1
|
Chen K, Yang H, Cai R. Microfluidics for Nanomedicine Delivery. ACS Biomater Sci Eng 2025. [PMID: 39772433 DOI: 10.1021/acsbiomaterials.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nanomedicine is revolutionizing precision medicine, providing targeted, personalized treatment options. Lipid-based nanomedicines offer distinct benefits including high potency, targeted delivery, extended retention in the body, reduced toxicity, and lower required doses. These characteristics make lipid-based nanoparticles ideal for drug delivery in areas such as gene therapy, cancer treatment, and mRNA vaccines. However, traditional bulk synthesis methods for LNPs often produce larger particle sizes, significant polydispersity, and low encapsulation efficiency, which can reduce the therapeutic effectiveness. These issues primarily result from uneven mixing and limited control over particle formation during the synthesis. Microfluidic technology has emerged as a solution, providing precise control over particle size, uniformity, and encapsulation efficiency. In this mini review, we introduce the state-of-the-art microfluidic systems for lipid-based nanoparticle synthesis and functionalization. We include the working principles of different types of microfluidic systems, the use of microfluidic systems for LNP synthesis, cargo encapsulation, and nanomedicine delivery. In the end, we briefly discuss the clinical use of LNPs enabled by microfluidic devices.
Collapse
Affiliation(s)
- Kangfu Chen
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, United States
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Han SY, Treves Brown BJ, Higginson MA, Kaye P, Sharrad CA, Heath SL. Development of an automated microfluidic system for actinide separation and analysis. J Chromatogr A 2024; 1742:465646. [PMID: 39793449 DOI: 10.1016/j.chroma.2024.465646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/08/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Mass spectroscopy and microfluidic technology, when combined, offer significant advantages in radiochemical analysis sample volume and cost reduction. A microfluidic device designed for efficiency has been developed. This device separates uranium from key trace elements by utilising UTEVA® chromatographic resins and nitric acid solutions of different concentrations for adsorption and recovery. The eluates from this microdevice are then diluted and directed to an inductively coupled plasma mass spectrometry system, enabling direct analysis of trace elements and uranium with minimal operator-sample interaction. This efficient approach greatly reduces the volume of sample required for trace elemental analysis in actinide materials, thereby reducing costs and satisfying the As Low As Reasonably Achievable (ALARA) principle.
Collapse
Affiliation(s)
- Shuang Yu Han
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Bernard J Treves Brown
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | - Philip Kaye
- AWE Nuclear Security Technologies, Aldermaston RG7 4PR, UK
| | - Clint A Sharrad
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Dalton Nuclear Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Scott L Heath
- Dalton Nuclear Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Department of Mechanical, Aerospace & Civil Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Lakhdar A, Skander J, Tayeb NT, Mostefa T, Hossain S, Kim SM. Analysis of Entropy Generation for Mass and Thermal Mixing Behaviors in Non-Newtonian Nano-Fluids of a Crossing Micromixer. MICROMACHINES 2024; 15:1392. [PMID: 39597204 PMCID: PMC11597064 DOI: 10.3390/mi15111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
This work's objective is to investigate the laminar steady flow characteristics of non-Newtonian nano-fluids in a developed chaotic microdevice known as a two-layer crossing channels micromixer (TLCCM). The continuity equation, the 3D momentum equations, and the species transport equations have been solved numerically at low Reynolds numbers with the commercial CFD software Fluent. A procedure has been verified for non-Newtonian flow in studied geometry that is continuously heated. Secondary flows and thermal mixing performance with two distinct intake temperatures of nano-shear thinning fluids is involved. For an extensive range of Reynolds numbers (0.1 to 25), the impact of fluid characteristics and various concentrations of Al2O3 nanoparticles on thermal mixing capabilities and pressure drop were investigated. The simulation for performance enhancement was run using a power-law index (n) at intervals of different nanoparticle concentrations (0.5 to 5%). At high nano-fluid concentrations, our research findings indicate that hydrodynamic and thermal performances are considerably improved for all Reynolds numbers because of the strong chaotic flow. The mass fraction visualization shows that the suggested design has a fast thermal mixing rate that approaches 0.99%. As a consequence of the thermal and hydrodynamic processes, under the effect of chaotic advection, the creation of entropy governs the second law of thermodynamics. Thus, with the least amount of friction and thermal irreversibilities compared to other studied geometries, the TLCCM arrangement confirmed a significant enhancement in the mixing performance.
Collapse
Affiliation(s)
- Ayache Lakhdar
- Laboratory of Electro-Mechanical Systems, The Engineers National School of SFAX, University of SFAX, Sfax 3038, Tunisia; (A.L.)
| | - Jribi Skander
- Laboratory of Electro-Mechanical Systems, The Engineers National School of SFAX, University of SFAX, Sfax 3038, Tunisia; (A.L.)
- Department of Mechanical Engineering, College of Engineering, King Faisal University, Al-Ahsa 36362, Saudi Arabia
| | - Naas Toufik Tayeb
- Laboratory of Renewable Energy Systems Applications, Gas Turbine Joint Research Team, Ziane Achour University, Djelfa 17000, Algeria;
| | - Telha Mostefa
- Department of Mechanical Engineering, Ziane Achour University, Djelfa 17000, Algeria;
| | - Shakhawat Hossain
- Department of Industrial and Production Engineering, Jashore University of Science and Technology, Jessore 7408, Bangladesh
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Blaschke O, Kluitmann J, Elsner J, Xie X, Drese KS. Consistent Evaluation Methods for Microfluidic Mixers. MICROMACHINES 2024; 15:1312. [PMID: 39597124 PMCID: PMC11596931 DOI: 10.3390/mi15111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
The study presents a unifying methodology for characterizing micromixers, integrating both experimental and simulation techniques. Focusing on Dean mixer designs, it employs an optical evaluation for experiments and a modified Sobolev norm for simulations, yielding a unified dimensionless characteristic parameter for the whole mixer at a given Reynolds number. The results demonstrate consistent mixing performance trends across both methods for various operation points. This paper also proposes enhancements in the evaluation process to improve accuracy and reduce noise impact. This approach provides a valuable framework for optimizing micromixer designs, essential in advancing microfluidic technologies.
Collapse
Affiliation(s)
- Oliver Blaschke
- Institute for Sensor and Actuator Technology, Coburg University of Applied Sciences and Arts, Am Hofbräuhaus 1B, 96450 Coburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Farahani S, Movahedirad S, Sobati MA. Characterization of the oil water two phase flow in a novel microchannel contactor equipped with helical wire static mixer. Sci Rep 2024; 14:23369. [PMID: 39375430 PMCID: PMC11458776 DOI: 10.1038/s41598-024-75356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
This study investigates an oil/water two-phase system to assess the potential efficacy of a novel passive mixer in enhancing the liquid-liquid interfacial area within a micro-channel contactor. In this system, two fluids are introduced into a microchannel with a diameter of 800 μm and a length of 20 cm, which is equipped with a stainless-steel helical wire measuring 250 μm in diameter. Throughout the experiments, both fluids are supplied at equal flow rates, and the dominant forces, including attachment and detachment forces, are examined. The results reveal a critical Weber number of 3.8 × 10-³, at which the first detachment occurs. A comparison between microchannels with and without the passive micromixer demonstrates that greater slug breakup occurs in the system incorporating the helical wire micromixer. This innovative configuration results in a significant reduction in slug/droplet size compared to a microchannel without a barrier, decreasing from approximately 600 μm to 390 μm at a flow rate of 0.8 mL/min. Additionally, a flow map is presented, illustrating three distinct flow regimes: flow contains long slug, Slug-droplet flow, and droplet flow regimes, with the droplet flow regime covering the largest area. The findings indicate that the implementation of this innovative passive mixer substantially increases the interfacial area, providing significant advantages for mass transfer applications.
