1
|
Selemani MA, Cenhrang K, Azibere S, Singhateh M, Martin RS. 3D printed microfluidic devices with electrodes for electrochemical analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6941-6953. [PMID: 39403769 DOI: 10.1039/d4ay01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A review with 93 references describing various 3D printing approaches that have been used to create microfluidic devices containing electrodes for electrochemical detection. The use of 3D printing to fabricate microfluidic devices is a rapidly growing area. One significant research area is how to detect analytes in the devices for quantitation purposes. This review article is focused on methods used to integrate electrodes into the devices for electrochemical detection. The review is organized in terms of the methodology for integrating the electrode within the device. This includes (1) external coupling of traditional electrode materials with 3D printed devices; (2) printing conductive electrode materials as part of device printing; and (3) integrating traditional electrodes into the device as part of the print process. Example applications are given and some future directions are also outlined.
Collapse
Affiliation(s)
| | | | | | | | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
2
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
3
|
Kechagias JD. Effects of thermomechanical parameters on surface texture in filament materials extrusion: outlook and trends. F1000Res 2024; 13:1039. [PMID: 39512236 PMCID: PMC11541081 DOI: 10.12688/f1000research.144965.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
The material extrusion process has been widely used to manufacture custom products. However, the surface texture varies due to the additive mechanism of the process, which depends on the layer height and surface orientation, resulting in varying average surface roughness values for inclined, flat and vertical surfaces. Different strand welding conditions result in non-uniform internal stresses, surface distortions, layer traces, weak bonding, non-uniform pores and material overflow. This paper comprehensively examines material extrusion process achievements in surface texture quality and studies and summarises the most influential processing parameters. Parameter effects are critically discussed for each topic; flat, inclined, and vertical surfaces. The results of this research help reduce post-processing.
Collapse
|
4
|
Rodzeń K, O’Donnell E, Hasson F, McIlhagger A, Meenan BJ, Ullah J, Strachota B, Strachota A, Duffy S, Boyd A. Advanced 3D Printing of Polyetherketoneketone Hydroxyapatite Composites via Fused Filament Fabrication with Increased Interlayer Connection. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3161. [PMID: 38998244 PMCID: PMC11242051 DOI: 10.3390/ma17133161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
Additively manufactured implants, surgical guides, and medical devices that would have direct contact with the human body require predictable behaviour when stress is applied during their standard operation. Products built with Fused Filament Fabrication (FFF) possess orthotropic characteristics, thus, it is necessary to determine the properties that can be achieved in the XY- and Z-directions of printing. A concentration of 10 wt% of hydroxyapatite (HA) in polyetherketoneketone (PEKK) matrix was selected as the most promising biomaterial supporting cell attachment for medical applications and was characterized with an Ultimate Tensile Strength (UTS) of 78.3 MPa and 43.9 MPa in the XY- and Z-directions of 3D printing, respectively. The effect of the filler on the crystallization kinetics, which is a key parameter for the selection of semicrystalline materials suitable for 3D printing, was explained. This work clearly shows that only in situ crystallization provides the ability to build parts with a more thermodynamically stable primary form of crystallites.
Collapse
Affiliation(s)
- Krzysztof Rodzeń
- School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK; (E.O.); (F.H.); (A.M.); (B.J.M.); (J.U.); (S.D.)
| | - Eiméar O’Donnell
- School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK; (E.O.); (F.H.); (A.M.); (B.J.M.); (J.U.); (S.D.)
| | - Frances Hasson
- School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK; (E.O.); (F.H.); (A.M.); (B.J.M.); (J.U.); (S.D.)
| | - Alistair McIlhagger
- School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK; (E.O.); (F.H.); (A.M.); (B.J.M.); (J.U.); (S.D.)
| | - Brian J. Meenan
- School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK; (E.O.); (F.H.); (A.M.); (B.J.M.); (J.U.); (S.D.)
| | - Jawad Ullah
- School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK; (E.O.); (F.H.); (A.M.); (B.J.M.); (J.U.); (S.D.)
| | - Beata Strachota
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, 162 00 Praha, Czech Republic; (B.S.); (A.S.)
| | - Adam Strachota
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, 162 00 Praha, Czech Republic; (B.S.); (A.S.)
| | - Sean Duffy
- School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK; (E.O.); (F.H.); (A.M.); (B.J.M.); (J.U.); (S.D.)
| | - Adrian Boyd
- School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK; (E.O.); (F.H.); (A.M.); (B.J.M.); (J.U.); (S.D.)
| |
Collapse
|
5
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Bas J, Dutta T, Llamas Garro I, Velázquez-González JS, Dubey R, Mishra SK. RETRACTED: Embedded Sensors with 3D Printing Technology: Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:1955. [PMID: 38544218 PMCID: PMC10974650 DOI: 10.3390/s24061955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 12/17/2024]
Abstract
Embedded sensors (ESs) are used in smart materials to enable continuous and permanent measurements of their structural integrity, while sensing technology involves developing sensors, sensory systems, or smart materials that monitor a wide range of properties of materials. Incorporating 3D-printed sensors into hosting structures has grown in popularity because of improved assembly processes, reduced system complexity, and lower fabrication costs. 3D-printed sensors can be embedded into structures and attached to surfaces through two methods: attaching to surfaces or embedding in 3D-printed sensors. We discussed various additive manufacturing techniques for fabricating sensors in this review. We also discussed the many strategies for manufacturing sensors using additive manufacturing, as well as how sensors are integrated into the manufacturing process. The review also explained the fundamental mechanisms used in sensors and their applications. The study demonstrated that embedded 3D printing sensors facilitate the development of additive sensor materials for smart goods and the Internet of Things.
Collapse
Affiliation(s)
- Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, India;
| | - Ignacio Llamas Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
7
|
Lee J, Dutta SD, Acharya R, Park H, Kim H, Randhawa A, Patil TV, Ganguly K, Luthfikasari R, Lim KT. Stimuli-Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing. Adv Healthc Mater 2024; 13:e2302394. [PMID: 37950552 DOI: 10.1002/adhm.202302394] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune-related diseases.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
8
|
Du Y, Reitemeier J, Jiang Q, Bappy MO, Bohn PW, Zhang Y. Hybrid Printing of Fully Integrated Microfluidic Devices for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304966. [PMID: 37752777 DOI: 10.1002/smll.202304966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Indexed: 09/28/2023]
Abstract
The advent of 3D printing has facilitated the rapid fabrication of microfluidic devices that are accessible and cost-effective. However, it remains a challenge to fabricate sophisticated microfluidic devices with integrated structural and functional components due to limited material options of existing printing methods and their stringent requirement on feedstock material properties. Here, a multi-materials multi-scale hybrid printing method that enables seamless integration of a broad range of structural and functional materials into complex devices is reported. A fully printed and assembly-free microfluidic biosensor with embedded fluidic channels and functionalized electrodes at sub-100 µm spatial resolution for the amperometric sensing of lactate in sweat is demonstrated. The sensors present a sensitive response with a limit of detection of 442 nm and a linear dynamic range of 1-10 mm, which are performance characteristics relevant to physiological levels of lactate in sweat. The versatile hybrid printing method offers a new pathway toward facile fabrication of next-generation integrated devices for broad applications in point-of-care health monitoring and sensing.
