1
|
Swami P, Anand S, Holani A, Gupta S. Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21907-21930. [PMID: 39385605 DOI: 10.1021/acs.langmuir.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Conventional approaches for bacterial cell analysis are hindered by lengthy processing times and tedious protocols that rely on gene amplification and cell culture. Impedance spectroscopy has emerged as a promising tool for efficient real-time bacterial monitoring, owing to its simple, label-free nature and cost-effectiveness. However, its limited practical applications in real-world scenarios pose a significant challenge. In this review, we provide a comprehensive study of impedance spectroscopy and its practical utilization in bacterial system measurements. We begin by outlining the fundamentals of impedance theory and modeling, specific to bacterial systems. We then offer insights into various strategies for bacterial cell detection and discuss the role of impedance spectroscopy in antimicrobial susceptibility testing (AST) and single-cell analysis. Additionally, we explore key aspects of impedance system design, including the influence of electrodes, media, and cell enrichment techniques on the sensitivity, specificity, detection speed, concentration accuracy, and cost-effectiveness of current impedance biosensors. By combining different biosensor design parameters, impedance theory, and detection principles, we propose that impedance applications can be expanded to point-of-care diagnostics, enhancing their practical utility. This Perspective focuses exclusively on ideally polarizable (fully capacitive) electrodes, excluding any consideration of charge transfer resulting from Faradaic reactions.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Anurag Holani
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| |
Collapse
|
2
|
Panklang N, Techaumnat B, Tanthanuch N, Chotivanich K, Horprathum M, Nakano M. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells. SENSORS (BASEL, SWITZERLAND) 2024; 24:3186. [PMID: 38794040 PMCID: PMC11125259 DOI: 10.3390/s24103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Malaria is a disease that affects millions of people worldwide, particularly in developing countries. The development of accurate and efficient methods for the detection of malaria-infected cells is crucial for effective disease management and control. This paper presents the electrical impedance spectroscopy (EIS) of normal and malaria-infected red blood cells. An EIS microfluidic device, comprising a microchannel and a pair of coplanar electrodes, was fabricated for single-cell measurements in a continuous manner. Based on the EIS results, the aim of this work is to discriminate Plasmodium falciparum-infected red blood cells from the normal ones. Different from typical impedance spectroscopy, our measurement was performed for the cells in a low-conductivity medium in a frequency range between 50 kHz and 800 kHz. Numerical simulation was utilized to study the suitability parameters of the microchannel and electrodes for the EIS experiment over the measurement frequencies. The measurement results have shown that by using the low-conductivity medium, we could focus on the change in the conductance caused by the presence of a cell in the sensing electrode gap. The results indicated a distinct frequency spectrum of the conductance between the normal and infected red blood cells, which can be further used for the detection of the disease.
Collapse
Affiliation(s)
- Nitipong Panklang
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand;
| | - Boonchai Techaumnat
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Micro/Nano-Electro-Mechanical Integrated System Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nutthaphong Tanthanuch
- Department of Electrical and Computer Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Pathum Thani 12120, Thailand;
| | - Kesinee Chotivanich
- Cell and Tissue Culture Resources Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Mati Horprathum
- Spectroscopic and Sensing Devices Research Group, NECTEC, NSTDA, Pathum Thani 12120, Thailand;
| | - Michihiko Nakano
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
3
|
Guez JS, Lacroix PY, Château T, Vial C. Deep in situ microscopy for real-time analysis of mammalian cell populations in bioreactors. Sci Rep 2023; 13:22045. [PMID: 38086908 PMCID: PMC10716407 DOI: 10.1038/s41598-023-48733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An in situ microscope based on pulsed transmitted light illumination via optical fiber was combined to artificial-intelligence to enable for the first time an online cell classification according to well-known cellular morphological features. A 848 192-image database generated during a lab-scale production process of antibodies was processed using a convolutional neural network approach chosen for its accurate real-time object detection capabilities. In order to induce different cell death routes, hybridomas were grown in normal or suboptimal conditions in a stirred tank reactor, in the presence of substrate limitation, medium addition, pH regulation problem or oxygen depletion. Using such an optical system made it possible to monitor real-time the evolution of different classes of animal cells, among which viable, necrotic and apoptotic cells. A class of viable cells displaying bulges in feast or famine conditions was also revealed. Considered as a breakthrough in the catalogue of process analytical tools, in situ microscopy powered by artificial-intelligence is also of great interest for research.
Collapse
Affiliation(s)
- Jean-Sébastien Guez
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France.
| | - Pierre-Yves Lacroix
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
- Logiroad.AI, 63 178, Aubière, France
| | - Thierry Château
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
- Logiroad.AI, 63 178, Aubière, France
| | - Christophe Vial
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
| |
Collapse
|
4
|
Mansor MA, Ahmad MR, Petrů M, Rahimian Koloor SS. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:371-383. [PMID: 37548425 DOI: 10.1080/21691401.2023.2239274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, ρ at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.
Collapse
Affiliation(s)
- Muhammad Asraf Mansor
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Ridzuan Ahmad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Michal Petrů
- Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
5
|
Tang T, Julian T, Ma D, Yang Y, Li M, Hosokawa Y, Yalikun Y. A review on intelligent impedance cytometry systems: Development, applications and advances. Anal Chim Acta 2023; 1269:341424. [PMID: 37290859 DOI: 10.1016/j.aca.2023.341424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Impedance cytometry is a well-established technique for counting and analyzing single cells, with several advantages, such as convenience, high throughput, and no labeling required. A typical experiment consists of the following steps: single-cell measurement, signal processing, data calibration, and particle subtype identification. At the beginning of this article, we compared commercial and self-developed options extensively and provided references for developing reliable detection systems, which are necessary for cell measurement. Then, a number of typical impedance metrics and their relationships to biophysical properties of cells were analyzed with respect to the impedance signal analysis. Given the rapid advances of intelligent impedance cytometry in the past decade, this article also discussed the development of representative machine learning-based approaches and systems, and their applications in data calibration and particle identification. Finally, the remaining challenges facing the field were summarized, and potential future directions for each step of impedance detection were discussed.
Collapse
Affiliation(s)
- Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan; Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Trisna Julian
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan
| | - Doudou Ma
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, PR China
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2109, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan; Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Bouzid K, Greener J, Carrara S, Gosselin B. Portable impedance-sensing device for microorganism characterization in the field. Sci Rep 2023; 13:10526. [PMID: 37386229 PMCID: PMC10310846 DOI: 10.1038/s41598-023-37506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
A variety of biosensors have been proposed to quickly detect and measure the properties of individual microorganisms among heterogeneous populations, but challenges related to cost, portability, stability, sensitivity, and power consumption limit their applicability. This study proposes a portable microfluidic device based on impedance flow-cytometry and electrical impedance spectroscopy that can detect and quantify the size of microparticles larger than 45 µm, such as algae and microplastics. The system is low cost ($300), portable (5 cm [Formula: see text] 5 cm), low-power (1.2 W), and easily fabricated utilizing a 3D-printer and industrial printed circuit board technology. The main novelty we demonstrate is the use of square wave excitation signal for impedance measurements with quadrature phase-sensitive detectors. A linked algorithm removes the errors associated to higher order harmonics. After validating the performance of the device for complex impedance models, we used it to detect and differentiate between polyethylene microbeads of sizes between 63 and 83 µm, and buccal cells between 45 and 70 µm. A precision of 3% is reported for the measured impedance and a minimum size of 45 µm is reported for the particle characterization.
Collapse
Affiliation(s)
- Karim Bouzid
- Department of Electrical and Computer Engineering, Laval University, Quebec-City, G1V 0A6, Canada.
| | - Jesse Greener
- Department of Chemistry, Laval University, Quebec-City, G1V 0A6, Canada
| | - Sandro Carrara
- Institute of Electrical and Micro Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Benoit Gosselin
- Department of Electrical and Computer Engineering, Laval University, Quebec-City, G1V 0A6, Canada
| |
Collapse
|
7
|
Warren MA, Shakouri A, Pacheco-Peña V, Hallam T. Development of a Novel Design of Microfluidic Impedance Cytometry for Improved Sensitivity and Cell Identification. ACS OMEGA 2023; 8:18882-18890. [PMID: 37273599 PMCID: PMC10233676 DOI: 10.1021/acsomega.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023]
Abstract
A long-standing issue for microfluidic impedance cytometry devices is the accuracy in determining the size of cells during counting and measurements. In this paper, we introduce a novel design that produces a homogeneous electric field in the sensing region and demonstrates higher accuracy than traditional designs in cell counting and sizing, reducing the reliance on cell focusing and signal postprocessing. The concept is validated, and the increased accuracy of the device over traditional designs is demonstrated through the use of finite element simulations to generate suitable data sets for particle trajectories and model expected signal variations.