Collapse
Affiliation(s)
- Sobhan Farahani
- School of Chemical Engineering, Iran University of Science and Technology (IUST), P.O. Box 16765-163, Tehran, Iran
| | - Salman Movahedirad
- School of Chemical Engineering, Iran University of Science and Technology (IUST), P.O. Box 16765-163, Tehran, Iran.
| | - Mohammad Amin Sobati
- School of Chemical Engineering, Iran University of Science and Technology (IUST), P.O. Box 16765-163, Tehran, Iran
| |
Collapse
|
6
|
Graja A, Gumieniak M, Dzimira M, Janisz T, Krakos A. Inertial microfluidic mixer for biological CubeSat missions. Mikrochim Acta 2024; 191:641. [PMID: 39358567 PMCID: PMC11447037 DOI: 10.1007/s00604-024-06726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Nanosatellites of CubeSat type due to, i.a., minimized costs of space missions, as well as the potential large application area, have become a significant part of the space economy sector recently. The opportunity to apply miniaturized microsystem (MEMS) tools in satellite space missions further accelerates both the space and the MEMS markets, which in the coming years are considered to become inseparable. As a response to the aforementioned perspectives, this paper presents a microfluidic mixer system for biological research to be conducted onboard CubeSat nanosatellites. As a high complexity of the space systems is not desired due to the need for failure-free and remotely controlled operation, the principal concept of the work was to design an entirely passive micromixer, based on lab-on-chip technologies. For the first time, the microfluidic mixer that uses inertial force generated by rocket engines during launch to the orbit is proposed to provide an appropriate mixing of liquid samples. Such a solution not only saves the space occupied by standard pumping systems, but also reduces the energy requirements, ultimately minimizing the number of battery modules and the whole CubeSat size. The structures of the microfluidic mixers were fabricated entirely out of biocompatible resins using MultiJet 3D printing technology. To verify the functionality of the passive mixing system, optical detection consisting of the array of blue LEDs and phototransistors was applied successfully. The performance of the device was tested utilizing an experimental rocket, as a part of the Spaceport America Cup 2023 competition.
Collapse
Affiliation(s)
- Adrianna Graja
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Mateusz Gumieniak
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Maciej Dzimira
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Tymon Janisz
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Agnieszka Krakos
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland.
| |
Collapse
|
7
|
Agha A, Abu-Nada E, Alazzam A. Integration of acoustic micromixing with cyclic olefin copolymer microfluidics for enhanced lab-on-a-chip applications in nanoscale liposome synthesis. Biofabrication 2024; 16:045004. [PMID: 38942007 DOI: 10.1088/1758-5090/ad5d19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
The integration of acoustic wave micromixing with microfluidic systems holds great potential for applications in biomedicine and lab-on-a-chip technologies. Polymers such as cyclic olefin copolymer (COC) are increasingly utilized in microfluidic applications due to its unique properties, low cost, and versatile fabrication methods, and incorporating them into acoustofluidics significantly expands their potential applications. In this work, for the first time, we demonstrated the integration of polymer microfluidics with acoustic micromixing utilizing oscillating sharp edge structures to homogenize flowing fluids. The sharp edge mixing platform was entirely composed of COC fabricated in a COC-hydrocarbon solvent swelling based microfabrication process. As an electrical signal is applied to a piezoelectric transducer bonded to the micromixer, the sharp edges start to oscillate generating vortices at its tip, mixing the fluids. A 2D numerical model was implemented to determine the optimum microchannel dimensions for experimental mixing assessment. The system was shown to successfully mix fluids at flow rates up to 150µl h-1and has a modest effect even at the highest tested flow rate of 600µl h-1. The utility of the fabricated sharp edge micromixer was demonstrated by the synthesis of nanoscale liposomes.
Collapse
Affiliation(s)
- Abdulrahman Agha
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Eiyad Abu-Nada
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Anas Alazzam
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- System on Chip Lab, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
8
|
Das S, Vanarse VB, Bandyopadhyay D. Tailored micromixing in chemically patterned microchannels undergoing electromagnetohydrodynamic flow. BIOMICROFLUIDICS 2024; 18:044108. [PMID: 39184284 PMCID: PMC11344636 DOI: 10.1063/5.0209606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
The study unveils a simple, non-invasive method to perform micromixing with the help of spatiotemporal variation in the Lorentz force inside a microchannel decorated with chemically heterogeneous walls. Computational fluid dynamics simulations have been utilized to investigate micromixing under the coupled influence of electric and magnetic fields, namely, electromagnetohydrodynamics, to alter the direction of the Lorentz force at the specific locations by creating the reverse flow zones where the pressure gradient, ∇ p = 0 . The study explores the impact of periodicity, distribution, and size of electrodes alongside the magnitude of applied field intensity, the flow rate of the fluid, and the nature of the electric field on the generation of the mixing vortices and their strength inside the microchannels. The results illustrate that the wall heterogeneities can indeed enforce the formation of localized on-demand vortices when the strength of the localized reverse flow overcomes the inertia of the mainstream flow. In such a scenario, while the vortex size and strength are found to increase with the size of the heterogeneous electrodes and field intensities, the number of vortices increases with the number of heterogeneous electrodes decorated on the channel wall. The presence of a non-zero pressure-driven inflow velocity is found to subdue the strength of the vortices to restrict the mixing facilitated by the localized variation of the Lorentz force. Interestingly, the usage of an alternating current (AC) electric field is found to provide an additional non-invasive control on the mixing vortices by enabling periodic changes in their direction of rotation. A case study in this regard discloses the possibility of rapid mixing with the usage of an AC electric field for a pair of miscible fluids inside a microchannel.
Collapse
Affiliation(s)
- Soumadip Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vinod B. Vanarse
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | | |
Collapse
|
9
|
Juraeva M, Kang DJ. Design and Mixing Analysis of a Passive Micromixer with Circulation Promoters. MICROMACHINES 2024; 15:831. [PMID: 39064343 PMCID: PMC11278850 DOI: 10.3390/mi15070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024]
Abstract
A novel passive micromixer equipped with circulation promoters is proposed, and its mixing performance is simulated over a broad range of Reynolds numbers (0.1≤Re≤100). To evaluate the effectiveness of the circulation promoters, three different configurations are analyzed in terms of the degree of mixing (DOM) at the outlet and the associated pressure drop. Compared to other typical passive micromixers, the circulation promoter is shown to significantly enhance mixing performance. Among the three configurations of circulation promoters, Case 3 demonstrates the best performance, with a DOM exceeding 0.96 across the entire range of Reynolds numbers. At Re = 1, the DOM of Case 3 is 3.7 times larger than that of a modified Tesla micromixer, while maintaining a comparable pressure drop. The mixing enhancement of the present micromixer is particularly significant in the low and intermediate ranges of Reynolds numbers (Re<40). In the low range of Reynolds numbers (Re≤1), the mixing enhancement is primarily due to circulation promoters directing fluid flow from a concave wall to the opposite convex wall. In the intermediate range of Reynolds numbers (2≤Re<40), the mixing enhancement results from fluid flowing from one concave wall to another concave wall on the opposite side.
Collapse
Affiliation(s)
| | - Dong-Jin Kang
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyoungsan 38541, Republic of Korea
| |
Collapse
|
10
|
Juraeva M, Kang DJ. Mixing Performance of a Passive Micromixer Based on Split-to-Circulate (STC) Flow Characteristics. MICROMACHINES 2024; 15:773. [PMID: 38930743 PMCID: PMC11205592 DOI: 10.3390/mi15060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
We propose a novel passive micromixer leveraging STC (split-to-circulate) flow characteristics and analyze its mixing performance comprehensively. Three distinct designs incorporating submerged circular walls were explored to achieve STC flow characteristics, facilitating flow along a convex surface and flow impingement on a concave surface. Across a broad Reynolds number range (0.1 to 80), the present micromixer substantially enhances mixing, with a degree of mixing (DOM) consistently exceeding 0.84. Particularly, the mixing enhancement is prominent within the low and intermediate range of Reynolds numbers (0.1
Collapse
Affiliation(s)
| | - Dong-Jin Kang
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyoungsan 38541, Republic of Korea;
| |
Collapse
|
11
|
Ganguli A, Bhatt V, Yagodnitsyna A, Pinjari D, Pandit A. A Review of Pressure Drop and Mixing Characteristics in Passive Mixers Involving Miscible Liquids. MICROMACHINES 2024; 15:691. [PMID: 38930661 PMCID: PMC11205423 DOI: 10.3390/mi15060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024]
Abstract
The present review focuses on the recent studies carried out in passive micromixers for understanding the hydrodynamics and transport phenomena of miscible liquid-liquid (LL) systems in terms of pressure drop and mixing indices. First, the passive micromixers have been categorized based on the type of complexity in shape, size, and configuration. It is observed that the use of different aspect ratios of the microchannel width, presence of obstructions, flow and operating conditions, and fluid properties majorly affect the mixing characteristics and pressure drop in passive micromixers. A regime map for the micromixer selection based on optimization of mixing index (MI) and pressure drop has been identified based on the literature data for the Reynolds number (Re) range (1 ≤ Re ≤ 100). The map comprehensively summarizes the favorable, moderately favorable, or non-operable regimes of a micromixer. Further, regions for special applications of complex micromixer shapes and micromixers operating at low Re have been identified. Similarly, the operable limits for a micromixer based on pressure drop for Re range 0.1 < Re < 100,000 have been identified. A comparison of measured pressure drop with fundamentally derived analytical expressions show that Category 3 and 4 micromixers mostly have higher pressure drops, except for a few efficient ones. An MI regime map comprising diffusion, chaotic advection, and mixed advection-dominated zones has also been devised. An empirical correlation for pressure drop as a function of Reynolds number has been developed and a corresponding friction factor has been obtained. Predictions on heat and mass transfer based on analogies in micromixers have also been proposed.
