1
|
Zhu C, Takemoto H, Higuchi Y, Yamashita F. Programmed immobilization of living cells using independent click pairs. Biochem Biophys Res Commun 2024; 699:149556. [PMID: 38277727 DOI: 10.1016/j.bbrc.2024.149556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Therapeutic devices incorporating living cells or tissues have been intensively investigated for applications in tissue engineering and regenerative medicine. Because many biological processes are governed by spatially dependent signals, programmable immobilization of materials is crucial for manipulating multiple types of cells. In this study, click chemistry substrates were introduced onto the surfaces of cells and cover glass, and the cells were fixed on the cover glass via covalent bonds for selective cell deposition. Azide group (Az)-labeled living cells were prepared by metabolic labeling with azido sugars. Following the introduction of Az, TCO (trans-cyclooctene) was metabolically labeled into the living cells by reacting with TCO-DBCO (dibenzocyclooctyne). Az and TCO in the cells were detected using DBCO-FAM (fluorescein)and tetrazine-Cy3, respectively. The mixture of Az-labeled green fluorescent protein HeLa cells and TCO-labeled red fluorescent protein HeLa cells was reacted in a culture dish in which three different cover glasses, DBCO-, tetrazine-, or methyl-coated, were added. Az- or TCO-labeled cells could be immobilized in a functional group-dependent manner. Next, tetrazine-labeled cells were incubated on TCO- or Az-labeled cell layers instead of cover glass. Functional group-dependent immobilization was also achieved in the cell layer. Introducing substrates for the click reaction could achieve cell-selective immobilization on different patterned glass surfaces, as well as cell-cell immobilization.
Collapse
Affiliation(s)
- Chengyuan Zhu
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroyasu Takemoto
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 606-0823, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan; Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Eksin E, Senturk H, Erdem A. Aptasensor for Impedimetric Detection of Lysozyme. Methods Mol Biol 2023; 2570:197-204. [PMID: 36156784 DOI: 10.1007/978-1-0716-2695-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The impedimetric detection of a protein, lysozyme (LYS), was carried out herein by aptamer-immobilized single-use pencil graphite electrodes (PGEs). The aptamer was immobilized onto electrochemically activated surface of electrode without using any chemical agents, or any types of nanomaterials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were applied to analyze the electrochemical behavior of unmodified PGE and aptamer immobilized PGE. The interaction of aptamer with its target protein, LYS, was then investigated by EIS. The limit of detection for LYS was found to be 1.44 μg/mL (equals to 100.65 nM). The developed aptasensor specific to LYS presented high selectivity against to bovine serum albumin and thrombin.
Collapse
Affiliation(s)
- Ece Eksin
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir, Turkey
| | - Huseyin Senturk
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir, Turkey
| | - Arzum Erdem
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
3
|
Gautam V, Kumar R, Jain VK, Nagpal S. An overview of advancement in aptasensors for influenza detection. Expert Rev Mol Diagn 2022; 22:705-724. [PMID: 35994712 DOI: 10.1080/14737159.2022.2116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The platforms for early identification of infectious diseases such as influenza has seen a surge in recent years as delayed diagnosis of such infections can lead to dreadful effects causing large numbers of deaths. The time taken in detection of an infectious disease may vary from a few days to a few weeks depending upon the choice of the techniques. So, there is an urgent need for advanced methodologies for early diagnosis of the influenza. AREAS COVERED The emergence of "Aptasensor" synergistically with biosensors for diagnosis has opened a new era for sensitive, selective and early detection approaches. This review described various conventional as well as advanced methods based on artificial immunogenic nucleotide sequences complementing a part of the virus, i.e., aptamers based aptasensors for influenza diagnosis and the challenges faced in their commercialization. EXPERT OPINION Although numerous traditional methods are available for influenza detection but mostly associated with low sensitivity, specificity, high cost, trained personnel, and animals required for virus culture/ antibody raising as the major drawbacks. Aptamers can be manufactured invitro as 'chemical antibodies' at commercial level, no animal required. Following these advantages, aptamers can pave the way for an efficient diagnostic technique as compared to other existing conventional methods..