Collapse
Affiliation(s)
- Michael A. Warren
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Amir Shakouri
- School
of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Víctor Pacheco-Peña
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Toby Hallam
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
8
|
Reale R, Peruzzi G, Ghoreishi M, Stabile H, Ruocco G, Leonetti M. A low-cost, label-free microfluidic scanning flow cytometer for high-accuracy quantification of size and refractive index of particles. LAB ON A CHIP 2023; 23:2039-2047. [PMID: 36897350 PMCID: PMC10091359 DOI: 10.1039/d2lc01179d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Flow cytometers and fluorescence activated cells sorters (FCM/FACS) represent the gold standard for high-throughput single-cell analysis, but their usefulness for label-free applications is limited by the unreliability of forward and side scatter measurements. Scanning flow cytometers represent an appealing alternative, as they exploit measurements of the angle-resolved scattered light to provide accurate and quantitative estimates of cellular properties, but the requirements of current setups are unsuitable for integration with other lab-on-chip technologies or for point-of-care applications. Here we present the first microfluidic scanning flow cytometer (μSFC), able to achieve accurate angle-resolved scattering measurements within a standard polydimethylsiloxane microfluidic chip. The system exploits a low cost linearly variable optical density (OD) filter to reduce the dynamic range of the signal and to increase its signal-to-noise ratio. We present a performance comparison between the μSFC and commercial machines for the label free characterization of polymeric beads with different diameters and refractive indices. In contrast to FCM and FACS, the μSFC yields size estimates linearly correlated with nominal particle sizes (R2 = 0.99) and quantitative estimates of particle refractive indices. The feasibility of using the μSFC for the characterization of biological samples is demonstrated by analyzing a population of monocytes identified based on the morphology of a peripheral blood mononuclear cells sample, which yields values in agreement with the literature. The proposed μSFC combines low setup requirements with high performance, and has great potential for integration within other lab-on-chip systems for multi-parametric cell analysis and for next-generation point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Riccardo Reale
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Rome, Italy.
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Rome, Italy.
| | - Maryamsadat Ghoreishi
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Rome, Italy.
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Rome, Italy.
| | - Marco Leonetti
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Rome, Italy.
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| |
Collapse
|
9
|
Fang Q, Feng Y, Zhu J, Huang L, Wang W. Floating-Electrode-Enabled Impedance Cytometry for Single-Cell 3D Localization. Anal Chem 2023; 95:6374-6382. [PMID: 36996369 DOI: 10.1021/acs.analchem.2c05822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
As a label-free, low-cost, and noninvasive tool, impedance measurement has been widely used in single-cell characterization analysis. However, due to the tiny volume of cells, the uncertainty of the spatial position in the microchannel will bring measurement errors in single-cell electrical parameters. To overcome the issue, we designed a novel microdevice configured with a coplanar differential electrode structure to accurately resolve the spatial position of single cells without constraining techniques such as additional sheath fluids or narrow microchannels. The device precisely localizes single cells by measuring the induced current generated by the combined action of the floating electrode and the differential electrodes when single cells flow through the electrode-sensing area. The device was experimentally validated by measuring 6 μm yeast cells and 10 μm particles, achieving spatial localization with a resolution down to 2.1 μm (about 5.3% of the channel width) in lateral direction and 1.2 μm (about 5.9% of the channel height) in the vertical direction at a flow rate of 1.2 μL/min. In addition, by comparing measurement of yeast cells and particles, it was demonstrated that the device not only localizes the single cells or particles but also simultaneously characterizes their status properties such as velocity and size. The device offers a competitive electrode configuration in impedance cytometry with the advantages of simple structure, low cost, and high throughput, promising cell localization and thus electrical characterization.
Collapse
Affiliation(s)
- Qiang Fang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongxiang Feng
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Junwen Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wenhui Wang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Nguyen TH, Nguyen HA, Tran Thi YV, Hoang Tran D, Cao H, Chu Duc T, Bui TT, Do Quang L. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Analyst 2023; 148:1912-1929. [PMID: 36928639 DOI: 10.1039/d2an02027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Microfluidic cytometry (MC) and electrical impedance spectroscopy (EIS) are two important techniques in biomedical engineering. Microfluidic cytometry has been utilized in various fields such as stem cell differentiation and cancer metastasis studies, and provides a simple, label-free, real-time method for characterizing and monitoring cellular fates. The impedance microdevice, including impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS), is integrated into MC systems. IFC measures the impedance of individual cells as they flow through a microfluidic device, while EIS measures impedance changes during binding events on electrode regions. There have been significant efforts to improve and optimize these devices for both basic research and clinical applications, based on the concepts, electrode configurations, and cell fates. This review outlines the theoretical concepts, electrode engineering, and data analytics of these devices, and highlights future directions for development.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | | | - Y-Van Tran Thi
- University of Science, Vietnam National University, Hanoi, Vietnam.
| | | | - Hung Cao
- University of California, Irvine, USA
| | - Trinh Chu Duc
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Tung Thanh Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Loc Do Quang
- University of Science, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
11
|
de Bruijn DS, Van de Waal DB, Helmsing NR, Olthuis W, van den Berg A. Microfluidic Impedance Cytometry for Single-Cell Particulate Inorganic Carbon:Particulate Organic Carbon Measurements of Calcifying Algae. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200151. [PMID: 36910468 PMCID: PMC10000273 DOI: 10.1002/gch2.202200151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Indexed: 06/18/2023]
Abstract
Calcifying algae, like coccolithophores, greatly contribute to the oceanic carbon cycle and are therefore of particular interest for ocean carbon models. They play a key role in two processes that are important for the effective CO2 flux: The organic carbon pump (photosynthesis) and the inorganic carbon pump (calcification). The relative contribution of calcification and photosynthesis can be measured in algae by the amount of particulate inorganic carbon (PIC) and particulate organic carbon (POC). A microfluidic impedance cytometer is presented, enabling non-invasive and high-throughput assessment of the calcification state of single coccolithophore cells. Gradual modification of the exoskeleton by acidification results in a strong linear fit (R 2 = 0.98) between the average electrical phase and the PIC:POC ratio of the coccolithophore Emiliania huxleyi 920/9. The effect of different CO2 treatments on the PIC:POC ratio, however, is inconclusive, indicating that there is no strong effect observed for this particular strain. Lower PIC:POC ratios in cultures that grew to higher cell densities are found, which are also recorded with the impedance-based PIC:POC sensor. The development of this new quantification tool for small volumes paves the way for high-throughput analysis while applying multi-variable environmental stressors to support projections of the future marine carbon cycle.
Collapse
Affiliation(s)
- Douwe S. de Bruijn
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| | - Dedmer B. Van de Waal
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningen6708 PBThe Netherlands
| | - Nico R. Helmsing
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningen6708 PBThe Netherlands
| | - Wouter Olthuis
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| | - Albert van den Berg
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| |
Collapse
|
12
|
de Bruijn DS, Ten Eikelder HRA, Papadimitriou VA, Olthuis W, van den Berg A. Supervised machine learning in microfluidic impedance flow cytometry for improved particle size determination. Cytometry A 2023; 103:221-226. [PMID: 36908134 DOI: 10.1002/cyto.a.24679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
Abstract
The assessment of particle and cell size in electrical microfluidic flow cytometers has become common practice. Nevertheless, in flow cytometers with coplanar electrodes accurate determination of particle size is difficult, owing to the inhomogeneous electric field. Pre-defined signal templates and compensation methods have been introduced to correct for this positional dependence, but are cumbersome when dealing with irregular signal shapes. We introduce a simple and accurate post-processing method without the use of pre-defined signal templates and compensation functions using supervised machine learning. We implemented a multiple linear regression model and show an average reduction of the particle diameter variation by 37% with respect to an earlier processing method based on a feature extraction algorithm and compensation function. Furthermore, we demonstrate its application in flow cytometry by determining the size distribution of a population of small (4.6 ± 0.9 μm) and large (5.9 ± 0.8 μm) yeast cells. The improved performance of this coplanar, two electrode chip enables precise cell size determination in easy to fabricate impedance flow cytometers.