Collapse
Affiliation(s)
- Yipu Du
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Julius Reitemeier
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Qiang Jiang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Md Omarsany Bappy
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
9
|
Pan S, Ding S, Zhou X, Zheng N, Zheng M, Wang J, Yang Q, Yang G. 3D-printed dosage forms for oral administration: a review. Drug Deliv Transl Res 2024; 14:312-328. [PMID: 37620647 DOI: 10.1007/s13346-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Oral administration is the most commonly used form of treatment due to its advantages, including high patient compliance, convenient administration, and minimal preparation required. However, the traditional preparation process of oral solid preparation has many defects. Although continuous manufacturing line that combined all the unit operations has been developed and preliminarily applied in the pharmaceutical industry, most of the currently used manufacturing processes are still complicated and discontinuous. As a result, these complex production steps will lead to low production efficiency and high quality control risk of the final product. Additionally, the large-scale production mode is inappropriate for the personalized medicines, which commonly is customized with small amount. Several attractive techniques, such as hot-melt extrusion, fluidized bed pelletizing and spray drying, could effectively shorten the process flow, but still, they have inherent limitations that are challenging to address. As a novel manufacturing technique, 3D printing could greatly reduce or eliminate these disadvantages mentioned above, and could realize a desirable continuous production for small-scale personalized manufacturing. In recent years, due to the participation of 3D printing, the development of printed drugs has progressed by leaps and bounds, especially in the design of oral drug dosage forms. This review attempts to summarize the new development of 3D printing technology in oral preparation and also discusses their advantages and disadvantages as well as potential applications.
Collapse
Affiliation(s)
- Siying Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sheng Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meng Zheng
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China
| | - Juan Wang
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China.
| |
Collapse
|
10
|
Qiu J, Li J, Guo Z, Zhang Y, Nie B, Qi G, Zhang X, Zhang J, Wei R. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6984. [PMID: 37959581 PMCID: PMC10650121 DOI: 10.3390/ma16216984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
Microfluidic chips have shown their potential for applications in fields such as chemistry and biology, and 3D printing is increasingly utilized as the fabrication method for microfluidic chips. To address key issues such as the long printing time for conventional 3D printing of a single chip and the demand for rapid response in individualized microfluidic chip customization, we have optimized the use of DLP (digital light processing) technology, which offers faster printing speeds due to its surface exposure method. In this study, we specifically focused on developing a fast-manufacturing process for directly printing microfluidic chips, addressing the high cost of traditional microfabrication processes and the lengthy production times associated with other 3D printing methods for microfluidic chips. Based on the designed three-dimensional chip model, we utilized a DLP-based printer to directly print two-dimensional and three-dimensional microfluidic chips with photosensitive resin. To overcome the challenge of clogging in printing microchannels, we proposed a printing method that combined an open-channel design with transparent adhesive tape sealing. This method enables the rapid printing of microfluidic chips with complex and intricate microstructures. This research provides a crucial foundation for the development of microfluidic chips in biomedical research.
Collapse
Affiliation(s)
- Jingjiang Qiu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
| | - Junfu Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhongwei Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
| | - Yudong Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
| | - Bangbang Nie
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
| | - Guochen Qi
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiong Zhang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Ronghan Wei
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Escobar A, Diab-Liu A, Bosland K, Xu CQ. Microfluidic Device-Based Virus Detection and Quantification in Future Diagnostic Research: Lessons from the COVID-19 Pandemic. BIOSENSORS 2023; 13:935. [PMID: 37887128 PMCID: PMC10605122 DOI: 10.3390/bios13100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The global economic and healthcare crises experienced over the past three years, as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted the commonplace habits of humans around the world. SARS-CoV-2, the virus responsible for the coronavirus 2019 (COVID-19) phenomenon, has contributed to the deaths of millions of people around the world. The potential diagnostic applications of microfluidic devices have previously been demonstrated to effectively detect and quasi-quantify several different well-known viruses such as human immunodeficiency virus (HIV), influenza, and SARS-CoV-2. As a result, microfluidics has been further explored as a potential alternative to our currently available rapid tests for highly virulent diseases to better combat and manage future potential outbreaks. The outbreak management during COVID-19 was initially hindered, in part, by the lack of available quantitative rapid tests capable of confirming a person's active infectiousness status. Therefore, this review will explore the use of microfluidic technology, and more specifically RNA-based virus detection methods, as an integral part of improved diagnostic capabilities and will present methods for carrying the lessons learned from COVID-19 forward, toward improved diagnostic outcomes for future pandemic-level threats. This review will first explore the context of the COVID-19 pandemic and how diagnostic technology was shown to have required even greater advancements to keep pace with the transmission of such a highly infectious virus. Secondly, the historical significance of integrating microfluidic technology in diagnostics and how the different types of genetic-based detection methods may vary in their potential practical applications. Lastly, the review will summarize the past, present, and future potential of RNA-based virus detection/diagnosis and how it might be used to better prepare for a future pandemic.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Alex Diab-Liu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Kamaya Bosland
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| |
Collapse
|
12
|
Nazari H, Shrestha J, Naei VY, Bazaz SR, Sabbagh M, Thiery JP, Warkiani ME. Advances in TEER measurements of biological barriers in microphysiological systems. Biosens Bioelectron 2023; 234:115355. [PMID: 37159988 DOI: 10.1016/j.bios.2023.115355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Biological barriers are multicellular structures that precisely regulate the transport of ions, biomolecules, drugs, cells, and other organisms. Transendothelial/epithelial electrical resistance (TEER) is a label-free method for predicting the properties of biological barriers. Understanding the mechanisms that control TEER significantly enhances our knowledge of the physiopathology of different diseases and aids in the development of new drugs. Measuring TEER values within microphysiological systems called organ-on-a-chip devices that simulate the microenvironment, architecture, and physiology of biological barriers in the body provides valuable insight into the behavior of barriers in response to different drugs and pathogens. These integrated systems should increase the accuracy, reproducibility, sensitivity, resolution, high throughput, speed, cost-effectiveness, and reliable predictability of TEER measurements. Implementing advanced micro and nanoscale manufacturing techniques, surface modification methods, biomaterials, biosensors, electronics, and stem cell biology is necessary for integrating TEER measuring systems with organ-on-chip technology. This review focuses on the applications, advantages, and future perspectives of integrating organ-on-a-chip technology with TEER measurement methods for studying biological barriers. After briefly reviewing the role of TEER in the physiology and pathology of barriers, standard techniques for measuring TEER, including Ohm's law and impedance spectroscopy, and commercially available devices are described. Furthermore, advances in TEER measurement are discussed in multiple barrier-on-a-chip system models representing different organs. Finally, we outline future trends in implementing advanced technologies to design and fabricate nanostructured electrodes, complicated microfluidic chips, and membranes for more advanced and accurate TEER measurements.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Milad Sabbagh
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia; Institute of Molecular Medicine, Sechenov University, 119991, Moscow, Russia.
| |
Collapse
|
13
|
Su R, Chen J, Zhang X, Wang W, Li Y, He R, Fang D. 3D-Printed Micro/Nano-Scaled Mechanical Metamaterials: Fundamentals, Technologies, Progress, Applications, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206391. [PMID: 37026433 DOI: 10.1002/smll.202206391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
Micro/nano-scaled mechanical metamaterials have attracted extensive attention in various fields attributed to their superior properties benefiting from their rationally designed micro/nano-structures. As one of the most advanced technologies in the 21st century, additive manufacturing (3D printing) opens an easier and faster path for fabricating micro/nano-scaled mechanical metamaterials with complex structures. Here, the size effect of metamaterials at micro/nano scales is introduced first. Then, the additive manufacturing technologies to fabricate mechanical metamaterials at micro/nano scales are introduced. The latest research progress on micro/nano-scaled mechanical metamaterials is also reviewed according to the type of materials. In addition, the structural and functional applications of micro/nano-scaled mechanical metamaterials are further summarized. Finally, the challenges, including advanced 3D printing technologies, novel material development, and innovative structural design, for micro/nano-scaled mechanical metamaterials are discussed, and future perspectives are provided. The review aims to provide insight into the research and development of 3D-printed micro/nano-scaled mechanical metamaterials.