Collapse
Affiliation(s)
- Varsha Gautam
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Ramesh Kumar
- Department of Biotechnology, Indira Gandhi University, Meerpur, India
| | - Vinod Kumar Jain
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Suman Nagpal
- Department of Environmental sciences, Indira Gandhi University, Meerpur, India
| |
Collapse
|
4
|
Patra I, Kadhim MM, Mahmood Saleh M, Yasin G, Abdulhussain Fadhil A, Sabah Jabr H, Hameed NM. Aptasensor Based on Microfluidic for Foodborne Pathogenic Bacteria and Virus Detection: A Review. Crit Rev Anal Chem 2022; 54:872-881. [PMID: 35831973 DOI: 10.1080/10408347.2022.2099222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, which is entangled with numerous foodborne pathogenic bacteria and viruses, it appears to be essential to rethink detection methods of these due to the importance of food safety in our lives. The vast majority of detection methods for foodborne pathogenic bacteria and viruses have suffered from sensitivity and selectivity due to the small size of these pathogens. Besides, these types of sensing approaches can improve on-site detection platforms in the fields of food safety. In recent, microfluidics systems as new emerging types of portable sensing approaches can introduce efficient and simple biodevice by integration with several analytical methods such as electrochemical, optical and colorimetric techniques. Additionally, taking advantage of aptamer as a selective bioreceptor in the sensing of microfluidics system has provided selective, sensitive, portable and affordable sensing approaches. Furthermore, some papers use increased data transferability ability and computational power of these sensing platforms by exploiting smartphones. In this review, we attempted to provide an overview of the current state of the recent aptasensor based on microfluidic for screening of foodborne pathogenic bacteria and viruses. Working strategies, benefits and disadvantages of these sensing approaches are briefly discussed.
Collapse
Affiliation(s)
- Indrajit Patra
- An Independent Researcher, Ex Research Scholar at National Institute of Technology Durgapur, Durgapur, India
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Huda Sabah Jabr
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Babylon, Iraq
| |
Collapse
|
5
|
Banu K, Mondal B, Rai B, Monica N, Hanumegowda R. Prospects for the application of aptamer based assay platforms in pathogen detection. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Evtugyn G, Porfireva A, Tsekenis G, Oravczova V, Hianik T. Electrochemical Aptasensors for Antibiotics Detection: Recent Achievements and Applications for Monitoring Food Safety. SENSORS (BASEL, SWITZERLAND) 2022; 22:3684. [PMID: 35632093 PMCID: PMC9143886 DOI: 10.3390/s22103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance. Conventional methods of antibiotics detection such are microbiological assays chromatographic and mass spectroscopy methods are sensitive; however, they require qualified personnel, expensive instruments, and sample pretreatment. Biosensor technology can overcome these drawbacks. This review is focused on the recent achievements in the electrochemical biosensors based on nucleic acid aptamers for antibiotic detection. A brief explanation of conventional methods of antibiotic detection is also provided. The methods of the aptamer selection are explained, together with the approach used for the improvement of aptamer affinity by post-SELEX modification and computer modeling. The substantial focus of this review is on the explanation of the principles of the electrochemical detection of antibiotics by aptasensors and on recent achievements in the development of electrochemical aptasensors. The current trends and problems in practical applications of aptasensors are also discussed.
Collapse
Affiliation(s)
- Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
| | - George Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Veronika Oravczova
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| |
Collapse
|
7
|
Xu R, Cheng Y, Li X, Zhang Z, Zhu M, Qi X, Chen L, Han L. Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: A review. Anal Chim Acta 2022; 1209:339893. [DOI: 10.1016/j.aca.2022.339893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
|
8
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Xue J, Chen F, Bai M, Cao X, Fu W, Zhang J, Zhao Y. Aptamer-Functionalized Microdevices for Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9402-9411. [PMID: 33170621 DOI: 10.1021/acsami.0c16138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aptamers have drawn great attention in the field of biological research and disease diagnosis for the remarkable advantages as recognition elements. They show unique superiority for facile selection, desirable thermal stability, flexible engineering, and low immunogenicity, complementing the use of conventional antibodies. Aptamer-functionalized microdevices offer promising properties for bioanalysis applications because of the compact sizes, minimal reaction volume, high throughput, operational feasibility, and controlled preciseness. In this review, we first introduce the innovative technologies in the selection of aptamers with microdevices and then highlight some advanced applications of aptamer-functionalized microdevices in bioanalysis field for diverse targets. Aptamer-functionalized microfluidic devices, microarrays, and paper-based and other interface-based microdevices are all bioanalysis platforms with huge potential in the near future. Finally, the major challenges of these microdevices applied in bioanalysis are discussed and future perspectives are also envisioned.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Wenhao Fu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
10
|
Zakashansky JA, Imamura AH, Salgado DF, Romero Mercieca HC, Aguas RFL, Lao AM, Pariser J, Arroyo-Currás N, Khine M. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:874-883. [PMID: 33576354 DOI: 10.1039/d1ay00041a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Using the children's toy, Shrinky-Dink©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 1 ag mL-1 of the S1 subunit of the spike protein.