Collapse
Affiliation(s)
- Douwe S de Bruijn
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| | - Henricus R A Ten Eikelder
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| | | | - Wouter Olthuis
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands
| |
Collapse
|
13
|
Yang B, Wang C, Liang X, Li J, Li S, Wu JJ, Su T, Li J. Label-Free Sensing of Cell Viability Using a Low-Cost Impedance Cytometry Device. MICROMACHINES 2023; 14:407. [PMID: 36838107 PMCID: PMC9963508 DOI: 10.3390/mi14020407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/20/2023]
Abstract
Cell viability is an essential physiological status for drug screening. While cell staining is a conventional cell viability analysis method, dye staining is usually cytotoxic. Alternatively, impedance cytometry provides a straightforward and label-free sensing approach for the assessment of cell viability. A key element of impedance cytometry is its sensing electrodes. Most state-of-the-art electrodes are made of expensive metals, microfabricated by lithography, with a typical size of ten microns. In this work, we proposed a low-cost microfluidic impedance cytometry device with 100-micron wide indium tin oxide (ITO) electrodes to achieve a comparable performance to the 10-micron wide Au electrodes. The effectiveness was experimentally verified as 7 μm beads can be distinguished from 10 μm beads. To the best of our knowledge, this is the lowest geometry ratio of the target to the sensing unit in the impedance cytometry technology. Furthermore, a cell viability test was performed on MCF-7 cells. The proposed double differential impedance cytometry device has successfully differentiated the living and dead MCF-7 cells with a throughput of ~1000 cells/s. The label-free and low-cost, high-throughput impedance cytometry could benefit drug screening, fundamental biological research and other biomedical applications.
Collapse
Affiliation(s)
- Bowen Yang
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chao Wang
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinyi Liang
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jinchao Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shanshan Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300132, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37919, USA
| | - Tanbin Su
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
14
|
Jeong HJ, Kim K, Kim HW, Park Y. Classification between Normal and Cancerous Human Urothelial Cells by Using Micro-Dimensional Electrochemical Impedance Spectroscopy Combined with Machine Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:7969. [PMID: 36298320 PMCID: PMC9610759 DOI: 10.3390/s22207969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Although the high incidence and recurrence rates of urothelial cancer of the bladder (UCB) are heavy burdens, a noninvasive tool for effectively detecting UCB as an alternative to voided urine cytology, which has low sensitivity, is yet to be reported. Herein, we propose an intelligent discrimination method between normal (SV-HUC-1) and cancerous (TCCSUP) urothelial cells by using a combination of micro-dimensional electrochemical impedance spectroscopy (µEIS) with machine learning (ML) for a noninvasive and high-accuracy UCB diagnostic tool. We developed a unique valved flow cytometry, equipped with a pneumatic valve to increase sensitivity without cell clogging. Since contact between a cell and electrodes is tight with a high volume fraction, the electric field can be effectively confined to the cell. This enables the proposed sensor to highly discriminate different cell types at frequencies of 10, 50, 100, 500 kHz, and 1 MHz. A total of 236 impedance spectra were applied to six ML models, and systematic comparisons of the ML models were carried out. The hyperparameters were estimated by conducting a grid search or Bayesian optimization. Among the ML models, random forest strongly discriminated between SV-HUC-1 and TCCSUP, with an accuracy of 91.7%, sensitivity of 92.9%, precision of 92.9%, specificity of 90%, and F1-score of 93.8%.
Collapse
Affiliation(s)
- Ho-Jung Jeong
- Lighting Materials and Components Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Korea
| | - Kihyun Kim
- Department of Mechanical Design Engineering, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Korea
| | - Hyeon Woo Kim
- Department of Urology, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, Korea
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, Korea
| | - Yangkyu Park
- Department of Mechanical Design Engineering, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Korea
| |
Collapse
|
15
|
Shen B, Dawes J, Johnston ML. A 10 M Ω, 50 kHz-40 MHz Impedance Measurement Architecture for Source-Differential Flow Cytometry. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:766-778. [PMID: 35727776 DOI: 10.1109/tbcas.2022.3182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A low-power, impedance-based integrated circuit (IC) readout architecture is presented for cell analysis and cytometry applications. A three-electrode layout and source-differential excitation cancels baseline current prior to the sensor front-end, which enables the use of a high-gain readout circuit for the difference current. A lock-in architecture is employed with down-conversion and up-conversion in the feedback loop, enabling high closed-loop gain (up to 10 M Ω) and high bandwidth (up to 40 MHz). A hybrid-RC feedback network mitigates the SNR degradation seen over a wide operating frequency range when using purely capacitive feedback. The effect of phase shift on the closed-loop system gain and noise performance are analyzed in detail, along with optimization strategies, and the design includes fine-grained phase adjustment to minimize phase error. The impedance sensor was fabricated in a 0.18 μ m CMOS process and consumes 9.7 mW with an operating frequency from 50 kHz to 40 MHz and provides adjustable bandwidth. Measurements demonstrate that the impedance sensor achieves 6 pA [Formula: see text] input-referred noise over 200 Hz bandwidth at 0.5 MHz modulation frequency. Combined with a microfluidic flow cell, measured results using this source-differential measurement approach are presented using both monodisperse and polydisperse sample solutions and demonstrate single-cell resolution, detecting 3 μ m diameter particles in solution with 22 dB SNR.
Collapse
|
16
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
17
|
Zhang Y, Zhao Y, Cole T, Zheng J, Bayinqiaoge, Guo J, Tang SY. Microfluidic flow cytometry for blood-based biomarker analysis. Analyst 2022; 147:2895-2917. [PMID: 35611964 DOI: 10.1039/d2an00283c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Ying Zhao
- National Chengdu Centre of Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu, China
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Bayinqiaoge
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
18
|
Bounik R, Cardes F, Ulusan H, Modena MM, Hierlemann A. Impedance Imaging of Cells and Tissues: Design and Applications. BME FRONTIERS 2022; 2022:1-21. [PMID: 35761901 PMCID: PMC7612906 DOI: 10.34133/2022/9857485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their label-free and noninvasive nature, impedance measurements have attracted increasing interest in biological research. Advances in microfabrication and integrated-circuit technology have opened a route to using large-scale microelectrode arrays for real-time, high-spatiotemporal-resolution impedance measurements of biological samples. In this review, we discuss different methods and applications of measuring impedance for cell and tissue analysis with a focus on impedance imaging with microelectrode arrays in in vitro applications. We first introduce how electrode configurations and the frequency range of the impedance analysis determine the information that can be extracted. We then delve into relevant circuit topologies that can be used to implement impedance measurements and their characteristic features, such as resolution and data-acquisition time. Afterwards, we detail design considerations for the implementation of new impedance-imaging devices. We conclude by discussing future fields of application of impedance imaging in biomedical research, in particular applications where optical imaging is not possible, such as monitoring of ex vivo tissue slices or microelectrode-based brain implants.
Collapse
Affiliation(s)
- Raziyeh Bounik
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Fernando Cardes
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Hasan Ulusan
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Mario M. Modena
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| |
Collapse
|
19
|
|
20
|
Petchakup C, Yang H, Gong L, He L, Tay HM, Dalan R, Chung AJ, Li KHH, Hou HW. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104822. [PMID: 35253966 DOI: 10.1002/smll.202104822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The intrinsic biophysical states of neutrophils are associated with immune dysfunctions in diseases. While advanced image-based biophysical flow cytometers can probe cell deformability at high throughput, it is nontrivial to couple different sensing modalities (e.g., electrical) to measure other critical cell attributes including cell viability and membrane integrity. Herein, an "optics-free" impedance-deformability cytometer for multiparametric single cell mechanophenotyping is reported. The microfluidic platform integrates hydrodynamic cell pinching, and multifrequency impedance quantification of cell size, deformability, and membrane impedance (indicative of cell viability and activation). A newly-defined "electrical deformability index" is validated by numerical simulations, and shows strong correlations with the optical cell deformability index of HL-60 experimentally. Human neutrophils treated with various biochemical stimul are further profiled, and distinct differences in multimodal impedance signatures and UMAP analysis are observed. Overall, the integrated cytometer enables label-free cell profiling at throughput of >1000 cells min-1 without any antibodies labeling to facilitate clinical diagnostics.