Collapse
Affiliation(s)
- Ruyue Su
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jingyi Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xueqin Zhang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenqing Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rujie He
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
14
|
Zhang Y, Wong CYJ, Gholizadeh H, Aluigi A, Tiboni M, Casettari L, Young P, Traini D, Li M, Cheng S, Ong HX. Microfluidics assembly of inhalable liposomal ciprofloxacin characterised by an innovative in vitro pulmonary model. Int J Pharm 2023; 635:122667. [PMID: 36738806 DOI: 10.1016/j.ijpharm.2023.122667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Respiratory tract infections (RTIs) are reported to be the leading cause of death worldwide. Delivery of liposomal antibiotic nano-systems via the inhalation route has drawn significant interest in RTIs treatment as it can directly target the site of infection and reduces the risk of systemic exposure and side effects. Moreover, this formulation system can improve pharmacokinetics and biodistribution and enhance the activity against intracellular pathogens. Microfluidics is an innovative manufacturing technology that can produce nanomedicines in a homogenous and scalable way. The objective of this study was to evaluate the antibiofilm efficacy of two liposomal ciprofloxacin formulations with different vesicle sizes manufactured by using a 3D-printed microfluidic chip. Each formulation was characterised in terms of size, polydispersity index, charge and encapsulation. Moreover, the aerosolisation characteristics of the liposomal formulations were investigated and compared with free ciprofloxacin solution using laser diffraction and cascade impaction methods. The in vitro drug release was tested using the dialysis bag method. Furthermore, the drug transport and drug release studies were conducted using the alveolar epithelial H441 cell line integrated next-generation impactor in vitro model. Finally, the biofilm eradication efficacy was evaluated using a dual-chamber microfluidic in vitro model. Results showed that both liposomal-loaded ciprofloxacin formulations and free ciprofloxacin solution had comparable aerosolisation characteristics and biofilm-killing efficacy. The liposomal ciprofloxacin formulation of smaller vesicle size showed significantly slower drug release in the dialysis bag technique compared to the free ciprofloxacin solution. Interestingly, liposomal ciprofloxacin formulations successfully controlled the release of the drug in the epithelial cell model and showed different drug transport profiles on H441 cell lines compared to the free ciprofloxacin solution, supporting the potential for inhaled liposomal ciprofloxacin to provide a promising treatment for respiratory infections.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia; Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hanieh Gholizadeh
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia.
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Su R, Wang F, McAlpine MC. 3D printed microfluidics: advances in strategies, integration, and applications. LAB ON A CHIP 2023; 23:1279-1299. [PMID: 36779387 DOI: 10.1039/d2lc01177h] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.
Collapse
Affiliation(s)
- Ruitao Su
- School of Mechanical and Power Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Fujun Wang
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Automated analysis of mitochondrial dimensions in mesenchymal stem cells: Current methods and future perspectives. Heliyon 2023; 9:e12987. [PMID: 36711314 PMCID: PMC9873686 DOI: 10.1016/j.heliyon.2023.e12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
As centre of energy production and key regulators of metabolic and cellular signaling pathways, the integrity of mitochondria is essential for mesenchymal stem cell function in tissue regeneration. Alterations in the size, shape and structural organization of mitochondria are correlated with the physiological state of the cell and its environment and could be used as diagnostic biomarkers. Therefore, high-throughput experimental and computational techniques are crucial to ensure adequate correlations between mitochondrial function and disease phenotypes. The emerge of microfluidic technologies can address the shortcomings of traditional methods to determine mitochondrial dimensions for diagnostic and therapeutic use. This review discusses optical detection methods compatible with microfluidics to measure mitochondrial dynamics and their potential for clinical stem cell research targeting mitochondrial dysfunction.
Collapse
|
17
|
Combining 3D Printing and Microfluidic Techniques: A Powerful Synergy for Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16010069. [PMID: 36678566 PMCID: PMC9867206 DOI: 10.3390/ph16010069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Nanomedicine has grown tremendously in recent years as a responsive strategy to find novel therapies for treating challenging pathological conditions. As a result, there is an urgent need to develop novel formulations capable of providing adequate therapeutic treatment while overcoming the limitations of traditional protocols. Lately, microfluidic technology (MF) and additive manufacturing (AM) have both acquired popularity, bringing numerous benefits to a wide range of life science applications. There have been numerous benefits and drawbacks of MF and AM as distinct techniques, with case studies showing how the careful optimization of operational parameters enables them to overcome existing limitations. Therefore, the focus of this review was to highlight the potential of the synergy between MF and AM, emphasizing the significant benefits that this collaboration could entail. The combination of the techniques ensures the full customization of MF-based systems while remaining cost-effective and less time-consuming compared to classical approaches. Furthermore, MF and AM enable highly sustainable procedures suitable for industrial scale-out, leading to one of the most promising innovations of the near future.
Collapse
|
18
|
Tahir N, Sharifi F, Khan TA, Khan MM, Madni A, Rehman M. Microfluidics: A versatile tool for developing, optimizing, and delivering nanomedicines. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
19
|
Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability. Colloids Surf B Biointerfaces 2022; 221:113004. [DOI: 10.1016/j.colsurfb.2022.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
20
|
3D-printed microfluidic thread device with integrated detector: a green and portable tool for amperometric detection of fungicide benzovindiflupyr in forensic samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Eitzmann DR, Anderson JL. Evaluating commercial thermoplastic materials in fused deposition modeling 3D printing for their compatibility with DNA storage and analysis by quantitative polymerase chain reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2682-2688. [PMID: 35766132 DOI: 10.1039/d2ay00772j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nucleic acids are ubiquitous in biological samples and can be sensitively detected using nucleic acid amplification assays. To achieve highly accurate and reliable results, nucleic acid isolation and purification is often required and can limit the accessibility of these assays. Encapsulation of these workflows onto a single device may be achieved through fabrication methodologies featuring commercial three-dimensional (3D) printers. This study aims to characterize fused deposition modeling (FDM) filaments based on their compatibility with nucleic acid storage using quantitative polymerase chain reaction (qPCR). To study the adsorption of nucleic acids, storage vessels were fabricated using six common thermoplastics including: polylactic acid (PLA), nylon, acrylonitrile butadiene styrene (ABS), co-polyester (CPE), polycarbonate (PC), and polypropylene (PP). DNA adsorption of a short 98 base pair and a longer 830 base pair fragment to the walls of the vessel was shown to vary significantly among the polymer materials as well as the color varieties of the same polymer. PLA storage vessels were found to adsorb the least amount of the 98 base pair DNA after 12 hours of storage in 2.5 M NaCl TE buffer whereas the ABS and PC vessels adsorbed up to 97.2 ± 0.2% and 97.5 ± 0.2%. DNA adsorption could be reduced by decreasing the layer height of the 3D printed object, thereby increasing the functionality of the ABS storage vessel. Nylon was found to desorb qPCR inhibiting components into the stored solution which led to erroneous DNA quantification data from qPCR analysis.