Collapse
Affiliation(s)
- Arijit Ganguli
- School of Engineering and Applied Sciences, Ahmedabad University, Ahmedabad 380009, India;
- Institute of Chemical Technology, Mumbai 400019, India; (D.P.); (A.P.)
| | - Viraj Bhatt
- School of Engineering and Applied Sciences, Ahmedabad University, Ahmedabad 380009, India;
| | | | - Dipak Pinjari
- Institute of Chemical Technology, Mumbai 400019, India; (D.P.); (A.P.)
| | - Aniruddha Pandit
- Institute of Chemical Technology, Mumbai 400019, India; (D.P.); (A.P.)
| |
Collapse
|
12
|
Kheirkhah Barzoki A. Enhanced mixing efficiency and reduced droplet size with novel droplet generators. Sci Rep 2024; 14:4711. [PMID: 38409482 PMCID: PMC10897375 DOI: 10.1038/s41598-024-55514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Nowadays, droplet microfluidics has become widely utilized for high-throughput assays. Efficient mixing is crucial for initiating biochemical reactions in many applications. Rapid mixing during droplet formation eliminates the need for incorporating micromixers, which can complicate the chip design. Furthermore, immediate mixing of substances upon contact can significantly improve the consistency of chemical reactions and resulting products. This study introduces three innovative designs for droplet generators that achieve efficient mixing and produce small droplets. The T-cross and cross-T geometries combine cross and T junction mixing mechanisms, resulting in improved mixing efficiency. Numerical simulations were conducted to compare these novel geometries with traditional T and cross junctions in terms of mixing index, droplet diameter, and eccentricity. The cross-T geometry exhibited the highest mixing index and produced the smallest droplets. For the flow rate ratio of 0.5, this geometry offered a 10% increase in the mixing index and a decrease in the droplet diameter by 10% compared to the T junction. While the T junction has the best mixing efficiency among traditional droplet generators, it produces larger droplets, which can increase the risk of contamination due to contact with the microchannel walls. Therefore, the cross-T geometry is highly desirable in most applications due to its production of considerably smaller droplets. The asymmetric cross junction offered a 8% increase in mixing index and around 2% decrease in droplet diameter compared to the conventional cross junction in flow rate ratio of 0.5. All novel geometries demonstrated comparable mixing efficiency to the T junction. The cross junction exhibited the lowest mixing efficiency and produced larger droplets compared to the cross-T geometry (around 1%). Thus, the novel geometries, particularly the cross-T geometry, are a favorable choice for applications where both high mixing efficiency and small droplet sizes are important.
Collapse
Affiliation(s)
- Ali Kheirkhah Barzoki
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
13
|
Hui TC, Zhang X, Adiga D, Miller GH, Ristenpart WD. Vibrational manipulation of dry granular materials in lab-on-a-chip devices. LAB ON A CHIP 2024. [PMID: 38275165 DOI: 10.1039/d3lc00722g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We present vibrational techniques to pump, mix, and separate dry granular materials using multifrequency vibrations applied to a solid substrate with a standard audio system. The direction and velocity of the granular flow are tuned by modulating the sign and amplitude, respectively, of the vibratory waveform, with typical pumping velocities of centimeters per second. Different granular materials are mixed by combining them at Y-shaped junctions, and mixtures of granules with different friction coefficients are separated along straight channels by judicious choice of the vibratory waveform. We demonstrate that the observed velocities accord with a theory valid for sufficiently large or fast vibrations, and we discuss the implications for using vibrational manipulation in conjunction with established microfluidic technologies to combine liquid and dry solid handling operations at sub-millimeter length scales.
Collapse
Affiliation(s)
- Timothy C Hui
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | - Xiaolin Zhang
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | - Dhruva Adiga
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | - Gregory H Miller
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | - William D Ristenpart
- Dept. of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
14
|
Li Z, Hu R, Li T, Zhu J, You H, Li Y, Liu BF, Li C, Li Y, Yang Y. A TeZla micromixer for interrogating the early and broad folding landscape of G-quadruplex via multistage velocity descending. Proc Natl Acad Sci U S A 2024; 121:e2315401121. [PMID: 38232280 PMCID: PMC10823215 DOI: 10.1073/pnas.2315401121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Biomacromolecular folding kinetics involves fast folding events and broad timescales. Current techniques face limitations in either the required time resolution or the observation window. In this study, we developed the TeZla micromixer, integrating Tesla and Zigzag microstructures with a multistage velocity descending strategy. TeZla achieves a significant short mixing dead time (40 µs) and a wide time window covering four orders of magnitude (up to 300 ms). Using this unique micromixer, we explored the folding landscape of c-Myc G4 and its noncanonical-G4 derivatives with different loop lengths or G-vacancy sites. Our findings revealed that c-Myc can bypass folding intermediates and directly adopt a G4 structure in the cation-deficient buffer. Moreover, we found that the loop length and specific G-vacancy site could affect the folding pathway and significantly slow down the folding rates. These results were also cross-validated with real-time NMR and circular dichroism. In conclusion, TeZla represents a versatile tool for studying biomolecular folding kinetics, and our findings may ultimately contribute to the design of drugs targeting G4 structures.
Collapse
Affiliation(s)
- Zheyu Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
- Optics Valley Laboratory, Hubei430074, China
| |
Collapse
|
15
|
Yamamoto D, Takayama T. Design Optimization Method for Large-Size Sidewall-Driven Micromixer to Generate Powerful Swirling Flow. MICROMACHINES 2023; 14:2246. [PMID: 38138415 PMCID: PMC10745643 DOI: 10.3390/mi14122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microfluidic devices, which miniaturize cell culture and chemical experiments from lab-scale to microchip dimensions, have gained significant attention in recent years. Extensive research has been conducted on microfluidic mixers, which facilitate the mixing and agitation of chemicals. The "Sidewall-Driven Micromixer" that we are currently developing employs a unique mechanism; it induces a swirling flow within the main chamber by vibrating the silicone wall situated between the main and driving chambers using pressure fluctuations. In an earlier study, we found that Sidewall-Driven Micromixers of a size suitable for small cells could indeed produce this swirling flow. Furthermore, we successfully established concentration gradients within each mixer. However, when attempting to upscale the mixer while maintaining conventional proportions to accommodate larger cell aggregates such as spheroids, the desired swirling flow was not achieved. To address this challenge, we made adjustments to the wall dimensions, aiming to amplify wall deformation and thereby enhance the mixer's driving force. Concurrently, we modified the mixer's shape to ensure that the increased wall deformation would not hinder the fluid flow. These alterations not only improved the mixer's performance but also provided valuable insights for positioning the mixer's neck channel, considering the extent of wall deformation.
Collapse
|
16
|
Cai S, Jin Y, Lin Y, He Y, Zhang P, Ge Z, Yang W. Micromixing within microfluidic devices: Fundamentals, design, and fabrication. BIOMICROFLUIDICS 2023; 17:061503. [PMID: 38098692 PMCID: PMC10718651 DOI: 10.1063/5.0178396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
As one of the hot spots in the field of microfluidic chip research, micromixers have been widely used in chemistry, biology, and medicine due to their small size, fast response time, and low reagent consumption. However, at low Reynolds numbers, the fluid motion relies mainly on the diffusive motion of molecules under laminar flow conditions. The detrimental effect of laminar flow leads to difficulties in achieving rapid and efficient mixing of fluids in microchannels. Therefore, it is necessary to enhance fluid mixing by employing some external means. In this paper, the classification and mixing principles of passive (T-type, Y-type, obstructed, serpentine, three-dimensional) and active (acoustic, electric, pressure, thermal, magnetic field) micromixers are reviewed based on the presence or absence of external forces in the micromixers, and some experiments and applications of each type of micromixer are briefly discussed. Finally, the future development trends of micromixers are summarized.