Collapse
Affiliation(s)
- Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haoning Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rinkoo Dalan
- Endocrinology Department, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng Road, Singapore, 308433, Singapore
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
| |
Collapse
|
21
|
Tan H, Wang M, Zhang Y, Huang X, Chen D, Li Y, Wu MH, Wang K, Wang J, Chen J. Inherent Bioelectrical Parameters of Hundreds of Thousands of Single Leukocytes Based on Impedance Flow Cytometry. Cytometry A 2022; 101:630-638. [PMID: 35150049 DOI: 10.1002/cyto.a.24544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
As label-free biomarkers, bioelectrical properties of single cells have been widely used in hematology analyzers for 3-part differential of leukocytes, in which, however, instrument dependent bioelectrical parameters (e.g., DC/AC impedance values) rather than inherent bioelectrical parameters (e.g., diameter Dc , specific membrane capacitance Csm and cytoplasmic conductivity σcy ) were used, leading to poor comparisons among different instruments. In order to address this issue, this study collected inherent bioelectrical parameters from hundreds of thousands of white blood cells based on a home-developed impedance flow cytometry with corresponding 3-part differential of leukocytes realized. More specifically, leukocytes were separated into three major subtypes of granulocytes, monocytes and lymphocytes based on density gradient centrifugation. Then these separated cells were aspirated through a constriction-microchannel based impedance flow cytometry where inherent bioelectrical parameters of Dc , Csm and σcy were quantified as 9.8 ± 0.7 μm, 2.06 ± 0.26 μF/cm2 , and 0.34 ± 0.05 S/m for granulocytes (ncell = 134 829); 10.4 ± 1.0 μm, 2.45 ± 0.48 μF/cm2 , and 0.42 ± 0.08 S/m for monocytes (ncell = 40 226); 8.0 ± 0.5 μm, 2.23 ± 0.34 μF/cm2 , and 0.35 ± 0.08 S/m for lymphocytes (ncell = 129 193). Based on these inherent bioelectrical parameters, neural pattern recognition was conducted, producing a high "classification accuracy" of 93.5% in classifying these three subtypes of leukocytes. These results indicate that as inherent bioelectrical parameters, Dc , Csm and σcy can be used to electrically phenotype white blood cells in a label-free manner.
Collapse
Affiliation(s)
- Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xukun Huang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yueying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Min-Hsien Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Ke Wang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
22
|
Chícharo A, Caetano DM, Cardoso S, Freitas P. Evolution in Automatized Detection of Cells: Advances in Magnetic Microcytometers for Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:413-444. [DOI: 10.1007/978-3-031-04039-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Tang T, Liu X, Yuan Y, Zhang T, Kiya R, Yang Y, Suzuki K, Tanaka Y, Li M, Hosokawa Y, Yalikun Y. Assessment of the electrical penetration of cell membranes using four-frequency impedance cytometry. MICROSYSTEMS & NANOENGINEERING 2022; 8:68. [PMID: 35757522 PMCID: PMC9226050 DOI: 10.1038/s41378-022-00405-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 05/02/2023]
Abstract
The electrical penetration of the cell membrane is vital for determining the cell interior via impedance cytometry. Herein, we propose a method for determining the conductivity of the cell membrane through the tilting levels of impedance pulses. When electrical penetration occurs, a high-frequency current freely passes through the cell membrane; thus, the intracellular distribution can directly act on the high-frequency impedance pulses. Numerical simulation shows that an uneven intracellular component distribution can affect the tilting levels of impedance pulses, and the tilting levels start increasing when the cell membrane is electrically penetrated. Experimental evidence shows that higher detection frequencies (>7 MHz) lead to a wider distribution of the tilting levels of impedance pulses when measuring cell populations with four-frequency impedance cytometry. This finding allows us to determine that a detection frequency of 7 MHz is able to pass through the membrane of Euglena gracilis (E. gracilis) cells. Additionally, we provide a possible application of four-frequency impedance cytometry in the biomass monitoring of single E. gracilis cells. High-frequency impedance (≥7 MHz) can be applied to monitor these biomass changes, and low-frequency impedance (<7 MHz) can be applied to track the corresponding biovolume changes. Overall, this work demonstrates an easy determination method for the electrical penetration of the cell membrane, and the proposed platform is applicable for the multiparameter assessment of the cell state during cultivation.
Collapse
Affiliation(s)
- Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Xun Liu
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Yapeng Yuan
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Tianlong Zhang
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
- School of Engineering, Macquarie University, Sydney, 2109 NSW Australia
| | - Ryota Kiya
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000 P. R. China
| | | | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2109 NSW Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
24
|
Gökçe F, Ravaynia PS, Modena MM, Hierlemann A. What is the future of electrical impedance spectroscopy in flow cytometry? BIOMICROFLUIDICS 2021; 15:061302. [PMID: 34917226 PMCID: PMC8651262 DOI: 10.1063/5.0073457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/02/2023]
Abstract
More than 20 years ago, electrical impedance spectroscopy (EIS) was proposed as a potential characterization method for flow cytometry. As the setup is comparably simple and the method is label-free, EIS has attracted considerable interest from the research community as a potential alternative to standard optical methods, such as fluorescence-activated cell sorting (FACS). However, until today, FACS remains by and large the laboratory standard with highly developed capabilities and broad use in research and clinical settings. Nevertheless, can EIS still provide a complement or alternative to FACS in specific applications? In this Perspective, we will give an overview of the current state of the art of EIS in terms of technologies and capabilities. We will then describe recent advances in EIS-based flow cytometry, compare the performance to that of FACS methods, and discuss potential prospects of EIS in flow cytometry.
Collapse
Affiliation(s)
- Furkan Gökçe
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Paolo S. Ravaynia
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mario M. Modena
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
25
|
Zhou Z, Chen Y, Zhu S, Liu L, Ni Z, Xiang N. Inertial microfluidics for high-throughput cell analysis and detection: a review. Analyst 2021; 146:6064-6083. [PMID: 34490431 DOI: 10.1039/d1an00983d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since it was first proposed in 2007, inertial microfluidics has been extensively studied in terms of theory, design, fabrication, and application. In recent years, with the rapid development of microfabrication technologies, a variety of channel structures that can focus, concentrate, separate, and capture bioparticles or fluids have been designed and manufactured to extend the range of potential biomedical applications of inertial microfluidics. Due to the advantages of high throughput, simplicity, and low device cost, inertial microfluidics is a promising candidate for rapid sample processing, especially for large-volume samples with low-abundance targets. As an approach to cellular sample pretreatment, inertial microfluidics has been widely employed to ensure downstream cell analysis and detection. In this review, a comprehensive summary of the application of inertial microfluidics for high-throughput cell analysis and detection is presented. According to application areas, the recent advances can be sorted into label-free cell mechanical phenotyping, sheathless flow cytometric counting, electrical impedance cytometer, high-throughput cellular image analysis, and other methods. Finally, the challenges and prospects of inertial microfluidics for cell analysis and detection are summarized.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Linbo Liu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
26
|
Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry. BIOSENSORS-BASEL 2021; 11:bios11100353. [PMID: 34677309 PMCID: PMC8533872 DOI: 10.3390/bios11100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Microfluidic impedance flow cytometers enable high-throughput, non-invasive, and label-free detection of single-cells. Cytometers with coplanar electrodes are easy and cheap to fabricate, but are sensitive to positional differences of passing particles, owing to the inhomogeneous electric field. We present a novel particle height compensation method, which employs the dependence of measured electrical opacity on particle height. The measured electrical opacity correlates with the particle height as a result of the constant electrical double layer series capacitance of the electrodes. As an alternative to existing compensation methods, we use only two coplanar electrodes and multi-frequency analysis to determine the particle size of a mixture of 5, 6, and 7 µm polystyrene beads with an accuracy (CV) of 5.8%, 4.0%, and 2.9%, respectively. Additionally, we can predict the bead height with an accuracy of 1.5 µm (8% of channel height) using the measured opacity and we demonstrate its application in flow cytometry with yeast. The use of only two electrodes is of special interest for simplified, easy-to-use chips with a minimum amount of instrumentation and of limited size.
Collapse
|
27
|
DaOrazio M, Reale R, De Ninno A, Brighetti MA, Mencattini A, Businaro L, Martinelli E, Bisegna P, Travaglini A, Caselli F. Electro-optical classification of pollen grains via microfluidics and machine learning. IEEE Trans Biomed Eng 2021; 69:921-931. [PMID: 34478361 DOI: 10.1109/tbme.2021.3109384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In aerobiological monitoring and agriculture there is a pressing need for accurate, label-free and automated analysis of pollen grains, in order to reduce the cost, workload and possible errors associated to traditional approaches. Methods: We propose a new multimodal approach that combines electrical sensing and optical imaging to classify pollen grains flowing in a microfluidic chip at a throughput of 150 grains per second. Electrical signals and synchronized optical images are processed by two independent machine learning-based classifiers, whose predictions are then combined to provide the final classification outcome. Results: The applicability of the method is demonstrated in a proof-of-concept classification experiment involving eight pollen classes from different taxa. The average balanced accuracy is 78.7 % for the electrical classifier, 76.7 % for the optical classifier and 84.2 % for the multimodal classifier. The accuracy is 82.8 % for the electrical classifier, 84.1 % for the optical classifier and 88.3 % for the multimodal classifier. Conclusion: The multimodal approach provides better classification results with respect to the analysis based on electrical or optical features alone. Significance: The proposed methodology paves the way for automated multimodal palynology. Moreover, it can be extended to other fields, such as diagnostics and cell therapy, where it could be used for label-free identification of cell populations in heterogeneous samples.