Collapse
Affiliation(s)
- Derek R Eitzmann
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
22
|
Rajakaruna RADNV, Subeshan B, Asmatulu E. Fabrication of hydrophobic PLA filaments for additive manufacturing. JOURNAL OF MATERIALS SCIENCE 2022; 57:8987-9001. [PMID: 35527806 PMCID: PMC9053124 DOI: 10.1007/s10853-022-07217-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
There is an ever-greater need for self-cleaning and water-repelling properties of hydrophobic materials at this time in history, mainly due to the coronavirus disease 2019 (COVID-19) pandemic. However, the fabrication processes used to create hydrophobic materials are typically time-consuming and costly. Thus, this study aims to create hydrophobic materials based on low-cost manufacturing. In this study, polylactic acid (PLA) was mixed with various concentrations of hexadecyltrimethoxysilane (HDTMS) and polytetrafluoroethylene (PTFE) with the aid of solvents, chloroform, and acetone, through the solvent casting and melt extrusion process, which is capable of producing hydrophobic PLA filaments suitable for additive manufacturing (AM). Water contact angle (WCA) measurements were performed to verify the improved hydrophobicity of PLA/HDTMS/PTFE filaments. According to the results, it was discovered that the best filament WCAs were achieved with 2 g (10 wt%) of PLA, 0.2 ml of HDTMS, and 1 ml of PTFE (2 g PLA + 0.2 ml HDTMS + 1 ml PTFE), producing an average WCA of 131.6° and the highest WCA of 132.7°. These results indicate that adding HDTMS and PTFE to PLA significantly enhances filament hydrophobicity. Additionally, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) techniques were utilized to characterize the surface morphology, molecular interactions, and thermal decompositions of the prepared PLA/HDTMS/PTFE filaments. This study revealed that compared to 2 g of pure PLA filament, HDTMS and PTFE altered the microstructure of the filament. Its thermal degradation temperature was impacted, but the melting temperature was not. Therefore, the PLA/HDTMS/PTFE filament is good enough to be printed by the fused filament fabrication (FFF) AM process.
Collapse
Affiliation(s)
| | - Balakrishnan Subeshan
- Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 USA
| | - Eylem Asmatulu
- Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 USA
| |
Collapse
|
23
|
Vahabi H, Laoutid F, Formela K, Saeb MR, Dubois P. Flame-Retardant Polymer Materials Developed by Reactive Extrusion: Present Status and Future Perspectives. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2052897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, Metz, France
| | - Fouad Laoutid
- Laboratory of Polymeric & Composite Materials, Materia Nova Research Center, Mons, Belgium
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials (LPCM), Materia Nova/University of Mons, Mons, Belgium
| |
Collapse
|
24
|
Pavan Kalyan BG, Kumar L. 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech 2022; 23:92. [PMID: 35301602 PMCID: PMC8929713 DOI: 10.1208/s12249-022-02242-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.
Collapse
|
25
|
Abstract
Three-dimensional (3D) printing has introduced a paradigm shift in the manufacturing world, and it is increasing in popularity. In cases of such rapid and widespread acceptance of novel technologies, material or process safety issues may be underestimated, due to safety research being outpaced by the breakthroughs of innovation. However, a definitive approach in studying the various occupational or environmental risks of new technologies is a vital part of their sustainable application. In fused filament fabrication (FFF) 3D printing, the practicality and simplicity of the method are juxtaposed by ultrafine particle (UFP) and volatile organic compound (VOC) emission hazards. In this work, the decision of selecting the optimal material for the mass production of a microfluidic device substrate via FFF 3D printing is supported by an emission/exposure assessment. Three candidate prototype materials are evaluated in terms of their comparative emission potential. The impact of nozzle temperature settings, as well as the microfluidic device’s structural characteristics regarding the magnitude of emissions, is evaluated. The projected exposure of the employees operating the 3D printer is determined. The concept behind this series of experiments is proposed as a methodology to generate an additional set of decision-support decision-making criteria for FFF 3D printing production cases.
Collapse
|
26
|
Tsegay F, Elsherif M, Butt H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers (Basel) 2022; 14:polym14051012. [PMID: 35267835 PMCID: PMC8912626 DOI: 10.3390/polym14051012] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Wounds are a major health concern affecting the lives of millions of people. Some wounds may pass a threshold diameter to become unrecoverable by themselves. These wounds become chronic and may even lead to mortality. Recently, 3D printing technology, in association with biocompatible hydrogels, has emerged as a promising platform for developing smart wound dressings, overcoming several challenges. 3D printed wound dressings can be loaded with a variety of items, such as antibiotics, antibacterial nanoparticles, and other drugs that can accelerate wound healing rate. 3D printing is computerized, allowing each level of the printed part to be fully controlled in situ to produce the dressings desired. In this review, recent developments in hydrogel-based wound dressings made using 3D printing are covered. The most common biosensors integrated with 3D printed hydrogels for wound dressing applications are comprehensively discussed. Fundamental challenges for 3D printing and future prospects are highlighted. Additionally, some related nanomaterial-based hydrogels are recommended for future consideration.
Collapse
|
27
|
Kuang S, Singh NM, Wu Y, Shen Y, Ren W, Tu L, Yong KT, Song P. Role of microfluidics in accelerating new space missions. BIOMICROFLUIDICS 2022; 16:021503. [PMID: 35497325 PMCID: PMC9033306 DOI: 10.1063/5.0079819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Numerous revolutionary space missions have been initiated and planned for the following decades, including plans for novel spacecraft, exploration of the deep universe, and long duration manned space trips. Compared with space missions conducted over the past 50 years, current missions have features of spacecraft miniaturization, a faster task cycle, farther destinations, braver goals, and higher levels of precision. Tasks are becoming technically more complex and challenging, but also more accessible via commercial space activities. Remarkably, microfluidics has proven impactful in newly conceived space missions. In this review, we focus on recent advances in space microfluidic technologies and their impact on the state-of-the-art space missions. We discuss how micro-sized fluid and microfluidic instruments behave in space conditions, based on hydrodynamic theories. We draw on analyses outlining the reasons why microfluidic components and operations have become crucial in recent missions by categorically investigating a series of successful space missions integrated with microfluidic technologies. We present a comprehensive technical analysis on the recently developed in-space microfluidic applications such as the lab-on-a-CubeSat, healthcare for manned space missions, evaluation and reconstruction of the environment on celestial bodies, in-space manufacturing of microfluidic devices, and development of fluid-based micro-thrusters. The discussions in this review provide insights on microfluidic technologies that hold considerable promise for the upcoming space missions, and also outline how in-space conditions present a new perspective to the microfluidics field.
Collapse
Affiliation(s)
| | - Nishtha Manish Singh
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore
| | - Yichao Wu
- College of Resources & Environment of Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, People's Republic of China
| | - Yan Shen
- School of Aeronautics and Astronautics, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
| | - Weijia Ren
- SPACETY, No.9 Dengzhuang South Road, Haidian District, Beijing, People's Republic of China
| | - Liangcheng Tu
- School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
| | - Ken-Tye Yong
- Faculty of Engineering, School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Peiyi Song
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
28
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
29
|
Jin Y, Xiong P, Xu T, Wang J. Time-efficient fabrication method for 3D-printed microfluidic devices. Sci Rep 2022; 12:1233. [PMID: 35075184 PMCID: PMC8786882 DOI: 10.1038/s41598-022-05350-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Recent developments in 3D-printing technology have provided a time-efficient and inexpensive alternative to the fabrication of microfluidic devices. At present, 3D-printed microfluidic systems face the challenges of post-processing, non-transparency, and being time consuming, limiting their practical application. In this study, a time-efficient and inexpensive fabrication method was developed for 3D-printed microfluidic devices. The material for 3D-printed microfluidic chips is Dowsil 732, which is used as a sealant or encapsulant in various industries. The curing time and surface hydrophobicity of the materials were evaluated. The results indicated that the surface of Dowsil 732 is hydrophilic. An optimization model of the direct ink writing method is proposed to establish a time-efficient and accurate fabrication method for microfluidic devices. The results indicate that the optimization model can effectively describe the change trend between printing speed, printing pressure, and channel wall accuracy, and the model accuracy rate exceeds 95%. Three examples-a micromixer, concentration gradient generator, and droplet generator-were printed to demonstrate the functionality and feasibility of the fabrication method.