Collapse
Affiliation(s)
- Julia A Zakashansky
- Materials Science and Engineering, University of California - Irvine, Irvine, California 92697, USA.
| | - Amanda H Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, 13566-590 Brazil
| | - Darwin F Salgado
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | | | - Raphael F L Aguas
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Angelou M Lao
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Joseph Pariser
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA and Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, & Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Khine
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| |
Collapse
|
11
|
Roy T, James BD, Allen JB. Anti-VEGF-R2 Aptamer and RGD Peptide Synergize in a Bifunctional Hydrogel for Enhanced Angiogenic Potential. Macromol Biosci 2021; 21:e2000337. [PMID: 33191671 PMCID: PMC7880904 DOI: 10.1002/mabi.202000337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Hydrogels have gained interest for use in tissue regeneration and wound healing because of their absorbing and swelling properties as well as their ability to mimic the natural extracellular matrix. Their use in wound healing specifically may be in the form of a patch or wound dressing or they may be administered within the wound bed as a filler, gel in situ, to promote healing. Thiolated hyaluronic acid-polyethylene diacrylate (tHA-PEGDA) hydrogels are ideal for this purpose due to their short gelation times at physiological temperature and pH. But these hydrogels alone are not enough and require added components to gain bioactivity. In this work, RGD adhesion peptides and an antivascular endothelial growth factor receptor-2 (VEGF-R2) DNA aptamer are incorporated into a tHA-PEGDA hydrogel to make a bifunctional hyaluronic acid hydrogel. RGD peptides promote attachment and growth of cells while the anti-VEGF-R2 DNA aptamer seems to improve cell viability, induce cell migration, and spur the onset of angiogenesis by tube formation by endothelial cells. This bifunctional hydrogel supports cell culture and has improved biological properties. The data suggest that these hydrogels can be used for advanced tissue regeneration applications such as in wound healing.
Collapse
Affiliation(s)
- Tanaya Roy
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bryan D James
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
12
|
He H, Xie C, Yao L, Ning G, Wang Y. A Sensitive Fluorescent Assay for Tetracycline Detection Based on Triple-helix Aptamer Probe and Cyclodextrin Supramolecular Inclusion. J Fluoresc 2021; 31:63-71. [PMID: 33070269 DOI: 10.1007/s10895-020-02631-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Herein, an effective pyrene excimer signaled fluorescent biosensor for the determination of tetracycline based on triple-helix aptamer probe (TAP) and supramolecular inclusion of cyclodextrin was reported. The TAP was devised containing an aptamer loop, two DNA segment stems and a triplex-forming oligonucleotide (signal probe) labeled with pyrenes at 5' and 3' ends. The presence of target could result in its binding towards aptamer with a mighty affinity, leading to a conformation change of the TAP and whereupon the release of the signal probe. This liberty of signal probe enabled the formation of pyrene excimer, generating fluorescence signals. Further, signal amplification was fulfilled through the addition of γ-cyclodextrin which could interact with pyrene dimer, thus leading to an enhanced "on-state" of the sensing ensemble. In contrast, when the target was absent, the sensing ensemble remained "off-state" because of the long distance between two pyrene molecules. When the conditions were properly optimized, the increasing signal kept a linear dependence on target concentrations ranging from 5.0 nM to 100 nM, and the detection limit reached as low as 1.6 nM. In this way, a newly-constructed, simple, and economically affordable protocol enjoys desirable efficiency, sensitivity, specificity in biosensing. Also, its universality as another attractive behalf in assaying diverse targets was envisioned with only the need of matched aptamer replacement.
Collapse
Affiliation(s)
- Hui He
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chuchu Xie
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Liu Yao
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
13
|
Zakashansky JA, Imamura AH, Salgado DF, Romero Mercieca HC, Aguas RFL, Lao AM, Pariser J, Arroyo-Currás N, Khine M. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33236028 DOI: 10.1101/2020.11.14.20231811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using the children's toy, Shrinky-Dink ©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 0.1 fg mL -1 of the S1 subunit of the spike protein.