Collapse
Affiliation(s)
- Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yawen Jin
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yun Lin
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yingzheng He
- School of Mechanical Engineering, Naval Aviation University, Yantai 264005, China
| | - Peifan Zhang
- School of Mechanical Engineering, Naval Aviation University, Yantai 264005, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
17
|
Choi I, Ahn GY, Kim ES, Hwang SH, Park HJ, Yoon S, Lee J, Cho Y, Nam JH, Choi SW. Microfluidic Bioreactor with Fibrous Micromixers for In Vitro mRNA Transcription. NANO LETTERS 2023; 23:7897-7905. [PMID: 37435905 DOI: 10.1021/acs.nanolett.3c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
A new type of microfluidic bioreactor with fibrous micromixers for the ingredient mixing and a long macrochannel for the in vitro transcription reaction was fabricated for the continuous production of mRNA. The diameter of the fibrous microchannels in the micromixers was tuned by using an electrospun microfibrous disc with different microfiber diameters. The micromixer with a larger diameter of fibrous microchannels exhibited a better mixing performance than the others. The mixing efficiency was increased to 0.95 while the mixture was passed through the micromixers, suggesting complete mixing. To demonstrate the continuous production of mRNA, the ingredients for in vitro transcription were introduced into the perfluoropolyether microfluidic bioreactor. The mRNA synthesized by the microfluidic bioreactor had the same sequence and in vitro/in vivo performances as those prepared by the bulk reaction. The continuous reaction in the microfluidic bioreactor with efficient mixing performance can be used as a powerful platform for various microfluidic reactions.
Collapse
Affiliation(s)
- Inseong Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Guk-Young Ahn
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Eun Seo Kim
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Se Hee Hwang
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Subin Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Youngran Cho
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Sung-Wook Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
18
|
Fu Q, Liu Z, Cao S, Wang Z, Liu G. Topology-Optimized Micromixer Design with Enhanced Reverse Flow to Increase Mixing Efficiency. MICROMACHINES 2023; 14:1599. [PMID: 37630135 PMCID: PMC10456267 DOI: 10.3390/mi14081599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
In this work, a serpentine mixing unit model based on topology optimization is proposed to enhance the reverse flow in both horizontal and vertical directions. The increase in reverse flow in both directions can enhance the chaotic advection phenomenon, leading to a rapid increase in the mixing index. The proposed mixing unit model is applied in a T-shaped micromixer to create a new micromixer design, named TOD. Numerical simulations of TOD are performed using Comsol Multiphysics software to analyze the characteristics of the liquid flow, mixing surface, and pressure drop. The simulation results confirm that TOD has an outstanding mixing performance. By widening the surface area of contact and enhancing the chaotic advection phenomenon, TOD shows an excellent mixing performance at both a high and low Reynolds number, making it a promising micromixer design. For Re > 5, the mixing indexes of TOD are all beyond 90%.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Liu
- College of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; (Q.F.); (Z.L.); (S.C.); (Z.W.)
| |
Collapse
|
19
|
Birtek MT, Alseed MM, Sarabi MR, Ahmadpour A, Yetisen AK, Tasoglu S. Machine learning-augmented fluid dynamics simulations for micromixer educational module. BIOMICROFLUIDICS 2023; 17:044101. [PMID: 37425484 PMCID: PMC10329477 DOI: 10.1063/5.0146375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023]
Abstract
Micromixers play an imperative role in chemical and biomedical systems. Designing compact micromixers for laminar flows owning a low Reynolds number is more challenging than flows with higher turbulence. Machine learning models can enable the optimization of the designs and capabilities of microfluidic systems by receiving input from a training library and producing algorithms that can predict the outcomes prior to the fabrication process to minimize development cost and time. Here, an educational interactive microfluidic module is developed to enable the design of compact and efficient micromixers at low Reynolds regimes for Newtonian and non-Newtonian fluids. The optimization of Newtonian fluids designs was based on a machine learning model, which was trained by simulating and calculating the mixing index of 1890 different micromixer designs. This approach utilized a combination of six design parameters and the results as an input data set to a two-layer deep neural network with 100 nodes in each hidden layer. A trained model was achieved with R2 = 0.9543 that can be used to predict the mixing index and find the optimal parameters needed to design micromixers. Non-Newtonian fluid cases were also optimized using 56700 simulated designs with eight varying input parameters, reduced to 1890 designs, and then trained using the same deep neural network used for Newtonian fluids to obtain R2 = 0.9063. The framework was subsequently used as an interactive educational module, demonstrating a well-structured integration of technology-based modules such as using artificial intelligence in the engineering curriculum, which can highly contribute to engineering education.
Collapse
Affiliation(s)
- Mehmet Tugrul Birtek
- School of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - M. Munzer Alseed
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
| | | | - Abdollah Ahmadpour
- School of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
20
|
Juraeva M, Kang DJ. Mixing Performance of a Passive Micromixer Based on Multiple Baffles and Submergence Scheme. MICROMACHINES 2023; 14:mi14051078. [PMID: 37241701 DOI: 10.3390/mi14051078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
A novel passive micromixer based on multiple baffles and a submergence scheme was designed, and its mixing performance was simulated over a wide range of Reynolds numbers ranging from 0.1 to 80. The degree of mixing (DOM) at the outlet and the pressure drop between the inlets and outlet were used to assess the mixing performance of the present micromixer. The mixing performance of the present micromixer showed a significant enhancement over a wide range of Reynolds numbers (0.1 ≤ Re ≤ 80). The DOM was further enhanced by using a specific submergence scheme. At low Reynolds numbers (Re < 5), submergence scheme Sub24 produced the highest DOM, approximately 0.57, which was 1.38 times higher than the case with no submergence. This enhancement was due to the fluid flowing from or toward the submerged space, creating strong upward or downward flow at the cross-section. At high Reynolds numbers (Re > 10), the DOM of Sub1234 became the highest, reaching approximately 0.93 for Re = 20, which was 2.75 times higher than the case with no submergence. This enhancement was caused by a large vortex formed across the whole cross-section, causing vigorous mixing between the two fluids. The large vortex dragged the interface between the two fluids along the vortex perimeter, elongating the interface. The amount of submergence was optimized in terms of DOM, and it was independent of the number of mixing units. The optimum submergence values were 90 μm for Sub24 and Re = 1, 100 μm for Sub234 and Re = 5, and 70 μm for Sub1234 and Re = 20.
Collapse
Affiliation(s)
- Makhsuda Juraeva
- School of Mechanical Engineering, Yeungnam University, Gyoungsan 38541, Republic of Korea
| | - Dong-Jin Kang
- School of Mechanical Engineering, Yeungnam University, Gyoungsan 38541, Republic of Korea
| |
Collapse
|
21
|
Zheng L, Fang M, Chen W, Huo D, Li H. Enhancement Mechanism of Fish-Scale Surface Texture on Flow Switching and Mixing Efficiency in Microfluidic Chips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7396-7407. [PMID: 37186955 DOI: 10.1021/acs.langmuir.3c00502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surface textures have a significant influence on surface-functional properties, which provide an alternative solution to create an accurate control of microfluidics flow. This paper studies the modulation ability of fish-scale surface textures on microfluidics flowing behavior on the ground of the early research on vibration machining-induced surface wettability variation. A microfluidic directional flow function is proposed by modifying the wall of the microchannel at the T-junction with different surface textures. The retention force caused by the surface tension difference between the two outlets in the T-junction is studied. In order to investigate the influence of fish-scale textures on the performance of the directional flowing valve and micromixer, T-shaped and Y-shaped microfluidic chips were fabricated. The experimental results indicated that with the aid of the fish-scale surface textures generated by vibration-assisted micromilling, directional liquid flow can be achieved at a specific input pressure range and the mixing efficiency of microfluidics can be improved dramatically.