Collapse
Affiliation(s)
- Yan Jin
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Xiong
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tongyu Xu
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China.,Liaoning Engineering Research Center for Information Technology in Agriculture, Shenyang, 110866, China
| | - Jingyi Wang
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China. .,Liaoning Engineering Research Center for Information Technology in Agriculture, Shenyang, 110866, China.
| |
Collapse
|
30
|
Memarian P, Pishavar E, Zanotti F, Trentini M, Camponogara F, Soliani E, Gargiulo P, Isola M, Zavan B. Active Materials for 3D Printing in Small Animals: Current Modalities and Future Directions for Orthopedic Applications. Int J Mol Sci 2022; 23:ijms23031045. [PMID: 35162968 PMCID: PMC8834768 DOI: 10.3390/ijms23031045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The successful clinical application of bone tissue engineering requires customized implants based on the receiver's bone anatomy and defect characteristics. Three-dimensional (3D) printing in small animal orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. In veterinary medicine, because of the wide range of dimensions and anatomical variances, receiver-specific diagnosis and therapy are even more critical. The ability to generate 3D anatomical models and customize orthopedic instruments, implants, and scaffolds are advantages of 3D printing in small animal orthopedics. Furthermore, this technology provides veterinary medicine with a powerful tool that improves performance, precision, and cost-effectiveness. Nonetheless, the individualized 3D-printed implants have benefited several complex orthopedic procedures in small animals, including joint replacement surgeries, critical size bone defects, tibial tuberosity advancement, patellar groove replacement, limb-sparing surgeries, and other complex orthopedic procedures. The main purpose of this review is to discuss the application of 3D printing in small animal orthopedics based on already published papers as well as the techniques and materials used to fabricate 3D-printed objects. Finally, the advantages, current limitations, and future directions of 3D printing in small animal orthopedics have been addressed.
Collapse
Affiliation(s)
- Parastoo Memarian
- Department of Animal Medicine, Productions and Health, University of Padova, 35020 Padova, Italy; (P.M.); (M.I.)
| | - Elham Pishavar
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Francesca Camponogara
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Elisa Soliani
- Engineering Department, King’s College, London WC2R 2LS, UK;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland;
- Department of Science, Landspítali, 101 Reykjavík, Iceland
| | - Maurizio Isola
- Department of Animal Medicine, Productions and Health, University of Padova, 35020 Padova, Italy; (P.M.); (M.I.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
- Correspondence:
| |
Collapse
|
31
|
Garcia-Cardosa M, Granados-Ortiz FJ, Ortega-Casanova J. A Review on Additive Manufacturing of Micromixing Devices. MICROMACHINES 2021; 13:73. [PMID: 35056237 PMCID: PMC8778246 DOI: 10.3390/mi13010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/31/2023]
Abstract
In recent years, additive manufacturing has gained importance in a wide range of research applications such as medicine, biotechnology, engineering, etc. It has become one of the most innovative and high-performance manufacturing technologies of the moment. This review aims to show and discuss the characteristics of different existing additive manufacturing technologies for the construction of micromixers, which are devices used to mix two or more fluids at microscale. The present manuscript discusses all the choices to be made throughout the printing life cycle of a micromixer in order to achieve a high-quality microdevice. Resolution, precision, materials, and price, amongst other relevant characteristics, are discussed and reviewed in detail for each printing technology. Key information, suggestions, and future prospects are provided for manufacturing of micromixing machines based on the results from this review.
Collapse
|
32
|
Xu W, Jambhulkar S, Ravichandran D, Zhu Y, Kakarla M, Nian Q, Azeredo B, Chen X, Jin K, Vernon B, Lott DG, Cornella JL, Shefi O, Miquelard-Garnier G, Yang Y, Song K. 3D Printing-Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100817. [PMID: 34176201 DOI: 10.1002/smll.202100817] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/05/2021] [Indexed: 05/12/2023]
Abstract
3D printing (additive manufacturing (AM)) has enormous potential for rapid tooling and mass production due to its design flexibility and significant reduction of the timeline from design to manufacturing. The current state-of-the-art in 3D printing focuses on material manufacturability and engineering applications. However, there still exists the bottleneck of low printing resolution and processing rates, especially when nanomaterials need tailorable orders at different scales. An interesting phenomenon is the preferential alignment of nanoparticles that enhance material properties. Therefore, this review emphasizes the landscape of nanoparticle alignment in the context of 3D printing. Herein, a brief overview of 3D printing is provided, followed by a comprehensive summary of the 3D printing-enabled nanoparticle alignment in well-established and in-house customized 3D printing mechanisms that can lead to selective deposition and preferential orientation of nanoparticles. Subsequently, it is listed that typical applications that utilized the properties of ordered nanoparticles (e.g., structural composites, heat conductors, chemo-resistive sensors, engineered surfaces, tissue scaffolds, and actuators based on structural and functional property improvement). This review's emphasis is on the particle alignment methodology and the performance of composites incorporating aligned nanoparticles. In the end, significant limitations of current 3D printing techniques are identified together with future perspectives.
Collapse
Affiliation(s)
- Weiheng Xu
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Sayli Jambhulkar
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Mounika Kakarla
- Department of Materials Science and Engineering, Ira A. Fulton Schools for Engineering, Arizona State University, Tempe, 501 E. Tyler Mall, Tempe, AZ, 85287, USA
| | - Qiong Nian
- Department of Mechanical Engineering, and Multi-Scale Manufacturing Material Processing Lab (MMMPL), Ira A. Fulton Schools for Engineering, Arizona State University, 501 E. Tyler Mall, Tempe, AZ, 85287, USA
| | - Bruno Azeredo
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Xiangfan Chen
- Advanced Manufacturing and Functional Devices (AMFD) Laboratory, Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, AZ, 85212, USA
| | - Kailong Jin
- Department of Chemical Engineering, School for Engineering Matter, Transport and Energy (SEMTE), and Biodesign Institute Center for Sustainable Macromolecular Materials and Manufacturing (BCSM3), Arizona State University, 501 E. Tyler St., Tempe, AZ, 85287, USA
| | - Brent Vernon
- Department of Biomedical Engineering, Biomaterials Lab, School of Biological and Health Systems Engineering, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - David G Lott
- Department Otolaryngology, Division of Laryngology, College of Medicine, and Mayo Clinic Arizona Center for Regenerative Medicine, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Jeffrey L Cornella
- Professor of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Division of Gynecologic Surgery, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Orit Shefi
- Department of Engineering, Neuro-Engineering and Regeneration Laboratory, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Building 1105, Ramat Gan, 52900, Israel
| | - Guillaume Miquelard-Garnier
- laboratoire PIMM, UMR 8006, Arts et Métiers Institute of Technology, CNRS, CNAM, Hesam University, 151 boulevard de l'Hôpital, Paris, 75013, France
| | - Yang Yang
- Additive Manufacturing & Advanced Materials Lab, Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1323, USA
| | - Kenan Song
- Department of Manufacturing Engineering, Advanced Materials Advanced Manufacturing Laboratory (AMAML), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, AZ, 85212, USA
| |
Collapse
|
33
|
Mader M, Rein C, Konrat E, Meermeyer SL, Lee-Thedieck C, Kotz-Helmer F, Rapp BE. Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene. MICROMACHINES 2021; 12:1348. [PMID: 34832759 PMCID: PMC8618114 DOI: 10.3390/mi12111348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Polystyrene (PS) is one of the most commonly used thermoplastic materials worldwide and plays a ubiquitous role in today's biomedical and life science industry and research. The main advantage of PS lies in its facile processability, its excellent optical and mechanical properties, as well as its biocompatibility. However, PS is only rarely used in microfluidic prototyping, since the structuring of PS is mainly performed using industrial-scale replication processes. So far, microfluidic chips in PS have not been accessible to rapid prototyping via 3D printing. In this work, we present, for the first time, 3D printing of transparent PS using fused deposition modeling (FDM). We present FDM printing of transparent PS microfluidic channels with dimensions as small as 300 µm and a high transparency in the region of interest. Furthermore, we demonstrate the fabrication of functional chips such as Tesla-mixer and mixer cascades. Cell culture experiments showed a high cell viability during seven days of culturing, as well as enabling cell adhesion and proliferation. With the aid of this new PS prototyping method, the development of future biomedical microfluidic chips will be significantly accelerated, as it enables using PS from the early academic prototyping all the way to industrial-scale mass replication.