Collapse
|
14
|
Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta 2020; 187:549. [PMID: 32888061 DOI: 10.1007/s00604-020-04526-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common and important diseases with a high mortality rate. Breast cancer is among the three most common types of cancer in women, and the mortality rate has reached 0.024% in some countries. For early-stage preclinical diagnosis of breast cancer, sensitive and reliable tools are needed. Today, there are many types of biomarkers that have been identified for cancer diagnosis. A wide variety of detection strategies have also been developed for the detection of these biomarkers from serum or other body fluids at physiological concentrations. Aptamers are single-stranded DNA or RNA oligonucleotides and promising in the production of more sensitive and reliable biosensor platforms in combination with a wide range of nanomaterials. Conformational changes triggered by the target analyte have been successfully applied in fluorometric, colorimetric, plasmonic, and electrochemical-based detection strategies. This review article presents aptasensor approaches used in the detection of vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and mucin-1 glycoprotein (MUC1) biomarkers, which are frequently studied in the diagnosis of breast cancer. The focus of this review article is on developments of the last decade for detecting these biomarkers using various sensitivity enhancement techniques and nanomaterials.
Collapse
Affiliation(s)
- Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | | | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| |
Collapse
|
15
|
Sonawane JM, Ezugwu CI, Ghosh PC. Microbial Fuel Cell-Based Biological Oxygen Demand Sensors for Monitoring Wastewater: State-of-the-Art and Practical Applications. ACS Sens 2020; 5:2297-2316. [PMID: 32786393 DOI: 10.1021/acssensors.0c01299] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Environmental pollution has been a continuous threat to sustainable development and global well-being. It has become a significant concern worldwide to combat the ecological crisis using low-cost innovative technologies. Biological oxygen demand (BOD) is a key indicator to comprehend the quality of water to guarantee environmental safety and human health; however, none of the present technologies are capable of online monitoring of the water at the source. Microbial fuel cells (MFC) are a promising technology for simultaneous power generation and wastewater treatment. MFCs have also been shown in fascinating applications to measure and detect the toxic pollutants present in wastewater. These are the bioreactors where exoelectrogenic microorganisms catalyze the conversion of the inherent chemical energy stored in organic compounds to electrical energy. Sensors employ energy conversion to measure BOD, which is considered an international index for the detection of organic material load present in wastewater. The MFC-based BOD sensors have gone through a wide range of advancement from mediator to mediator-less, double chamber to single-chamber, and large size to miniature. There have been detailed studies to improve the accuracy and reproducibility of the sensors for commercial applications. Additionally, multistage MFC-based BOD biosensors and miniature MFC-BOD sensors have also been ubiquitous in recent years. A considerable amount of work has been carried out to improve the performance of these devices by fabricating the proton exchange membranes and altering catalysts at the cathode. However, there remains a dearth for the fabrication of the devices in aspects like suitable microbes, proton exchange membranes, and cheaper catalysts for cathodes for effective real-time monitoring of wastewater. In this review, an extensive study has been carried out on various MFC-based BOD sensors. The efficiency and drawbacks associated with the different MFC-based BOD sensors have been critically evaluated, and future perspectives for their development have been investigated. The breadth of work compiled in this review will accelerate further research in MFC-based BOD biosensors. It will be of great importance to broad ranges of scientific research and industry.
Collapse
Affiliation(s)
- Jayesh M. Sonawane
- Department of Chemical Engineering and Applied Chemistry and Centre for Global Engineering, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Chizoba I. Ezugwu
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, E-28871 Alcalá de Henares, Madrid, Spain
| | - Prakash C. Ghosh
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India, 400 076
| |
Collapse
|
16
|
Satoh T, Kouroki S, Kitamura Y, Ihara T, Matsumura K, Iwase S. Detection of prostate-specific antigen in semen using DNA aptamers: an application of nucleic acid aptamers in forensic body fluid identification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2703-2709. [PMID: 32930301 DOI: 10.1039/d0ay00371a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In forensics, body fluid identification plays an important role because it aids in reconstructing a crime scene. Therefore, it is essential to develop simple and reliable techniques for body fluid identification. Nucleic acid aptamers are useful tools in analytical chemistry that can be used to improve conventional forensic analytical techniques. They have numerous advantages over antibodies including their low cost, long shelf life, and applicability for chemical modification and PCR amplification. A DNA aptamer against a human prostate-specific antigen (PSA), which is a well-known protein marker for semen identification in forensics, has been reported previously. In this study, as a proof-of-concept for nucleic acid aptamer-based identification of body fluids, we developed a technique of aptamer-based PSA assays for semen identification that employed enzyme-linked oligonucleotide assay (ELONA) and real-time PCR. We evaluated their sensitivity and specificity for semen compared with those for blood, saliva, urine, sweat, and vaginal secretion. The assays have equivalent procedures compared to enzyme-linked immunosorbent assay; their results were consistent with those produced by the conventional immunochromatographic assay. The minimum volume of semen required for detection was 62.5 nL in ELONA and 5 nL in real-time PCR, making this assay applicable for semen detection in actual criminal investigation. Aptamers can be a cost-effective and versatile tool for forensic body fluid identification.