Collapse
Affiliation(s)
- Lu Zheng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Mingyu Fang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wanqun Chen
- Centre for Precision Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dehong Huo
- Mechanical Engineering, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Haitao Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
22
|
Micromixing intensification by gas introduction in a miniaturized annular rotating flow mixer (MARFM). Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
23
|
Wang H, Chen X. New insights into fluid mixing in micromixers with fractal wall structure. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023; 21:193-203. [DOI: 10.1515/ijcre-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Abstract
Microfluidics is thought to have a high development potential and a wide range of applications in biomedical research. The design of micromixers has gotten a lot of attention because they are such a crucial aspect of microfluidic devices. The passive micromixer has the advantages of simple construction and steady performance over the active micromixer. In this paper, a fractal wall micromixer is proposed, and the flow characteristics and mixing process of the secondary fractal double wall micromixer are studied using intuitive flow patterns and quantitative calculation methods. The results show that the mixing efficiency of secondary fractal wall is higher than that of primary fractal wall, and with the increase of h, the mixing efficiency and pressure drop begin to decrease gradually. When there is a secondary fractal wall structure on both sides, when Reynolds number (Re) = 0.1, the mixing efficiency of the outlet can reach 95%, and when Re = 100, the mixing efficiency of the outlet can reach 99%, almost complete mixing. The fractal wall micromixer has good mixing effect and shows great application potential in chemical engineering and biological engineering.
Collapse
Affiliation(s)
- Helin Wang
- College of Transportation , Ludong University , Yantai , Shandong 264025 , China
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology , Jinzhou , Liaoning 121001 , China
| | - Xueye Chen
- College of Transportation , Ludong University , Yantai , Shandong 264025 , China
| |
Collapse
|
24
|
Agha A, Waheed W, Stiharu I, Nerguizian V, Destgeer G, Abu-Nada E, Alazzam A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. NANOSCALE RESEARCH LETTERS 2023; 18:18. [PMID: 36800044 PMCID: PMC9936499 DOI: 10.1186/s11671-023-03792-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023]
Abstract
Recent years have witnessed an increased interest in the development of nanoparticles (NPs) owing to their potential use in a wide variety of biomedical applications, including drug delivery, imaging agents, gene therapy, and vaccines, where recently, lipid nanoparticle mRNA-based vaccines were developed to prevent SARS-CoV-2 causing COVID-19. NPs typically fall into two broad categories: organic and inorganic. Organic NPs mainly include lipid-based and polymer-based nanoparticles, such as liposomes, solid lipid nanoparticles, polymersomes, dendrimers, and polymer micelles. Gold and silver NPs, iron oxide NPs, quantum dots, and carbon and silica-based nanomaterials make up the bulk of the inorganic NPs. These NPs are prepared using a variety of top-down and bottom-up approaches. Microfluidics provide an attractive synthesis alternative and is advantageous compared to the conventional bulk methods. The microfluidic mixing-based production methods offer better control in achieving the desired size, morphology, shape, size distribution, and surface properties of the synthesized NPs. The technology also exhibits excellent process repeatability, fast handling, less sample usage, and yields greater encapsulation efficiencies. In this article, we provide a comprehensive review of the microfluidic-based passive and active mixing techniques for NP synthesis, and their latest developments. Additionally, a summary of microfluidic devices used for NP production is presented. Nonetheless, despite significant advancements in the experimental procedures, complete details of a nanoparticle-based system cannot be deduced from the experiments alone, and thus, multiscale computer simulations are utilized to perform systematic investigations. The work also details the most common multiscale simulation methods and their advancements in unveiling critical mechanisms involved in nanoparticle synthesis and the interaction of nanoparticles with other entities, especially in biomedical and therapeutic systems. Finally, an analysis is provided on the challenges in microfluidics related to nanoparticle synthesis and applications, and the future perspectives, such as large-scale NP synthesis, and hybrid formulations and devices.
Collapse
Affiliation(s)
- Abdulrahman Agha
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
- System on Chip Center, Khalifa University, Abu Dhabi, UAE
| | | | | | - Ghulam Destgeer
- Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Eiyad Abu-Nada
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
- System on Chip Center, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
25
|
Numerical simulation of fluid flow mixing in flow-focusing microfluidic devices. CHEMICAL PRODUCT AND PROCESS MODELING 2023. [DOI: 10.1515/cppm-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
A numerical simulation through computational fluid dynamics is presented on the fluid flow mixing in a flow-focusing microfluidic device with three inlet channels confluence angles of 45, 67.5, and 90°. The effect of various parameters such as aspect ratio (0.5, 1, and 1.5), mixing channel length (1–4 mm), and Reynolds number (1–20) on the mixing efficiency, and the pressure drop are evaluated. The results demonstrate that the increase in mixing efficiency results from an increase in the Reynolds number and aspect ratio for all the angles. In addition, an increase in the pressure drop due to an increase in the Reynolds number and a decrease in the aspect ratio is observed. A longer length of the mixing channel indicates a higher mixing efficiency. The mixing efficiency is more suitable at an angle of 45° among the applied angles in terms of the operational and geometric parameters due to an increase in the contact surface of the flows at the inlet channels junction since the mixing index range is between 0.54 and 1 by varying the mentioned parameters.
Collapse
|
26
|
Liu B, Chen C, Ran B, Shi L, Wei J, Jin J, Zhu Y. Numerical Investigation of Flow Patterns and Mixing Characteristics in a 3D Micromixer with Helical Elements over Wide Reynolds Numbers. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Bo Liu
- School of Science Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| | - Chaozhan Chen
- School of Science Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| | - Bin Ran
- School of Science Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College Hainan University Haikou 570228 China
| | - Jiashen Wei
- Department of Management Tusstar (Shenzhen) Technology Business Incubator Co., Ltd. Shenzhen 518038 China
| | - Jing Jin
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| | - Yonggang Zhu
- School of Science Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen 518055 Shenzhen China
| |
Collapse
|
27
|
Traditional vs. Microfluidic Synthesis of ZnO Nanoparticles. Int J Mol Sci 2023; 24:ijms24031875. [PMID: 36768199 PMCID: PMC9916368 DOI: 10.3390/ijms24031875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Microfluidics provides a precise synthesis of micro-/nanostructures for various applications, including bioengineering and medicine. In this review article, traditional and microfluidic synthesis methods of zinc oxide (ZnO) are compared concerning particle size distribution, morphology, applications, reaction parameters, used reagents, and microfluidic device materials. Challenges of traditional synthesis methods are reviewed in a manner where microfluidic approaches may overcome difficulties related to synthesis precision, bulk materials, and reproducibility.
Collapse
|
28
|
Shao X, Huang Y, Wang G. Microfluidic devices for protein analysis using intact and top‐down mass spectrometry. VIEW 2022. [DOI: 10.1002/viw.20220032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Xinyang Shao
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing China
| | - Yanyi Huang
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences Peking University Beijing China
| | - Guanbo Wang
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
| |
Collapse
|
29
|
Zhang X, Qian Z, Jiang M, Li W, Huang Y, Men Y. Design and High-Resolution Analysis of an Efficient Periodic Split-and-Recombination Microfluidic Mixer. MICROMACHINES 2022; 13:1720. [PMID: 36296073 PMCID: PMC9607611 DOI: 10.3390/mi13101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
We developed a highly efficient passive mixing device based on a split-and-recombine (SAR) configuration. This micromixer was constructed by simply bonding two identical microfluidic periodical open-trench patterns face to face. The structure parameters of periodical units were optimized through numerical simulation to facilitate the mixing efficiency. Despite the simplicity in design and fabrication, it provided rapid mixing performance in both experiment and simulation conditions. To better illustrate the mixing mechanism, we developed a novel scheme to achieve high-resolution confocal imaging of serial channel cross-sections to accurately characterize the mixing details and performance after each SAR cycle. Using fluorescent IgG as an indicator, nearly complete mixing was achieved using only four SAR cycles in an aqueous solution within a device's length of less than 10 mm for fluids with a Péclet number up to 8.7 × 104. Trajectory analysis revealed that each SAR cycle transforms the input fluids using three synergetic effects: rotation, combination, and stretching to increase the interfaces exponentially. Furthermore, we identified that the pressure gradients in the parallel plane of the curved channel induced vertical convection, which is believed to be the driving force underlying these effects to accelerate the mixing process.