Collapse
Affiliation(s)
- Markus Mader
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Christof Rein
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Eveline Konrat
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Sophia Lena Meermeyer
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, 30419 Hannover, Germany; (S.L.M.); (C.L.-T.)
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, 30419 Hannover, Germany; (S.L.M.); (C.L.-T.)
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Bastian E. Rapp
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
34
|
Hua W, Mitchell K, Raymond L, Godina B, Zhao D, Zhou W, Jin Y. Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages. ACS Biomater Sci Eng 2021; 7:4736-4756. [PMID: 34582176 DOI: 10.1021/acsbiomaterials.1c00910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluid bath-assisted three-dimensional (3D) printing is an innovative 3D printing strategy that extrudes liquid ink materials into a fluid bath to form various 3D configurations. Since the support bath can provide in situ support, extruded filaments are able to freely construct complex 3D structures. Meanwhile, the supporting function of the fluid bath decreases the dependence of the ink material's cross-linkability, thus broadening the material selections for biomedical applications. Fluid bath-assisted 3D printing can be divided into two subcategories: embedded 3D printing and support bath-enabled 3D printing. This review will introduce and discuss three main manufacturing processes, or stages, for these two strategies. The stages that will be discussed include preprinting, printing, and postprinting. In the preprinting stage, representative fluid bath materials are introduced and the bath material preparation methods are also discussed. In addition, the design criteria of fluid bath materials including biocompatibility, rheological properties, physical/chemical stability, hydrophilicity/hydrophobicity, and other properties are proposed in order to guide the selection and design of future fluid bath materials. For the printing stage, some key technical issues discussed in this review include filament formation mechanisms in a fluid bath, effects of nozzle movement on printed structures, and design strategies for printing paths. In the postprinting stage, some commonly used postprinting processes are introduced. Finally, representative biomedical applications of fluid bath-assisted 3D printing, such as standalone organoids/tissues, biomedical microfluidic devices, and wearable and bionic devices, are summarized and presented.
Collapse
Affiliation(s)
- Weijian Hua
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Kellen Mitchell
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Lily Raymond
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Beatriz Godina
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Danyang Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangzhou, Guangdong 510642, China.,Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yifei Jin
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
35
|
Wu L, Beirne S, Cabot JM, Paull B, Wallace GG, Innis PC. Fused filament fabrication 3D printed polylactic acid electroosmotic pumps. LAB ON A CHIP 2021; 21:3338-3351. [PMID: 34231640 DOI: 10.1039/d1lc00452b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing technique has been employed for the first time to produce microcapillary structures using low cost thermoplastics in a scalable electroosmotic pump application. Capillary structures were formed using a negative space 3D printing approach to deposit longitudinal filament arrangements with polylactic acid (PLA) in either "face-centre cubic" or "body-centre cubic" arrangements, where the voids deliberately formed within the deposited structure act as functional micro-capillaries. These 3D printed capillary structures were shown to be capable of functioning as a simple electroosmotic pump (EOP), where the maximum flow rate of a single capillary EOP was up to 1.0 μl min-1 at electric fields of up to 750 V cm-1. Importantly, higher flow rates were readily achieved by printing parallel multiplexed capillary arrays.
Collapse
Affiliation(s)
- Liang Wu
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, University of Wollongong, 2522 Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Bezek LB, Pan J, Harb C, Zawaski CE, Molla B, Kubalak JR, Marr LC, Williams CB. Additively manufactured respirators: quantifying particle transmission and identifying system-level challenges for improving filtration efficiency. JOURNAL OF MANUFACTURING SYSTEMS 2021; 60:762-773. [PMID: 33551537 PMCID: PMC7846466 DOI: 10.1016/j.jmsy.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic has disrupted the supply chain for personal protective equipment (PPE) for medical professionals, including N95-type respiratory protective masks. To address this shortage, many have looked to the agility and accessibility of additive manufacturing (AM) systems to provide a democratized, decentralized solution to producing respirators with equivalent protection for last-resort measures. However, there are concerns about the viability and safety in deploying this localized download, print, and wear strategy due to a lack of commensurate quality assurance processes. Many open-source respirator designs for AM indicate that they do not provide N95-equivalent protection (filtering 95% of SARS-CoV-2 particles) because they have either not passed aerosol generation tests or not been tested. Few studies have quantified particle transmission through respirator designs outside of the filter medium. This is concerning because several polymer-based AM processes produce porous parts, and inherent process variation between printers and materials also threaten the integrity of tolerances and seals within the printed respirator assembly. No study has isolated these failure mechanisms specifically for respirators. The goal of this paper is to measure particle transmission through printed respirators of different designs, materials, and AM processes. The authors compare the performance of printed respirators to N95 respirators and cloth masks. Respirators in this study printed using desktop- and industrial-scale fused filament fabrication processes and industrial-scale powder bed fusion processes were not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection. Even while assuming a perfect seal between the respirator and the user's face, although a few respirators provided >90% efficiency at the 100-300 nm particle range, almost all printed respirators provided <60% filtration efficiency. Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but the printed respirators showed similar performance to various cloth masks. The authors further explore the process-driven aspects leading to low filtration efficiency. Although the design/printer/material combination dictates the AM respirator performance, the identified failure modes originate from system-level constraints and are therefore generalizable across multiple AM processes. Quantifying the limitations of AM in producing N95-type respiratory protective masks advances understanding of AM systems toward the development of better part and machine designs to meet the needs of reliable, functional, end-use parts.
Collapse
Affiliation(s)
- Lindsey B Bezek
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Jin Pan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Charbel Harb
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Callie E Zawaski
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Bemnet Molla
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Joseph R Kubalak
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Christopher B Williams
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| |
Collapse
|
37
|
Misra N, Bhatt S, Arefi‐Khonsari F, Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2000215. [PMID: 34220401 PMCID: PMC8237024 DOI: 10.1002/ppap.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Collapse
Affiliation(s)
- Nilanjal Misra
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
| | - Sudhir Bhatt
- Department of Engineering and Physical SciencesInstitute of Advanced ResearchGandhinagarGujaratIndia
| | | | - Virendra Kumar
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
- Department of Chemical SciencesHomi Bhabha National InstituteAnushaktinagarMumbaiMaharashtraIndia
| |
Collapse
|
38
|
Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review. MICROMACHINES 2021; 12:mi12030339. [PMID: 33810056 PMCID: PMC8004812 DOI: 10.3390/mi12030339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
In recent years, additive manufacturing has steadily gained attention in both research and industry. Applications range from prototyping to small-scale production, with 3D printing offering reduced logistics overheads, better design flexibility and ease of use compared with traditional fabrication methods. In addition, printer and material costs have also decreased rapidly. These advantages make 3D printing attractive for application in microfluidic chip fabrication. However, 3D printing microfluidics is still a new area. Is the technology mature enough to print complex microchannel geometries, such as droplet microfluidics? Can 3D-printed droplet microfluidic chips be used in biological or chemical applications? Is 3D printing mature enough to be used in every research lab? These are the questions we will seek answers to in our systematic review. We will analyze (1) the key performance metrics of 3D-printed droplet microfluidics and (2) existing biological or chemical application areas. In addition, we evaluate (3) the potential of large-scale application of 3D printing microfluidics. Finally, (4) we discuss how 3D printing and digital design automation could trivialize microfluidic chip fabrication in the long term. Based on our analysis, we can conclude that today, 3D printers could already be used in every research lab. Printing droplet microfluidics is also a possibility, albeit with some challenges discussed in this review.