Collapse
|
28
|
Zhu S, Zhang X, Zhou Z, Han Y, Xiang N, Ni Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021; 233:122571. [PMID: 34215067 DOI: 10.1016/j.talanta.2021.122571] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Single-cell analysis has gained considerable attention for disease diagnosis, drug screening, and differentiation monitoring. Compared to the well-established flow cytometry, which uses fluorescent-labeled antibodies, microfluidic impedance cytometry (MIC) offers a simple, label-free, and noninvasive method for counting, classifying, and monitoring cells. Superior features including a small footprint, low reagent consumption, and ease of use have also been reported. The MIC device detects changes in the impedance signal caused by cells passing through the sensing/electric field zone, which can extract information regarding the size, shape, and dielectric properties of these cells. According to recent studies, electrode configuration has a remarkable effect on detection accuracy, sensitivity, and throughput. With the improvement in microfabrication technology, various electrode configurations have been reported for improving detection accuracy and throughput. However, the various electrode configurations of MIC devices have not been reviewed. In this review, the theoretical background of the impedance technique for single-cell analysis is introduced. Then, two-dimensional, three-dimensional, and liquid electrode configurations are discussed separately; their sensing mechanisms, fabrication processes, advantages, disadvantages, and applications are also described in detail. Finally, the current limitations and future perspectives of these electrode configurations are summarized. The main aim of this review is to offer a guide for researchers on the ongoing advancement in electrode configuration designs.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zheng Zhou
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
29
|
Blevins MG, Allen HL, Colson BC, Cook AM, Greenbaum AZ, Hemami SS, Hollmann J, Kim E, LaRocca AA, Markoski KA, Miraglia P, Mott VL, Robberson WM, Santos JA, Sprachman MM, Swierk P, Tate S, Witinski MF, Kratchman LB, Michel APM. Field-Portable Microplastic Sensing in Aqueous Environments: A Perspective on Emerging Techniques. SENSORS (BASEL, SWITZERLAND) 2021; 21:3532. [PMID: 34069517 PMCID: PMC8160859 DOI: 10.3390/s21103532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Microplastics (MPs) have been found in aqueous environments ranging from rural ponds and lakes to the deep ocean. Despite the ubiquity of MPs, our ability to characterize MPs in the environment is limited by the lack of technologies for rapidly and accurately identifying and quantifying MPs. Although standards exist for MP sample collection and preparation, methods of MP analysis vary considerably and produce data with a broad range of data content and quality. The need for extensive analysis-specific sample preparation in current technology approaches has hindered the emergence of a single technique which can operate on aqueous samples in the field, rather than on dried laboratory preparations. In this perspective, we consider MP measurement technologies with a focus on both their eventual field-deployability and their respective data products (e.g., MP particle count, size, and/or polymer type). We present preliminary demonstrations of several prospective MP measurement techniques, with an eye towards developing a solution or solutions that can transition from the laboratory to the field. Specifically, experimental results are presented from multiple prototype systems that measure various physical properties of MPs: pyrolysis-differential mobility spectroscopy, short-wave infrared imaging, aqueous Nile Red labeling and counting, acoustophoresis, ultrasound, impedance spectroscopy, and dielectrophoresis.
Collapse
Affiliation(s)
- Morgan G. Blevins
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA 02543, USA; (M.G.B.); (B.C.C.)
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Harry L. Allen
- Emergency Response Office, Superfund Division, U.S. EPA Region 9, San Francisco, CA 94105, USA;
| | - Beckett C. Colson
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA 02543, USA; (M.G.B.); (B.C.C.)
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna-Marie Cook
- Kamilo, Inc., Former U.S. EPA Region 9, San Francisco, CA 94108, USA;
| | - Alexandra Z. Greenbaum
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Sheila S. Hemami
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Joseph Hollmann
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Ernest Kim
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Ava A. LaRocca
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Kenneth A. Markoski
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Peter Miraglia
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Vienna L. Mott
- Draper, Bioengineering Division, Cambridge, MA 02139, USA;
| | | | - Jose A. Santos
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Melissa M. Sprachman
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Patricia Swierk
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Steven Tate
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Mark F. Witinski
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Louis B. Kratchman
- The Charles Stark Draper Laboratory Inc., Cambridge, MA 02139, USA; (A.Z.G.); (J.H.); (E.K.); (A.A.L.); (K.A.M.); (P.M.); (J.A.S.); (M.M.S.); (P.S.); (S.T.); (M.F.W.)
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
30
|
Gong L, Petchakup C, Shi P, Tan PL, Tan LP, Tay CY, Hou HW. Direct and Label-Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007500. [PMID: 33759381 DOI: 10.1002/smll.202007500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/11/2021] [Indexed: 05/11/2023]
Abstract
3D cellular spheroids/microcarriers (100 µm-1 mm) are widely used in biomanufacturing, and non-invasive biosensors are useful to monitor cell quality in bioprocesses. In this work, a novel microfluidic approach for label-free and continuous-flow monitoring of single spheroid/microcarrier (hydrogel and Cytodex) based on electrical impedance spectroscopy using co-planar Field's metal electrodes is reported. Through numerical simulation and experimental validation, two unique impedance signatures (|ZLF | (60 kHz), |ZHF | (1 MHz)) which are optimal for spheroid growth and viability monitoring are identified. Using a closed-loop recirculation system, it is demonstrated that |ZLF | increases with breast cancer (MCF-7) spheroid biomass, while higher opacity (impedance ratio |ZHF |/|ZLF |) indicates cell death due to compromised cell membrane. Anti-cancer drug (paclitaxel)-treated spheroids also exhibit lower |ZLF | with increased cell dissociation. Interestingly, impedance characterization of adipose-derived mesenchymal stem cell differentiation on Cytodex microcarriers reveals that adipogenic cells (higher intracellular lipid content) exhibit higher impedance than osteogenic cells (more conductive due to calcium ions) for both microcarriers and single cell level. Taken together, the developed platform offers great versatility for multi-parametric analysis of spheroids/microcarriers at high throughput (≈1 particle/s), and can be readily integrated into bioreactors for long-term and remote monitoring of biomass and cell quality.
Collapse
Affiliation(s)
- Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Pujiang Shi
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Pei Leng Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore, 637141
- Energy Research Institute, Nanyang Technological University Singapore, 50 Nanyang Drive, Singapore, 637553
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232
- Critical Analytics for Manufacturing of Personalized Medicine, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, 1 CREATE Way, #10-01, CREATE Tower, Singapore, 138602
| |
Collapse
|
31
|
Lei KF, Ho YC, Huang CH, Huang CH, Pai PC. Characterization of stem cell-like property in cancer cells based on single-cell impedance measurement in a microfluidic platform. Talanta 2021; 229:122259. [PMID: 33838770 DOI: 10.1016/j.talanta.2021.122259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Investigation of stem cell-like property in cancer cells is important for the development of new therapeutic drugs targeting at malignant tumors. Currently, the standard approach for identifying cancer stem cell-like cells relies on the recognition of stem cell surface markers. However, the reliability remains controversial among biologists. In the current work, a dielectrophoretic and impedimetric hybrid microfluidic platform was developed for capturing single cells and characterizing their stem cell-like property. Single cells were captured in 20 μm trapping wells by dielectrophoretic force and their impedance spectra were measured by an impedance analyzer. The result showed that different cancer cell lines could be differentiated by impedance magnitude ranging between 2 and 20 kHz. Moreover, cancer cells and cancer stem cell-like cells could be categorized by a 2-dimensional graph of the impedance magnitudes at 2 and 20 kHz. The stem cell-like property in cancer cells was verified by stem cell surface markers and single-cell derived colony assay. Comparing with bio-chemical approach, i.e., surface markers, bio-physical approach, i.e., cell impedance, is a label-free technique to identify cancer stem cell-like cells.