Collapse
Affiliation(s)
- Xiannian Zhang
- School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zhenwei Qian
- School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Mengcheng Jiang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wentao Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongfan Men
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
30
|
Chen Q, Wang Y, Wang K, Deng J, Luo G. Experimental and Numerical Investigation on the Scaling-Up of Microsieve Dispersion Mixers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingchuan Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yubin Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jian Deng
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guangsheng Luo
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Ding L, Razavi Bazaz S, Shrestha J, A. Amiri H, Mas-hafi S, Banerjee B, Vesey G, Miansari M, Ebrahimi Warkiani M. Rapid and Continuous Cryopreservation of Stem Cells with a 3D Micromixer. MICROMACHINES 2022; 13:1516. [PMID: 36144139 PMCID: PMC9500807 DOI: 10.3390/mi13091516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cryopreservation is the final step of stem cell production before the cryostorage of the product. Conventional methods of adding cryoprotecting agents (CPA) into the cells can be manual or automated with robotic arms. However, challenging issues with these methods at industrial-scale production are the insufficient mixing of cells and CPA, leading to damage of cells, discontinuous feeding, the batch-to-batch difference in products, and, occasionally, cross-contamination. Therefore, the current study proposes an alternative way to overcome the abovementioned challenges; a highly efficient micromixer for low-cost, continuous, labour-free, and automated mixing of stem cells with CPA solutions. Our results show that our micromixer provides a more homogenous mixing of cells and CPA compared to the manual mixing method, while the cell properties, including surface markers, differentiation potential, proliferation, morphology, and therapeutic potential, are well preserved.
Collapse
Affiliation(s)
- Lin Ding
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hoseyn A. Amiri
- Micro+Nanosystems & Applied Biophysics Laboratory, Department of Mechanical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol 47148-71167, Iran
- Cell Science Research Center, Department of Cancer Medicine, Royan Institute for Stem Cell Biology and Technology, Isar 11, Babol 47138-18983, Iran
| | - Sima Mas-hafi
- Micro+Nanosystems & Applied Biophysics Laboratory, Department of Mechanical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol 47148-71167, Iran
- Cell Science Research Center, Department of Cancer Medicine, Royan Institute for Stem Cell Biology and Technology, Isar 11, Babol 47138-18983, Iran
| | | | - Graham Vesey
- Regeneus Ltd., Paddington, Sydney, NSW 2021, Australia
| | - Morteza Miansari
- Micro+Nanosystems & Applied Biophysics Laboratory, Department of Mechanical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol 47148-71167, Iran
- Cell Science Research Center, Department of Cancer Medicine, Royan Institute for Stem Cell Biology and Technology, Isar 11, Babol 47138-18983, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute of Molecular Medicine, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
32
|
Natsuhara D, Saito R, Okamoto S, Nagai M, Shibata T. Mixing Performance of a Planar Asymmetric Contraction-and-Expansion Micromixer. MICROMACHINES 2022; 13:1386. [PMID: 36144009 PMCID: PMC9504961 DOI: 10.3390/mi13091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Micromixers are one of the critical components in microfluidic devices. They significantly affect the efficiency and sensitivity of microfluidics-based lab-on-a-chip systems. This study introduces an efficient micromixer with a simple geometrical feature that enables easy incorporation in a microchannel network without compromising the original design of microfluidic devices. The study proposes a newly designed planar passive micromixer, termed a planar asymmetric contraction-and-expansion (P-ACE) micromixer, with asymmetric vertical obstacle structures. Numerical simulation and experimental investigation revealed that the optimally designed P-ACE micromixer exhibited a high mixing efficiency of 80% or more within a microchannel length of 10 mm over a wide range of Reynolds numbers (0.13 ≤ Re ≤ 13), eventually attaining approximately 90% mixing efficiency within a 20 mm microchannel length. The highly asymmetric geometric features of the P-ACE micromixers enhance mixing because of their synergistic effects. The flow velocities and directions of the two fluids change differently while alternately crossing the longitudinal centerline of the microchannel, with the obstacle structures asymmetrically arranged on both sidewalls of the rectangular microchannel. This flow behavior increases the interfacial contact area between the two fluids, thus promoting effective mixing in the P-ACE micromixer. Further, the pressure drops in the P-ACE micromixers were experimentally investigated and compared with those in a serpentine micromixer with a perfectly symmetric mixing unit.
Collapse
|
33
|
Juraeva M, Kang DJ. Mixing Performance of the Modified Tesla Micromixer with Tip Clearance. MICROMACHINES 2022; 13:1375. [PMID: 36143998 PMCID: PMC9502868 DOI: 10.3390/mi13091375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/01/2023]
Abstract
A passive micromixer based on the modified Tesla mixing unit was designed by embedding tip clearance above the wedge-shape divider, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The height of tip clearance was varied from 40 μm to 80 μm, corresponding to 25% to 33% of the micromixer depth. The numerical results show that the mixing enhancement by the tip clearance is noticeable over a wide range of the Reynolds numbers Re < 50. The height of tip clearance is optimized in terms of the DOM, and the optimum value is roughly h = 60 μm. It corresponds to 33% of the present micromixer depth. The mixing enhancement in the molecular diffusion regime of mixing, Re ≤ 1, is obtained by drag and connection of the interface in the two sub-streams of each Tesla mixing unit. It appears as a wider interface in the tip clearance zone. In the intermediate range of the Reynolds number, 1 < Re ≤ 50, the mixing enhancement is attributed to the interaction of the flow through the tip clearance and the secondary flow in the vortex zone of each Tesla mixing unit. When the Reynolds number is larger than about 50, vortices are formed at various locations and drive the mixing in the modified Tesla micromixer. For the Reynolds number of Re = 80, a pair of vortices is formed around the inlet and outlet of each Tesla mixing unit, and it plays a role as a governing mechanism in the convection-dominant regime of mixing. This vortex pattern is little affected as long as the tip clearance remains smaller than about h = 70 μm. The DOM at the outlet is little enhanced by the presence of tip clearance for the Reynolds numbers Re ≥ 50. The tip clearance contributes to reducing the required pressure load for the same value of the DOM.
Collapse
Affiliation(s)
| | - Dong-Jin Kang
- School of Mechanical Engineering, Yeungnam University, Gyoungsan 38541, Korea
| |
Collapse
|
34
|
Numerical and experimental analysis of effective passive mixing via a 3D serpentine channel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Zhao S, Nie Y, Zhang W, Hu R, Sheng L, He W, Zhu N, Li Y, Ji D, Guo K. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Juraeva M, Kang DJ. Mixing Enhancement of a Passive Micromixer with Submerged Structures. MICROMACHINES 2022; 13:mi13071050. [PMID: 35888870 PMCID: PMC9317626 DOI: 10.3390/mi13071050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
A passive micromixer combined with two different mixing units was designed by submerging planar structures, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The two submerged structures are a Norman window and rectangular baffles. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The amount of submergence was varied from 30 μm to 70 μm, corresponding to 25% to 58% of the micromixer depth. The enhancement of mixing performance is noticeable over a wide range of the Reynolds numbers. When the Reynolds number is 10, the DOM is improved by 182% from that of no submergence case, and the required pressure load is reduced by 44%. The amount of submergence is shown to be optimized in terms of the DOM, and the optimum value is about 40 μm. This corresponds to a third of the micromixer depth. The effects of the submerged structure are most significant in the mixing regime of convection dominance from Re = 5 to 80. In a circular passage along the Norman window, one of the two Dean vortices burst into the submerged space, promoting mixing in the cross-flow direction. The submerged baffles in the semi-circular mixing units generate a vortex behind the baffles that contributes to the mixing enhancement as well as reducing the required pressure load.