Collapse
|
39
|
Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Int J Pharm 2021; 599:120464. [PMID: 33713759 DOI: 10.1016/j.ijpharm.2021.120464] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
During the last decade, an innovative lab on a chip technology known as microfluidics became popular in the pharmaceutical field to produce nanomedicines in a scalable way. Nevertheless, the predominant barriers for new microfluidics users are access to expensive equipment and device fabrication expertise. 3D printing technology promises to be an enabling new field that helps to overcome these drawbacks expanding the realm of microfluidics. Among 3D printing techniques, fused deposition modeling allows the production of devices with relatively inexpensive materials and printers. In this work, we developed two different microfluidic chips designed to obtain a passive micromixing by a "zigzag" bas-relief and by the presence of "split and recombine" channels. Computational fluid dynamics studies improved the evaluation of the mixing potential. A fused deposition modeling 3D printer was used to print the developed devices with polypropylene as manufacturing material. Then, two different model nanocarriers (i.e., polymeric nanoparticles and liposomes), loading cannabidiol as model drug, were formulated evaluating the influence of manufacturing parameters on the final nanocarrier characteristics with a design of experiments approach (2-level full factorial design). Both the chips showed an effective production of nanocarriers with tunable characteristics and with an efficient drug loading. These polypropylene-based microfluidic chips could represent an affordable and low-cost alternative to common microfluidic devices for the effective manufacturing of nanomedicines (both polymer- and lipid-based) after appropriate tuning of manufacturing parameters.
Collapse
|
40
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021; 22:2011. [PMID: 33670545 PMCID: PMC7921936 DOI: 10.3390/ijms22042011] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is a relatively newly emerged field based on the combined principles of physics, chemistry, biology, fluid dynamics, microelectronics, and material science. Various materials can be processed into miniaturized chips containing channels and chambers in the microscale range. A diverse repertoire of methods can be chosen to manufacture such platforms of desired size, shape, and geometry. Whether they are used alone or in combination with other devices, microfluidic chips can be employed in nanoparticle preparation, drug encapsulation, delivery, and targeting, cell analysis, diagnosis, and cell culture. This paper presents microfluidic technology in terms of the available platform materials and fabrication techniques, also focusing on the biomedical applications of these remarkable devices.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
41
|
Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00112-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Vanaei S, Parizi M, Vanaei S, Salemizadehparizi F, Vanaei H. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
43
|
Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems. MICROMACHINES 2020; 12:mi12010014. [PMID: 33375727 PMCID: PMC7823880 DOI: 10.3390/mi12010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023]
Abstract
Microfluidic devices are used to transfer small quantities of liquid through micro-scale channels. Conventionally, these devices are fabricated using techniques such as soft-lithography, paper microfluidics, micromachining, injection moulding, etc. The advancement in modern additive manufacturing methods is making three dimensional printing (3DP) a promising platform for the fabrication of microfluidic devices. Particularly, the availability of low-cost desktop 3D printers can produce inexpensive microfluidic devices in fast turnaround times. In this paper, we explore fused deposition modelling (FDM) to print non-transparent and closed internal micro features of in-plane microchannels (i.e., linear, curved and spiral channel profiles) and varying cross-section microchannels in the build direction (i.e., helical microchannel). The study provides a comparison of the minimum possible diameter size, the maximum possible fluid flow-rate without leakage, and absorption through the straight, curved, spiral and helical microchannels along with the printing accuracy of the FDM process for two low-cost desktop printers. Moreover, we highlight the geometry dependent printing issues of microchannels, pressure developed in the microchannels for complex geometry and establish that the profiles in which flowrate generates 4000 Pa are susceptible to leakages when no pre or post processing in the FDM printed parts is employed.
Collapse
|
44
|
Vaško M, Sága M, Majko J, Vaško A, Handrik M. Impact Toughness of FRTP Composites Produced by 3D Printing. MATERIALS 2020; 13:ma13245654. [PMID: 33322382 PMCID: PMC7764614 DOI: 10.3390/ma13245654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/02/2023]
Abstract
The additive manufacturing represents a new production method of composites reinforced with a continuous fibre. In recent times, the material produced by this new manufacturing method constituted a replacement for conventional materials-e.g., steel in many technical areas. As the research on FRTP composites is currently under way, the purpose of this article is to add information to the mosaic of studies in this research area. The scientific articles published until now have focused especially on mechanical testing, such as tensile and bending mechanical testing and their assessment. Therefore, the authors decided to carry out and assess the impact test of the FRTP composites produced by 3D printing because this area offers a large extent of research activities. We observed the influence of the reinforcement in the form of the micro-fibre carbon in the thermoplastic (Onyx) or a continuous reinforcement fibre in the lamina on the specimen's behaviour during the impact load processes. The results of the experimental measurements show that the presence of a continuous fibre in the structure significantly affects the strength of the printed specimens; however, the design process of the printed object has to take into account the importance of selecting a suitable fibre type. The selection of a suitable strategy for arranging the fibre in the lamina and the direction of the impact load against the position of the fibre seem to be very important parameters.
Collapse
Affiliation(s)
- Milan Vaško
- Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; (M.V.); (M.S.); (M.H.)
| | - Milan Sága
- Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; (M.V.); (M.S.); (M.H.)
| | - Jaroslav Majko
- Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; (M.V.); (M.S.); (M.H.)
- Correspondence: ; Tel.: +421-41-513-2965
| | - Alan Vaško
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia;
| | - Marián Handrik
- Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; (M.V.); (M.S.); (M.H.)
| |
Collapse
|
45
|
Ayrilmis N, Nagarajan R, Kuzman MK. Effects of the Face/Core Layer Ratio on the Mechanical Properties of 3D Printed Wood/Polylactic Acid (PLA) Green Biocomposite Panels with a Gyroid Core. Polymers (Basel) 2020; 12:E2929. [PMID: 33297442 PMCID: PMC7762421 DOI: 10.3390/polym12122929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Gyroid structured green biocomposites with different thickness face layers (0.5, 1, 2 and 2.5 mm) were additively manufactured from wood/ polylactic acid (PLA) filaments using a 3D printer. The mechanical properties of the composite panels, bending properties, compressive strength (parallel to the surface), Brinell hardness, and face screw withdrawal resistance, were determined. The surface layer thickness significantly affects the mechanical properties of the composite materials. As the surface layer thickness was increased from 0.5 to 2.5 mm, all the mechanical properties significantly improved. In particular, the Brinell hardness and face screw withdrawal resistance of the specimens improved sharply when the skin thickness was higher than 2 mm. The bending strength, bending modulus, compressive strength (parallel to the surface), Brinell hardness, and face screw withdrawal resistance of the specimens with a skin of 0.5 mm were found to be 8.10, 847.5, 3.52, 2.12 and 445 N, respectively, while they were found to be 65.8, 11.82, 2492.2, 14.62, 26 and 1475 N for the specimens with a 2.5 mm skin. Based on the findings from the present study, gyroid structured composites with a thickness of 2 mm or higher are recommended due to their better mechanical properties as compared to the composites with skins that are thinner.