Collapse
Affiliation(s)
- Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Yu-Chen Ho
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hao Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hao Huang
- PhD Program in Biomedical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ping Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
32
|
Han X, Liu Y, Yin J, Yue M, Mu Y. Microfluidic devices for multiplexed detection of foodborne pathogens. Food Res Int 2021; 143:110246. [PMID: 33992358 DOI: 10.1016/j.foodres.2021.110246] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023]
Abstract
The global burden of foodborne diseases is substantial and foodborne pathogens are the major cause for human illnesses. In order to prevent the spread of foodborne pathogens, detection methods are constantly being updated towards rapid, portable, inexpensive, and multiplexed on-site detection. Due to the nature of the small size and low volume, microfluidics has been applied to rapid, time-saving, sensitive, and portable devices to meet the requirements of on-site detection. Simultaneous detection of multiple pathogens is another key parameter to ensure food safety. Multiplexed detection technology, including microfluidic chip design, offers a new opportunity to achieve this goal. In this review, we introduced several sample preparation and corresponding detection methods on microfluidic devices for multiplexed detection of foodborne pathogens. In the sample preparation section, methods of cell capture and enrichment, as well as nucleic acid sample preparation, were described in detail, and in the section of detection methods, amplification, immunoassay, surface plasmon resonance and impedance spectroscopy were exhaustively illustrated. The limitations and advantages of all available experimental options were also summarized and discussed in order to form a comprehensive understanding of cutting-edge technologies and provide a comparative assessment for future investigation and in-field application.
Collapse
Affiliation(s)
- Xiaoying Han
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanhui Liu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China.
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China.
| |
Collapse
|
33
|
Zhong J, Yang D, Zhou Y, Liang M, Ai Y. Multi-frequency single cell electrical impedance measurement for label-free cell viability analysis. Analyst 2021; 146:1848-1858. [PMID: 33619511 DOI: 10.1039/d0an02476g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell viability is a physiological status connected to cell membrane integrity and cytoplasmic topography, which is profoundly important for fundamental biological research and practical biomedical applications. A conventional method for assessing cell viability is through cell staining analysis. However, cell staining involves laborious and complicated processing procedures and is normally cytotoxic. Intrinsic cellular phenotypes thus provide new avenues for measuring cell viability in a stain-free and non-toxic manner. In this work, we present a label-free non-destructive impedance-based approach for cell viability assessment by simultaneously characterizing multiple electrical cellular phenotypes in a high-throughput manner (>1000 cells per min). A novel concept called the complex opacity spectrum is introduced for improving the discrimination of live and dead cells. The analysis of the complex opacity spectrum leads to the discovery of two frequency ranges that are optimized for characterizing membranous and cytoplasmic electrical phenotypes. The present impedance-based approach has successfully discriminated between living and dead cells in two different experimental scenarios, including mixed living and dead cells in both homogenous and heterogeneous cell samples. This impedance-based single cell phenotyping technique provides highly accurate and consistent cell viability analysis, which has been validated by commercial fluorescence-based flow cytometry (∼1% difference) using heterogeneous cell samples. This label-free high-throughput cell viability analysis strategy will have broad applications in the field of biology and medicine.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | | | | | | | | |
Collapse
|
34
|
Monitoring Contractile Cardiomyocytes via Impedance Using Multipurpose Thin Film Ruthenium Oxide Electrodes. SENSORS 2021; 21:s21041433. [PMID: 33670743 PMCID: PMC7923073 DOI: 10.3390/s21041433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
A ruthenium oxide (RuOx) electrode was used to monitor contractile events of human pluripotent stem cells-derived cardiomyocytes (hPSC-CMs) through electrical impedance spectroscopy (EIS). Using RuOx electrodes presents an advantage over standard thin film Pt electrodes because the RuOx electrodes can also be used as electrochemical sensor for pH, O2, and nitric oxide, providing multisensory functionality with the same electrode. First, the EIS signal was validated in an optically transparent well-plate setup using Pt wire electrodes. This way, visual data could be recorded simultaneously. Frequency analyses of both EIS and the visual data revealed almost identical frequency components. This suggests both the EIS and visual data captured the similar events of the beating of (an area of) hPSC-CMs. Similar EIS measurement was then performed using the RuOx electrode, which yielded comparable signal and periodicity. This mode of operation adds to the versatility of the RuOx electrode's use in in vitro studies.
Collapse
|
35
|
Abstract
Understanding the sources, impacts, and fate of microplastics in the environment is critical for assessing the potential risks of these anthropogenic particles. However, our ability to quantify and identify microplastics in aquatic ecosystems is limited by the lack of rapid techniques that do not require visual sorting or preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-throughput flow-through microplastic quantification, with the goal of rapid measurement of microplastic concentration and size. Impedance spectroscopy characterizes the electrical properties of individual particles directly in the flow of water, allowing for simultaneous sizing and material identification. To demonstrate the technique, spike and recovery experiments were conducted in tap water with 212-1000 μm polyethylene beads in six size ranges and a variety of similarly sized biological materials. Microplastics were reliably detected, sized, and differentiated from biological materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The recovery rate was ≥90% for microplastics in the 300-1000 μm size range, and the false positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.
Collapse
Affiliation(s)
- Beckett C. Colson
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, Massachusetts, United States
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
36
|
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. LAB ON A CHIP 2021; 21:22-54. [PMID: 33331376 PMCID: PMC7909465 DOI: 10.1039/d0lc00840k] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
37
|
Gaikwad R, Sen AK. An optomicrofluidic device for the detection and isolation of drop-encapsulated target cells in single-cell format. Analyst 2021; 146:95-108. [PMID: 33107500 DOI: 10.1039/d0an00160k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-cell analysis has emerged as a powerful method for genomics, transcriptomics, proteomics, and metabolomics characterisation at the individual cell level. Here, we demonstrate a technique for the detection and selective isolation of target cells encapsulated in microdroplets in single-cell format. A sample containing a mixed population of cells with fluorescently labelled target cells can be focused using a sheath fluid to direct cells in single file toward a droplet junction, wherein the cells are encapsulated inside droplets. The droplets containing the cells migrate toward the centre of the channel owing to non-inertial lift force. The cells present in the droplets are studied and characterised based on forward scatter (FSC), side scatter (SSC), and fluorescence (FL) signals. The FL signals from the target cells can be used to activate a selective isolation module based on electro-coalescence, using suitable electronics and a program to sort droplets containing the target cells in single-cell format from droplets containing background cells. We demonstrated the detection and isolation of target cells (cancer cells: HeLa and DU145) from mixed populations of cells, peripheral blood mononuclear cells (PBMC) + cervical cancer cells (HeLa) and PBMC + human prostate cancer cells (DU145), at a concentration range of 104-106 ml-1 at 300 cells per s. The performance of the device is characterised in terms of sorting efficiency (>97%), enrichment (>1800×), purity (>98%), and recovery (>95%). The sorted target cells were found to be viable (>95% viability) and showed good proliferation when cultured, showing the potential of the proposed sorting technique for downstream analysis.
Collapse
Affiliation(s)
- R Gaikwad
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | | |
Collapse
|
38
|
de Bruijn DS, Ter Braak PM, Van de Waal DB, Olthuis W, van den Berg A. Coccolithophore calcification studied by single-cell impedance cytometry: Towards single-cell PIC:POC measurements. Biosens Bioelectron 2020; 173:112808. [PMID: 33221507 DOI: 10.1016/j.bios.2020.112808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
Since the industrial revolution 30% of the anthropogenic CO2 is absorbed by oceans, resulting in ocean acidification, which is a threat to calcifying algae. As a result, there has been profound interest in the study of calcifying algae, because of their important role in the global carbon cycle. The coccolithophore Emiliania huxleyi is considered to be globally the most dominant calcifying algal species, which creates a unique exoskeleton from inorganic calcium carbonate platelets. The PIC (particulate inorganic carbon): POC (particulate organic carbon) ratio describes the relative amount of inorganic carbon in the algae and is a critical parameter in the ocean carbon cycle. In this research we explore the use of microfluidic single-cell impedance spectroscopy in the field of calcifying algae. Microfluidic impedance spectroscopy enables us to characterize single-cell electrical properties in a non-invasive and label-free way. We use the ratio of the impedance at high frequency vs. low frequency, known as opacity, to discriminate between calcified coccolithophores and coccolithophores with a calcite exoskeleton dissolved by acidification (decalcified). We have demonstrated that using opacity we can discriminate between calcified and decalcified coccolithophores with an accuracy of 94.1%. We have observed a correlation between the measured opacity and the cell height in the channel, which is supported by FEM simulations. The difference in cell density between calcified and decalcified cells can explain the difference in cell height and therefore the measured opacity.