Collapse
Affiliation(s)
- Tetsuya Satoh
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Seiya Kouroki
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Yusuke Kitamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Toshihiro Ihara
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kazutoshi Matsumura
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Susumu Iwase
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| |
Collapse
|
17
|
He L, Shen Z, Wang J, Zeng J, Wang W, Wu H, Wang Q, Gan N. Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin, aflatoxin M1, and 17β-estradiol based on magnetic tripartite DNA assembly nanostructure probes. Mikrochim Acta 2020; 187:176. [DOI: 10.1007/s00604-020-4155-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/08/2020] [Indexed: 11/29/2022]
|
18
|
Costantini F, Lovecchio N, Ruggi A, Manetti C, Nascetti A, Reverberi M, de Cesare G, Caputo D. Fluorescent Label-Free Aptasensor Integrated in a Lab-on-Chip System for the Detection of Ochratoxin A in Beer and Wheat. ACS APPLIED BIO MATERIALS 2019; 2:5880-5887. [DOI: 10.1021/acsabm.9b00831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Francesca Costantini
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00186 Rome, Italy
| | - Nicola Lovecchio
- Department Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Albert Ruggi
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | - Cesare Manetti
- Department of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, 00186 Rome, Italy
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, via Salaria 851/881, 00138 Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, 00186 Rome, Italy
| | - Giampiero de Cesare
- Department Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Domenico Caputo
- Department Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
19
|
Shin HS, Jung SB, Park S, Dua P, Lee DK. ALPPL2 Is a Potential Diagnostic Biomarker for Pancreatic Cancer-Derived Extracellular Vesicles. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:204-210. [PMID: 31687420 PMCID: PMC6819892 DOI: 10.1016/j.omtm.2019.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy that often goes undiagnosed in the early stages. Non-invasive, early, and accurate diagnosis is therefore undoubtedly the "holy grail" of pancreatic cancer research. However, despite extensive research efforts, there is no definitive biomarker for this cancer. Previously, we identified alkaline phosphatase placental-like 2 (ALPPL2) as a diagnostic biomarker for pancreatic ductal adenocarcinoma and developed a 2'-fluoro modified RNA aptamer toward it. In this study, we show that ALPPL2 is present in pancreatic cancer extracellular vesicles (EVs) and therefore has potential application in liquid biopsy-based diagnostic strategies. We also developed ALPPL2 direct and sandwich aptamer-linked immobilized sorbent assay (ALISA) for EVs, which could sensitively and specifically detect the protein. We believe that our ALISA format may have a potential diagnostic utility in screening pancreatic-cancer-derived EVs.
Collapse
Affiliation(s)
- Hye-Su Shin
- Global Research Laboratory of RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| | - Sang Baek Jung
- Nano Materials Chemistry Lab, Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| | - Sungho Park
- Nano Materials Chemistry Lab, Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| | - Pooja Dua
- Department of Microbiology, Goa University, India
| | - Dong Ki Lee
- Global Research Laboratory of RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon, Korea.,CEO, OliX Pharmaceuticals Inc., South Korea
| |
Collapse
|
20
|
Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Ueno S, Shioya M, Ichiki T. Fluorometric Measurement of Adenosine 5'-Triphosphate Using Exonuclease V Activity. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shingo Ueno
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion
- Department of Materials Engineering, School of Engineering, The University of Tokyo
| | - Mika Shioya
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion
| | - Takanori Ichiki
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion
- Department of Materials Engineering, School of Engineering, The University of Tokyo
| |
Collapse
|