microbial taxonomy and functional activity using 16S rRNA amplicon gene sequencing, metaproteomics, and metabolomics on samples collected from theileum, the cecum, and the colon, and separately analysed the lumen and mucus-associated microbiota. RESULTS Altered gut architecture in RYGB increased the relative occurrence of Actinobacteria, especially Bifidobacteriaceae and Proteobacteria, while in general, Firmicutes were decreased although Streptococcaceae and Clostridium perfringens were observed at relative higher abundances independent of weight loss. A decrease of conjugated and secondary bile acids was observed in the RYGB-gut lumen. The arginine biosynthesis pathway in the microbiota was altered, as indicated by the changes in the abundance of upstream metabolites and enzymes, resulting in lower levels of arginine and higher levels of aspartate in the colon after RYGB. CONCLUSION The anatomical rearrangement in RYGB affects microbiota composition and functionality as well as changes in amino acid and bile acid metabolism independently of weight loss. The shift in the taxonomic structure of the microbiota after RYGB may be mediated by the resulting change in the composition of the bile acid pool in the gut and by changes in the composition of nutrients in the gut. Video abstract.
Collapse
Affiliation(s)
- Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Constantin Hintschich
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
| | - Dorothee Wehrmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Mohammed Hankir
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
- Current address: Department of Experimental Surgery, Wuerzburg University Hospital, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, Wuerzburg University Hospital, Wuerzburg, Germany
| | - Jean Froment
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thomas Hübschmann
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Dirk K. Wissenbach
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Current address: Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Kang Kang
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Christian Buettner
- Institute for Bioanalysis, Faculty of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Matthias Noll
- Institute for Bioanalysis, Faculty of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Wiebke Fenske
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|