Collapse
|
37
|
Evaluation of Hydrodynamic and Thermal Behaviour of Non-Newtonian-Nanofluid Mixing in a Chaotic Micromixer. MICROMACHINES 2022; 13:mi13060933. [PMID: 35744548 PMCID: PMC9229193 DOI: 10.3390/mi13060933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Three-dimensional numerical investigations of a novel passive micromixer were carried out to analyze the hydrodynamic and thermal behaviors of Nano-Non-Newtonian fluids. Mass and heat transfer characteristics of two heated fluids have been investigated to understand the quantitative and qualitative fluid faction distributions with temperature homogenization. The effect of fluid behavior and different Al2O3 nanoparticles concentrations on the pressure drop and thermal mixing performances were studied for different Reynolds number (from 0.1 to 25). The performance improvement simulation was conducted in intervals of various Nanoparticles concentrations (φ = 0 to 5%) with Power-law index (n) using CFD. The proposed micromixer displayed a mixing energy cost of 50-60 comparable to that achieved for a recent micromixer (2021y) in terms of fluid homogenization. The analysis exhibited that for high nanofluid concentrations, having a strong chaotic flow enhances significantly the hydrodynamic and thermal performances for all Reynolds numbers. The visualization of vortex core region of mass fraction and path lines presents that the proposed design exhibits a rapid thermal mixing rate that tends to 0.99%, and a mass fraction mixing rate of more than 0.93% with very low pressure losses, thus the proposed micromixer can be utilized to enhance homogenization in different Nano-Non-Newtonian mechanism with minimum energy.
Collapse
|
38
|
Guo R, Xue L, Jin N, Duan H, Li M, Lin J. Power-free microfluidic biosensing of Salmonella with slide multivalve and disposable syringe. Biosens Bioelectron 2022; 213:114458. [PMID: 35714495 DOI: 10.1016/j.bios.2022.114458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022]
Abstract
In this study, a power-free biosensor was presented to detect Salmonella typhimurium on a microfluidic chip using a slide multivalve for channel selection and a disposable syringe for fluidic transfer. First, bacterial sample with immunomagnetic nanoparticles (IMNPs) and glucose oxidase (GOx) modified immune polystyrene nanoparticles (IPNPs), washing buffer, glucose, and peroxide test strip (PTS) were preloaded in their respective chambers at the periphery of chip. After the slide multivalve was selected to connect sample chamber with common separation chamber, which was connected with a syringe, the mixture of Salmonella, IMNPs and IPNPs was back and forth moved through 3D Tesla-structure micromixer using the syringe, resulting in the formation of IMNP-Salmonella-IPNP complexes, which were captured in the separation chamber using a magnet. Then, two washing chambers were selectively connected respectively to remove sample background and excessive IPNPs, and glucose chamber was connected, allowing the GOx to catalyze glucose to produce hydrogen peroxide in the separation chamber. Finally, PTS chamber was connected and the catalysate was transferred from the separation chamber to the PTS chamber, leading to the color change of PTS, followed by using smartphone App to collect and analyze the image of PTS for bacterial determination. The simple biosensor enabled simple detection of Salmonella as few as 130 CFU/mL within 60 min and is promising for practical applications in the resource-limited regions due to its low cost, simple operation, and small size.
Collapse
Affiliation(s)
- Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Li Xue
- Key Laboratory of Smart Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Nana Jin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Hong Duan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianhan Lin
- Key Laboratory of Smart Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
39
|
Li W, Chaihu L, Jiang J, Wu B, Zheng X, Dai R, Tian Y, Huang Y, Wang G, Men Y. Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry. Anal Chem 2022; 94:7520-7527. [PMID: 35584038 DOI: 10.1021/acs.analchem.2c00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Characterization of protein higher-order structures and dynamics is essential for understanding the biological functions of proteins and revealing the underlying mechanisms. Top-down mass spectrometry (MS) accesses structural information at both the intact protein level and the peptide fragment level. Native top-down MS allows analysis of a protein complex's architecture and subunits' identity and modifications. Top-down hydrogen/deuterium exchange (HDX) MS offers high spatial resolution for conformational or binding interface analysis and enables conformer-specific characterization. A microfluidic chip can provide superior performance for front-end reactions useful for these MS workflows, such as flexibility in manipulating multiple reactant flows, integrating various functional modules, and automation. However, most microchip-MS devices are designed for bottom-up approaches or top-down proteomics. Here, we demonstrate a strategy for designing a microchip for top-down MS analysis of protein higher-order structures and dynamics. It is suitable for time-resolved native MS and HDX MS, with designs aiming for efficient ionization of intact protein complexes, flexible manipulation of multiple reactant flows, and precise control of reaction times over a broad range of flow rates on the submicroliter per minute scale. The performance of the prototype device is demonstrated by measurements of systems including monoclonal antibodies, antibody-antigen complexes, and coexisting protein conformers. This strategy may benefit elaborate structural analysis of biomacromolecules and inspire method development using the microchip-MS approach.
Collapse
Affiliation(s)
- Wen Li
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jialu Jiang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bizhu Wu
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuan Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ye Tian
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yanyi Huang
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Guanbo Wang
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Yongfan Men
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
40
|
Abstract
As micromixers offer the cheap and simple mixing of fluids and suspensions, they have become a key device in microfluidics. Their mixing performance can be significantly increased by periodically varying the inlet pressure, which leads to a non-static flow and improved mixing process. In this work, a micromixer with a T-junction and a meandering channel is considered. A periodic pulse function for the inlet pressure is numerically optimized with regard to frequency, amplitude and shape. Thereunto, fluid flow and adsorptive concentration are simulated three-dimensionally with a lattice Boltzmann method (LBM) in OpenLB. Its implementation is then combined with forward automatic differentiation (AD), which allows for the generic application of fast gradient-based optimization schemes. The mixing quality is shown to be increased by 21.4% in comparison to the static, passive regime. Methodically, the results confirm the suitability of the combination of LBM and AD to solve process-scale optimization problems and the improved accuracy of AD over difference quotient approaches in this context.
Collapse
|
41
|
Mesquita P, Gong L, Lin Y. A Low-Cost Microfluidic Method for Microplastics Identification: Towards Continuous Recognition. MICROMACHINES 2022; 13:mi13040499. [PMID: 35457804 PMCID: PMC9026305 DOI: 10.3390/mi13040499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Plastic pollution has emerged as a growing concern worldwide. In particular, the most abundant plastic debris, microplastics, has necessitated the development of rapid and effective identification methods to track down the stages and evidence of the pollution. In this paper, we combine low-cost plastic staining technologies using Nile Red with the continuous feature offered by microfluidics to propose a low-cost 3D printed device for the identification of microplastics. It is observed that the microfluidic devices indicate comparable staining and identification performance compared to conventional Nile Red staining processes while offering the advantages of continuous recognition for long-term environmental monitoring. The results also show that concentration, temperature, and residency time possess strong effects on the identification performance. Finally, various microplastics have been applied to further demonstrate the effectiveness of the proposed devices. It is found that, among different types of microplastics, non-spherical microplastics show the maximal fluorescence level. Meanwhile, natural fibers indicate better staining quality when compared to synthetic ones.
Collapse
|
42
|
Wang Y, Rink S, Baeumner AJ, Seidel M. Microfluidic flow-injection aptamer-based chemiluminescence platform for sulfadimethoxine detection. Mikrochim Acta 2022; 189:117. [PMID: 35195801 PMCID: PMC8866360 DOI: 10.1007/s00604-022-05216-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/07/2022] [Indexed: 01/31/2023]
Abstract
Gold nanoparticle–catalyzed chemiluminescence (CL) of luminol is an attractive alternative to strategies relying on enzymes, as their aggregation leads to significantly enhanced CL signals. Consequently, analytes disturbing such aggregation will lead to an easy-to-quantify weakening of the signal. Based on this concept, a homogeneous aptamer-based assay for the detection of sulfadimethoxine (SDM) has been developed as a microfluidic CL flow-injection platform. Here, the efficient mixing of gold nanoparticles, aptamers, and analyte in short channel distances is of utmost importance, and two-dimensional (2D) and three-dimensional (3D) mixer designs made via Xurography were investigated. In the end, since 2D designs could not provide sufficient mixing, a laminated 3D 5-layer microfluidic mixer was developed and optimized with respect to mixing capability and observation by the charge-coupled device (CCD) camera. Furthermore, the performance of standard luminol and its more hydrophilic derivative m-carboxy luminol was studied identifying the hydrophilic derivative to provide tenfold more signal enhancement and reliable results. Finally, the novel detection platform was used for the specific detection of SDM via its aptamer and yielded a stunning dynamic range over 5 orders of magnitude (0.01–1000 ng/ml) and a limit of detection of 4 pg/ml. This new detection concept not only outperforms other methods for SDM detection, but can be suggested as a new flow-injection strategy for aptamer-based rapid and cost-efficient analysis in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Yanwei Wang
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Simone Rink
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Michael Seidel
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
43
|
Wang J, Chen X, Liu H, Li Y, Lang T, Wang R, Cui B, Zhu W. Efficient Mixing of Microfluidic Chip with a Three-Dimensional Spiral Structure. ACS OMEGA 2022; 7:1527-1536. [PMID: 35036815 PMCID: PMC8756801 DOI: 10.1021/acsomega.1c06352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
In this paper, a helical three-dimensional (3D) passive micromixer is presented. A three-dimensional spiral passive micromixer is fabricated through the 3D printing technology and the polymer dissolution technology. The main process is as follows: First of all, a high-impact polystyrene (HIPS) material was used to make a 3D spiral channel mold. Second, the channel mold was dissolved in limonene solvent. The mixing experiment shows that the single helix structure can improve the mixing efficiency to 0.85, compared with the mixing efficiency of 0.78 in the traditional T-shaped two-dimensional (2D)-plane channel. Different screw diameters, screw number structures, and flow rates are used to test the mixing effect. The optimal helical structure is 5 mm, and the flow rate is 2.0 mL/min. Finally, the mixing efficiency of the 3D helical micromixer can reach 0.948. The results show that the three-dimensional helical structure can effectively improve the mixing efficiency.