Collapse
Affiliation(s)
- Nadir Ayrilmis
- Department of Wood Mechanics and Technology, Forestry Faculty, Istanbul University-Cerrahpasa, Bahcekoy, Sariyer, Istanbul 34473, Turkey
| | - Rajini Nagarajan
- Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626 126, Tamilnadu, India;
| | - Manja Kitek Kuzman
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
46
|
Balakrishnan HK, Badar F, Doeven EH, Novak JI, Merenda A, Dumée LF, Loy J, Guijt RM. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design. Anal Chem 2020; 93:350-366. [DOI: 10.1021/acs.analchem.0c04672] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hari Kalathil Balakrishnan
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
| | - Faizan Badar
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Egan H. Doeven
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
| | - James I. Novak
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Andrea Merenda
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
| | - Ludovic F. Dumée
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 0000, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi 0000, United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 0000, United Arab Emirates
| | - Jennifer Loy
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Rosanne M. Guijt
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
| |
Collapse
|
47
|
Discrete-Event Simulation Thermal Model for Extrusion-Based Additive Manufacturing of PLA and ABS. MATERIALS 2020; 13:ma13214985. [PMID: 33167578 PMCID: PMC7664205 DOI: 10.3390/ma13214985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
The material properties of thermoplastic polymer parts manufactured by the extrusion-based additive manufacturing process are highly dependent on the thermal history. Different numerical models have been proposed to simulate the thermal history of a 3D-printed part. However, they are limited due to limited geometric applicability; low accuracy; or high computational demand. Can the time–temperature history of a 3D-printed part be simulated by a computationally less demanding, fast numerical model without losing accuracy? This paper describes the numerical implementation of a simplified discrete-event simulation model that offers accuracy comparable to a finite element model but is faster by two orders of magnitude. Two polymer systems with distinct thermal properties were selected to highlight differences in the simulation of the orthotropic response and the temperature-dependent material properties. The time–temperature histories from the numerical model were compared to the time–temperature histories from a conventional finite element model and were found to match closely. The proposed highly parallel numerical model was approximately 300–500 times faster in simulating thermal history compared to the conventional finite element model. The model would enable designers to compare the effects of several printing parameters for specific 3D-printed parts and select the most suitable parameters for the part.
Collapse
|
48
|
Price AJN, Capel AJ, Lee RJ, Pradel P, Christie SDR. An open source toolkit for 3D printed fluidics. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00117-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractAs 3D printing technologies become more accessible, chemists are beginning to design and develop their own bespoke printable devices particularly applied to the field of flow chemistry. Designing functional flow components can often be a lengthy and laborious process requiring complex 3D modelling and multiple design iterations. In this work, we present an easy to follow design workflow for minimising the complexity of this design optimization process. The workflow follows the development of a 3D printable ‘toolkit’ of common fittings and connectors required for constructing basic flow chemistry configurations. The toolkit components consist of male threaded nuts, junction connectors and a Luer adapter. The files have themselves been made freely available and open source. The low cost associated with the toolkit may encourage educators to incorporate flow chemistry practical work into their syllabus such that students may be introduced to the principles of flow chemistry earlier on in their education and furthermore, may develop an early appreciation of the benefits of 3D printing in scientific research. In addition to the printable toolkit, the use of the 3D modelling platform – Rhino3D has been demonstrated for its application in fluidic reactor chip design modification. The simple user interface of the programme reduces the complexity and workload involved in printable fluidic reactor design.
Collapse
|
49
|
Kotz F, Mader M, Dellen N, Risch P, Kick A, Helmer D, Rapp BE. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate. MICROMACHINES 2020; 11:mi11090873. [PMID: 32961823 PMCID: PMC7570108 DOI: 10.3390/mi11090873] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Polymethylmethacrylate (PMMA) is one of the most important thermoplastic materials and is a widely used material in microfluidics. However, PMMA is usually structured using industrial scale replication processes, such as hot embossing or injection molding, not compatible with rapid prototyping. In this work, we demonstrate that microfluidic chips made from PMMA can be 3D printed using fused deposition modeling (FDM). We demonstrate that using FDM microfluidic chips with a minimum channel cross-section of ~300 µm can be printed and a variety of different channel geometries and mixer structures are shown. The optical transparency of the chips is shown to be significantly enhanced by printing onto commercial PMMA substrates. The use of such commercial PMMA substrates also enables the integration of PMMA microstructures into the printed chips, by first generating a microstructure on the PMMA substrates, and subsequently printing the PMMA chip around the microstructure. We further demonstrate that protein patterns can be generated within previously printed microfluidic chips by employing a method of photobleaching. The FDM printing of microfluidic chips in PMMA allows the use of one of microfluidics' most used industrial materials on the laboratory scale and thus significantly simplifies the transfer from results gained in the lab to an industrial product.
Collapse
Affiliation(s)
- Frederik Kotz
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (M.M.); (N.D.); (P.R.); (A.K.); (D.H.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Correspondence: ; Tel.: +49-761-203-7355
| | - Markus Mader
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (M.M.); (N.D.); (P.R.); (A.K.); (D.H.); (B.E.R.)
| | - Nils Dellen
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (M.M.); (N.D.); (P.R.); (A.K.); (D.H.); (B.E.R.)
| | - Patrick Risch
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (M.M.); (N.D.); (P.R.); (A.K.); (D.H.); (B.E.R.)
| | - Andrea Kick
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (M.M.); (N.D.); (P.R.); (A.K.); (D.H.); (B.E.R.)
| | - Dorothea Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (M.M.); (N.D.); (P.R.); (A.K.); (D.H.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Bastian E. Rapp
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (M.M.); (N.D.); (P.R.); (A.K.); (D.H.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
50
|
Wang J, Xiang J, Lin H, Wang K, Yao S, Peng Y, Rao Y. Effects of Scanning Strategy and Printing Temperature on the Compressive Behaviors of 3D Printed Polyamide-Based Composites. Polymers (Basel) 2020; 12:E1783. [PMID: 32784976 PMCID: PMC7466108 DOI: 10.3390/polym12081783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/30/2023] Open
Abstract
In this work, the effects of scanning strategies and printing temperature on mechanical properties and crush behaviors of columns manufactured using the fused deposition modeling (FDM) technique were studied. The results showed that scanning strategy and printing temperature had significant influences on mechanical response and deformation mode of the columns. The columns printed in different scanning strategies showed significant anisotropy due to the preferred orientation of short fibers during the printing process. The columns printed in a circular direction presented the highest compressive force response. The columns printed with carbon fiber-reinforced polyamide in a circular direction showed the final oblique fracture failure mode, in which there were fiber pull-out and matrix pull-apart on fracture surfaces. Different indicators were also used to evaluate the mechanical properties and crushing characteristics of the columns. The carbon fiber reinforcement columns presented the highest energy absorption, and the glass fiber reinforcement columns showed the highest elastic modulus and yield strength. The results indicated that the scanning strategy and printing temperature not only influenced the elastic modulus and yield strength, but also affected the energy absorption performances of the columns.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; (J.W.); (J.X.); (H.L.); (K.W.); (S.Y.); (Y.P.)
- Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha 410075, China
| | - Jiangyang Xiang
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; (J.W.); (J.X.); (H.L.); (K.W.); (S.Y.); (Y.P.)
- Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha 410075, China
| | - Hao Lin
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; (J.W.); (J.X.); (H.L.); (K.W.); (S.Y.); (Y.P.)
- Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha 410075, China
| | - Kui Wang
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; (J.W.); (J.X.); (H.L.); (K.W.); (S.Y.); (Y.P.)
- Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha 410075, China
- National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle, Central South University, Changsha 410075, China
| | - Song Yao
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; (J.W.); (J.X.); (H.L.); (K.W.); (S.Y.); (Y.P.)
- Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha 410075, China
- National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle, Central South University, Changsha 410075, China
| | - Yong Peng
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; (J.W.); (J.X.); (H.L.); (K.W.); (S.Y.); (Y.P.)
- Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha 410075, China
- National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle, Central South University, Changsha 410075, China
| | - Yanni Rao
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; (J.W.); (J.X.); (H.L.); (K.W.); (S.Y.); (Y.P.)
- Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha 410075, China
- National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle, Central South University, Changsha 410075, China
| |
Collapse
|