Collapse
Affiliation(s)
- Douwe S de Bruijn
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, AE Enschede, 7500, the Netherlands.
| | - Paul M Ter Braak
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, AE Enschede, 7500, the Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, PB Wageningen, 6708, the Netherlands
| | - Wouter Olthuis
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, AE Enschede, 7500, the Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, AE Enschede, 7500, the Netherlands
| |
Collapse
|
39
|
Daguerre H, Solsona M, Cottet J, Gauthier M, Renaud P, Bolopion A. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities. LAB ON A CHIP 2020; 20:3665-3689. [PMID: 32914827 DOI: 10.1039/d0lc00616e] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microfluidic electrical impedance flow cytometry is now a well-known and established method for single-cell analysis. Given the richness of the information provided by impedance measurements, this non-invasive and label-free approach can be used in a wide field of applications ranging from simple cell counting to disease diagnostics. One of its major limitations is the variation of the impedance signal with the position of the cell in the sensing area. Indeed, identical particles traveling along different trajectories do not result in the same data. The positional dependence can be considered as a challenge for the accuracy of microfluidic impedance cytometers. On the other hand, it has recently been regarded by several groups as an opportunity to estimate the position of particles in the microchannel and thus take a further step in the logic of integrating sensors in so-called "Lab-on-a-chip" devices. This review provides a comprehensive overview of the physical grounds of the positional dependence of impedance measurements. Then, both the developed strategies to reduce position influence in impedance-based assays and the recent reported technologies exploiting that dependence for the integration of position detection in microfluidic devices are reviewed.
Collapse
Affiliation(s)
- Hugo Daguerre
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, AS2M Department, 24 rue Alain Savary, F-25000 Besançon, France.
| | | | | | | | | | | |
Collapse
|
40
|
Calvo PC, Campo O, Guerra C, Castaño S, Fonthal F. Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
Kawai S, Suzuki M, Arimoto S, Korenaga T, Yasukawa T. Determination of membrane capacitance and cytoplasm conductivity by simultaneous electrorotation. Analyst 2020; 145:4188-4195. [PMID: 32462157 DOI: 10.1039/d0an00100g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Membrane capacitances and cytoplasm conductivities of hematopoietic cells were investigated by simultaneous electrorotation (ROT) systems of multiple cells. Simultaneous ROT was achieved by the rotation of electric fields in grid arrays formed with three-dimensional interdigitated array (3D-IDA) electrodes that can be easily fabricated using two substrates with IDA electrodes. When AC signals were applied to four microband electrodes with a 90° phase difference to each electrode, cells dispersed randomly in the 3D-IDA device started to rotate and moved to the center of each grid. Multiple cells were simultaneously rotated at the center of grids without friction from contact with other cells and substrates. The averages and variance of ROT rates of cells at each frequency can be measured during a single operation of the device within 5 min, resulting in the acquisition of ROT spectra. Membrane capacitances and cytoplasm conductivities of hematopoietic cells (K562 cells, Jurkat cells, and THP-1 cells) were determined by fitting ROT spectra obtained experimentally to the curves calculated theoretically. The values determined by using the simultaneous ROT systems well coincided with the values reported previously. The membrane capacitances and cytoplasm conductivities of WEHI-231 cells were firstly determined to be 8.89 ± 0.25 mF m-2 and 0.28 ± 0.03 S m-1, respectively. Furthermore, the difference of the ROT rates based on the difference of the electric properties of cells was applied to discriminate the types of cells. The acquisition of rotation rates of multiple cells within a single operation makes the statistical analysis extremely profitable for determining the electrical properties of cells.
Collapse
Affiliation(s)
- Shikiho Kawai
- Department of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan.
| | | | | | | | | |
Collapse
|
42
|
Honrado C, McGrath JS, Reale R, Bisegna P, Swami NS, Caselli F. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry. Anal Bioanal Chem 2020; 412:3835-3845. [PMID: 32189012 DOI: 10.1007/s00216-020-02497-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - John S McGrath
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Riccardo Reale
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Frederica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy.
| |
Collapse
|
43
|
Kong C, Hu M, Weerakoon-Ratnayake KM, Witek MA, Dathathreya K, Hupert ML, Soper SA. Label-free counting of affinity-enriched circulating tumor cells (CTCs) using a thermoplastic micro-Coulter counter (μCC). Analyst 2020; 145:1677-1686. [PMID: 31867587 PMCID: PMC7350181 DOI: 10.1039/c9an01802f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coulter counters are used for counting particles and biological cells. Most Coulter counters are designed to analyze a sample without the ability to pre-process the sample prior to counting. For the analysis of rare cells, such as circulating tumor cells (CTCs), it is not uncommon to require enrichment before counting due to the modest throughput of μCCs and the high abundance of interfering cells, such as blood cells. We report a microfluidic-based Coulter Counter (μCC) fabricated using simple, low-cost techniques for counting rare cells that can be interfaced to sample pre- and/or post-processing units. In the current work, a microfluidic device for the affinity-based enrichment of CTCs from whole blood into a relatively small volume of ∼10 μL was interfaced to the μCC to allow for exhaustive counting of single CTCs following release of the CTCs from the enrichment chip. When integrated to the CTC affinity enrichment chip, the μCC could count the CTCs without loss and the cells could be collected for downstream molecular profiling or culturing if required. The μCC sensor counting efficiency was >93% and inter-chip variability was ∼1%.
Collapse
Affiliation(s)
- Cong Kong
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA and Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Mengjia Hu
- BioFluidica, Inc., Lawrence, KS 66047, USA.
| | - Kumuditha M Weerakoon-Ratnayake
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Malgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Kavya Dathathreya
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | | | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA and BioFluidica, Inc., Lawrence, KS 66047, USA. and BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA and Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047.
| |
Collapse
|
44
|
Abbasi U, Chowdhury P, Subramaniam S, Jain P, Muthe N, Sheikh F, Banerjee S, Kumaran V. A cartridge based Point-of-Care device for complete blood count. Sci Rep 2019; 9:18583. [PMID: 31819075 PMCID: PMC6901560 DOI: 10.1038/s41598-019-54006-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/01/2019] [Indexed: 11/30/2022] Open
Abstract
We demonstrate a proprietary lab-on-chip/μ TAS technology platform for a regulatory grade portable instrument for complete blood count (CBC) hematology tests including 3 part differential WBCs, RBCs, platelet and hemoglobin for rapid diagnostics at the point of care in resource-poor settings. Presently, diagnostics based on blood tests are confined to centralized laboratory settings, dependent on large footprint and expensive cytometers or on a microscope, requiring trained laboratory technicians. Consequently, such facilities are not present in rural and semi-urban settings, where there are opportunities and challenges in delivering efficient healthcare infrastructure at an affordable cost in resource-challenged environments. Our proposed design leverages advances in microfluidics and lab-on-chip fabrication techniques to miniaturize the conventional cytometer and bring down the cost significantly. The device can be operated autonomously, without skilled manpower, by primary healthcare professionals in the field and by patients (like glucose self-test devices). The instrument consists of a single-use chip, the size of a credit card, pre-loaded with reagents, in which the sample is loaded, and which is fluidically insulated from the environment. The controller, the size of a toaster, performs the necessary fluid handling and the impedance measurements to deliver the results in minutes.
Collapse
Affiliation(s)
- Usama Abbasi
- MicroX Labs, Society of Innovation and Development, Indian Institute of Science, Bangalore, 560012, India
| | - Prasanta Chowdhury
- CSIR-National Aerospace Laboratory, HAL Airport Road, Bangalore, 560017, India
| | - Sasikala Subramaniam
- MicroX Labs, Society of Innovation and Development, Indian Institute of Science, Bangalore, 560012, India
| | - Prakhar Jain
- MicroX Labs, Society of Innovation and Development, Indian Institute of Science, Bangalore, 560012, India
| | - Nitin Muthe
- MicroX Labs, Society of Innovation and Development, Indian Institute of Science, Bangalore, 560012, India
| | - Faisal Sheikh
- MicroX Labs, Society of Innovation and Development, Indian Institute of Science, Bangalore, 560012, India
| | - Subham Banerjee
- MicroX Labs, Society of Innovation and Development, Indian Institute of Science, Bangalore, 560012, India
| | - V Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
45
|
High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip. Biosens Bioelectron 2019; 150:111887. [PMID: 31780405 DOI: 10.1016/j.bios.2019.111887] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The study and the characterization of cell death mechanisms are fundamental in cell biology research. Traditional death/viability assays usually involve laborious sample preparation and expensive equipment or reagents. In this work, we use electrical impedance spectroscopy as a label-free methodology to characterize viable, necrotic and apoptotic human lymphoma U937 cells. A simple three-electrode coplanar layout is used in a differential measurement scheme and thousands of cells are measured at high-throughput (≈200 cell/s). Tailored signal processing enables accurate and robust cell characterization without the need for cell focusing systems. The results suggest that, at low frequency (0.5 MHz), signal magnitude enables the discrimination between viable/necrotic cells and cell fragments, whereas phase information allows discriminating between viable cells and necrotic cells. At higher frequency (10 MHz) two subpopulations of cell fragments are distinguished. This work substantiates the prominent role of electrical impedance spectroscopy for the development of next-generation cell viability assays.