Collapse
Affiliation(s)
- Junyao Wang
- School
of Mechanical Engineering, Northeast Electric
Power University, Jilin 132012, China
| | - Xingyu Chen
- School
of Mechanical Engineering, Northeast Electric
Power University, Jilin 132012, China
| | - Huan Liu
- School
of Mechanical Engineering, Northeast Electric
Power University, Jilin 132012, China
| | - Yunpeng Li
- School
of Mechanical Engineering, Northeast Electric
Power University, Jilin 132012, China
| | - Tianhong Lang
- School
of Mechanical Engineering, Northeast Electric
Power University, Jilin 132012, China
| | - Rui Wang
- School
of Mechanical Engineering, Northeast Electric
Power University, Jilin 132012, China
| | - Bowen Cui
- School
of Mechanical Engineering, Northeast Electric
Power University, Jilin 132012, China
| | - Weihua Zhu
- Jilin
Technology College of Electronic Information, Jilin 132021, China
| |
Collapse
|
44
|
Liu B, Ran B, Chen C, Shi L, Liu Y, Chen H, Zhu Y. A low-cost and high-performance 3D micromixer over a wide working range and its application for high-sensitivity biomarker detection. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homogenous mixing in microfluidic devices is often required for efficient chemical and biological reactions.Passive micromixing without external energy input has attracted much research interest. We have developed a high-performance 3D...
Collapse
|
45
|
Koike F, Takayama T. Generation of Concentration Gradients by a Outer-Circumference-Driven On-Chip Mixer. MICROMACHINES 2021; 13:mi13010068. [PMID: 35056233 PMCID: PMC8777788 DOI: 10.3390/mi13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
The concentration control of reagents is an important factor in microfluidic devices for cell cultivation and chemical mixing, but it is difficult to realize owing to the characteristics of microfluidic devices. We developed a microfluidic device that can generate concentration gradients among multiple main chambers. Multiple main chambers are connected in parallel to the body channel via the neck channel. The main chamber is subjected to a volume change through a driving chamber that surrounds the main chamber, and agitation is performed on the basis of the inequality of flow caused by expansion or contraction. The neck channel is connected tangentially to the main chamber. When the main chamber expands or contracts, the flow in the main chamber is unequal, and a net vortex is generated. The liquid moving back and forth in the neck channel gradually absorbs the liquid in the body channel into the main chamber. As the concentration in the main chamber changes depending on the pressure applied to the driving chamber, we generated a concentration gradient by arranging chambers along the pressure gradient. This allowed for us to create an environment with different concentrations on a single microchip, which is expected to improve observation efficiency and save space.
Collapse
|
46
|
Juraeva M, Kang DJ. Mixing Performance of a Passive Micro-Mixer with Mixing Units Stacked in Cross Flow Direction. MICROMACHINES 2021; 12:mi12121530. [PMID: 34945380 PMCID: PMC8705926 DOI: 10.3390/mi12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022]
Abstract
A new passive micro-mixer with mixing units stacked in the cross flow direction was proposed, and its performance was evaluated numerically. The present micro-mixer consisted of eight mixing units. Each mixing unit had four baffles, and they were arranged alternatively in the cross flow and transverse direction. The mixing units were stacked in four different ways: one step, two step, four step, and eight step stacking. A numerical study was carried out for the Reynolds numbers from 0.5 to 50. The corresponding volume flow rate ranged from 6.33 μL/min to 633 μL/min. The mixing performance was analyzed in terms of the degree of mixing (DOM) and relative mixing energy cost (MEC). The numerical results showed a noticeable enhancement of the mixing performance compared with other micromixers. The mixing enhancement was achieved by two flow characteristics: baffle wall impingement by a stream of high concentration and swirl motion within the mixing unit. The baffle wall impingement by a stream of high concentration was observed throughout all Reynolds numbers. The swirl motion inside the mixing unit was observed in the cross flow direction, and became significant as the Reynolds number increased to larger than about five. The eight step stacking showed the best performance for Reynolds numbers larger than about two, while the two step stacking was better for Reynolds numbers less than about two.
Collapse
|
47
|
Design and evaluation of two-dimensional passive micromixer based on unbalanced convergence-divergence-splits and reverse-collisions-recombination. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
A SAR Micromixer for Water-Water Mixing: Design, Optimization, and Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A numerical investigation of the mixing performance and fluid flow in a new split and recombine (SAR) Y−Uβ micromixer is presented in this work. A parameter called connecting angle βis varied from 0° to 90° to analyze the effect on the SAR process and mixing performance. Thenumerical data shows that the SAR process strongly depends on the connecting angle (β) and maximum efficiency (93%) can be achieved when the value of β is 45°. The Y−U45° the mixer also offers higher efficiency and lower pressure drop than a known SAR ‘H−C’ mixer irrespective of Reynolds numbers. The split and recombine process, the influence of secondary flow, and pressure drop characteristics at various Reynolds numbers are also studied. In addition, mixing effectiveness is also computed, and among all examined mixers, Y−U45° is by far the best performing one.
Collapse
|
49
|
Oevreeide IH, Zoellner A, Stokke BT. Characterization of Mixing Performance Induced by Double Curved Passive Mixing Structures in Microfluidic Channels. MICROMACHINES 2021; 12:mi12050556. [PMID: 34068289 PMCID: PMC8153322 DOI: 10.3390/mi12050556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Functionalized sensor surfaces combined with microfluidic channels are becoming increasingly important in realizing efficient biosensing devices applicable to small sample volumes. Relaxing the limitations imposed by laminar flow of the microfluidic channels by passive mixing structures to enhance analyte mass transfer to the sensing area will further improve the performance of these devices. In this paper, we characterize the flow performance in a group of microfluidic flow channels with novel double curved passive mixing structures (DCMS) fabricated in the ceiling. The experimental strategy includes confocal imaging to monitor the stationary flow patterns downstream from the inlet where a fluorophore is included in one of the inlets in a Y-channel microfluidic device. Analyses of the fluorescence pattern projected both along the channel and transverse to the flow direction monitored details in the developing homogenization. The mixing index (MI) as a function of the channel length was found to be well accounted for by a double-exponential equilibration process, where the different parameters of the DCMS were found to affect the extent and length of the initial mixing component. The range of MI for a 1 cm channel length for the DCMS was 0.75–0.98, which is a range of MI comparable to micromixers with herringbone structures. Overall, this indicates that the DCMS is a high performing passive micromixer, but the sensitivity to geometric parameter values calls for the selection of certain values for the most efficient mixing.
Collapse
Affiliation(s)
- Ingrid H. Oevreeide
- Division of Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
| | | | - Bjørn T. Stokke
- Division of Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
- Correspondence:
| |
Collapse
|
50
|
Kim KY. Editorial for the Special Issue on Analysis, Design and Fabrication of Micromixers. MICROMACHINES 2021; 12:mi12050533. [PMID: 34067182 PMCID: PMC8151095 DOI: 10.3390/mi12050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
During the last couple of decades, there have been rapid developments in analysis, design, and fabrication of micromixers [...].
Collapse
Affiliation(s)
- Kwang-Yong Kim
- Department of Mechanical Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|