Collapse
|
46
|
Xie X, Zhang Z, Ge X, Zhao X, Hao L, Cheng Z, Zhou W, Du Y, Wang L, Tian F, Xu X. Particle Self-Aligning, Focusing, and Electric Impedance Microcytometer Device for Label-Free Single Cell Morphology Discrimination and Yeast Budding Analysis. Anal Chem 2019; 91:13398-13406. [PMID: 31596074 DOI: 10.1021/acs.analchem.9b01509] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microfluidic electric impedance flow cytometry (IFC) devices have been applied in single cell analysis, such as cell counting, volume discrimination, cell viability, etc. A cell's shape provides specific information about cellular physiological and pathological conditions, especially in microorganisms such as yeast. In this study, the particle orientation focusing was theoretically analyzed and realized by hydrodynamics. The pulse width (passing time for the particles) of the conductance signal was used to discriminate particle shapes. Spherical and rod-shaped particles with similar volumes/lengths were differentiated by the IFC device, using the impedance pulse parameters of the events. Then, typical late-budding, early budding, and unbudded yeast cells were distinguished by the width, amplitude, and ratio of width to amplitude (R) of the impedance pulse. The pulse amplitude and the R combination gate for identifying the late-budding yeast was estimated through the statistic results. Using the gate, the late-budding rates under different conditions were calculated. Late-budding rates obtained using our method showed a high correlation (R2 = 0.83) with the manual cell counting result and represented the budding status of yeast cells under different conditions proficiently. Thus, the late-budding rate calculated using the above method can be used as a qualitative parameter to assess the reproductive performance of yeast and whether a yeast culturing environment is optimal. This IFC device and cell shape discrimination method is very simple and could be applied in the fermentation industry and other microorganisms' discrimination as a rapid analysis technique in the future.
Collapse
Affiliation(s)
- Xinwu Xie
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,National Bio-Protection Engineering Center , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| | - Zhiwei Zhang
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,School of Electronic Information and Automation , Tianjin University of Science and Technology , No.1038 Dagunan Road , Hexi District, Tianjin 300222 , China
| | - Xiang Ge
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,School of Electronic Information and Automation , Tianjin University of Science and Technology , No.1038 Dagunan Road , Hexi District, Tianjin 300222 , China
| | - Xiaohao Zhao
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,School of Electronic Information and Automation , Tianjin University of Science and Technology , No.1038 Dagunan Road , Hexi District, Tianjin 300222 , China
| | - Limei Hao
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,National Bio-Protection Engineering Center , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| | - Zhen Cheng
- Beijing CapitalBio Technology Co. Ltd. , No. 88 block, Kechuang Sixth Rd., Beijing Economic and Technological Development Zone , Beijing 101111 , China
| | - Weibin Zhou
- School of Electronic Information and Automation , Tianjin University of Science and Technology , No.1038 Dagunan Road , Hexi District, Tianjin 300222 , China
| | - Yaohua Du
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,National Bio-Protection Engineering Center , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| | - Lei Wang
- CapitalBio Corporation , National Engineering Research Center for Beijing Biochip Technology , 18 Life Science Parkway , Changping District, Beijing 102206 , China
| | - Feng Tian
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| | - Xinxi Xu
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| |
Collapse
|
47
|
Fan W, Chen X, Ge Y, Jin Y, Jin Q, Zhao J. Single-cell impedance analysis of osteogenic differentiation by droplet-based microfluidics. Biosens Bioelectron 2019; 145:111730. [PMID: 31590074 DOI: 10.1016/j.bios.2019.111730] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
Single-cell analysis is critical to understanding its heterogeneity and biological processes, such as stem cell differentiation, and elucidating the underlying mechanisms of cellular metabolism. New tools to promote intercellular variability studies help elucidate cellular regulation mechanisms. Here an impedance measurement and analysis system was built to monitor the osteogenic differentiation of single bone marrow mesenchymal stem cells (BM-MSCs) in droplets. The biochip including a microelectrode array was designed based on droplet microfluidics and fabricated. A novel theoretical electrical model was proposed to simulate the electrical properties of cells in the droplets. Impedance measurements showed that single cells are substantially heterogeneous during osteoblast differentiation at different stages (days 0, 7, 14 and 21) and different cell passages (passages 6, 7 and 11). This result was consistent with the appearance of two biomarkers (alkaline phosphatase and calcium nodules), which are the gold standard biomarkers of osteoblastogenesis and differentiation. The device enabled highly efficient single-cell trapping, accurate positioning, and sensitive, label-free and noninvasive impedance measurements of individual cells with multiple channels. This system provides a strategy for exploring the processes of osteoblastogenesis and differentiation at the single-cell level and has substantial potential for applications in the biomedical field.
Collapse
Affiliation(s)
- Weihua Fan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, 213003, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yuqing Ge
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yan Jin
- College of Sciences, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qinghui Jin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China.
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
48
|
Lab-On-A-Chip Device for Yeast Cell Characterization in Low-Conductivity Media Combining Cytometry and Bio-Impedance. SENSORS 2019; 19:s19153366. [PMID: 31370234 PMCID: PMC6695822 DOI: 10.3390/s19153366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
This paper proposes a simple approach to optimize the operating frequency band of a lab-on-a-chip based on bio-impedance cytometry for a single cell. It mainly concerns applications in low-conductivity media. Bio-impedance allows for the characterization of low cell concentration or single cells by providing an electrical signature. Thus, it may be necessary to perform impedance measurements up to several tens of megahertz in order to extract the internal cell signature. In the case of single cells, characterization is performed in a very small volume down to 1 pL. At the same time, measured impedances increase from tens of kilo-ohms for physiological liquids up to several mega-ohms for low conductivity media. This is, for example, the case for water analysis. At frequencies above hundreds of kilohertz, parasitic effects, such as coupling capacitances, can prevail over the impedance of the sample and completely short-circuit measurements. To optimize the sensor under these conditions, a complete model of a cytometry device was developed, including parasitic coupling capacitances of the sensor to take into account all the impedances. It appears that it is possible to increase the pass band by optimizing track geometries and placement without changing the sensing area. This assumption was obtained by measuring and comparing electrical properties of yeast cells in a low-conductivity medium (tap water). Decreased coupling capacitance by a factor higher than 10 was obtained compared with a previous non-optimized sensor, which allowed for the impedance measurement of all electrical properties of cells as small as yeast cells in a low-conductivity medium.
Collapse
|
49
|
Vembadi A, Menachery A, Qasaimeh MA. Cell Cytometry: Review and Perspective on Biotechnological Advances. Front Bioeng Biotechnol 2019; 7:147. [PMID: 31275933 PMCID: PMC6591278 DOI: 10.3389/fbioe.2019.00147] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell identification and enumeration are essential procedures within clinical and research laboratories. For over 150 years, quantitative investigation of body fluids such as counts of various blood cells has been an important tool for diagnostic analysis. With the current evolution of point-of-care diagnostics and precision medicine, cheap and precise cell counting technologies are in demand. This article reviews the timeline and recent notable advancements in cell counting that have occurred as a result of improvements in sensing including optical and electrical technology, enhancements in image processing capabilities, and contributions of micro and nanotechnologies. Cell enumeration methods have evolved from the use of manual counting using a hemocytometer to automated cell counters capable of providing reliable counts with high precision and throughput. These developments have been enabled by the use of precision engineering, micro and nanotechnology approaches, automation and multivariate data analysis. Commercially available automated cell counters can be broadly classified into three categories based on the principle of detection namely, electrical impedance, optical analysis and image analysis. These technologies have many common scientific uses, such as hematological analysis, urine analysis and bacterial enumeration. In addition to commercially available technologies, future technological trends using lab-on-a-chip devices have been discussed in detail. Lab-on-a-chip platforms utilize the existing three detection technologies with innovative design changes utilizing advanced nano/microfabrication to produce customized devices suited to specific applications.
Collapse
Affiliation(s)
- Abhishek Vembadi
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
| | - Anoop Menachery
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Qasaimeh
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
50
|
Heterogeneity Studies of Mammalian Cells for Bioproduction: From Tools to Application. Trends Biotechnol 2019; 37:645-660. [DOI: 10.1016/j.tibtech.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
|